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BIT 18 (1978), 142-156

A CLASS OF FIRST ORDER
FACTORIZATION METHODS

IVAR GUSTAFSSON

Abstract.
A class of first order factorization methods for the solution of large, symmetric, sparse

systems of equations is introduced. Asymptotic results for the computational complexity

are developed, results from numerical experiments are presented and comparisons with
other iterative and direct methods are carried out.

1. Introduction.

Almost all methods to solve a symmetric, positive definite, sparse system of
linear equations, Ax=f, which arises from finite difference or finite element -
approximation of a selfadjoint elliptic partial differential equation problem of -

second order can be seen as special cases of a general method, a so-called
factorization method, which can be stated as

(1.1) Cx'*l = Cxt—py, 1=0,1,...,

where C=A+R, x° is arbitrary, r'=Ax'—f and f, is an iteration parameter.
In the following we assume that C = LLT is symmetric and positive definite. An

acceleration procedure like the Chebyshev semi-iterative method or the conjugate

gradient method can then be used for choosmg B;in (1.1), in order to increase the
rate of convergence. '
In [2] it is shown that these methods converge to a relative error ¢ in at most

(1.2) ent [3# (C ' A In (2/8) +1]

number of iterations, where 3#(C 1A) is the spectral condition number of the :

matrix C 4.

The method (1.1) includes the well-known Cholesky method, namely if R=0.
Then (neglecting rounding errors) #(C~'4)=1 and only one or a few steps of
iterative refinement are needed. On the other hand, when R=1— A4, that is when
C=1I, (1.1) becomes a purely iterative method. .

In between these extremes there is an infinity of other choices of C, leading to
different factorization methods. For a general discussion of the choice of C see e.g.
[3] and [1].

In this paper a class of factorization methods, that is, methods for the
construction of the matrix C, is introduced, which represents incomplete Cholesky

Received December 15, 1977. Revised February 21, 1978.

A CLASS OF FIRST ORDER FACTORIZATION METHODS 143

P factorizations of A, see also [4]. The idea in these methods is to let L have nonzero

entries in certain positions chosen in advance, Varlous methods arise by choosing
‘different positions. Some choices for special matrices are described in [1] and in
Section 3 of this paper.

The methods can be seen as modifications of the methods described in [4]. The
modification is made in order to obtain #(C~'A)=¢(h™ '), where h is the size of
the mesh. The methods are of first order in the sense that each component of the
vector Ru is of order h, when u is the nodal point vector corresponding to an once
differentiable function which vanishes on the boundary (also see [5]). For such
vectors u we use the notation u e C3(€). In [6] Stone introduced a second order

factorization method, that is, each component of Ru is of order h? for u € Ci(Q),

the so-called strongly implicit method (SIP). In this method, however, C is not
symmetric and furthermore in [5] Saylor claims that no symmetric second order
factorization method exists which is practically useful. In Section 2 we will state a
necessary condition for #(C™'A)=0(h™"), a relation satisfied by the methods
introduced in this paper and closely related to the property first order method.
We will also see that the methods in [4] are not of first order and that they do not

‘satisfy the necessary condition. In Section 4 it is proved that some of the methods

presented in Section 3 satisfy a certain sufficient condition for #(C~'A4A)=@(h™Y).
For finite difference (5-point) approximation the simplest method in Section 3 is
identical with a method described by Dupont, Kendall and Rachford Jr. [7], as
well as with the generalized SSOR method in Axelsson [8], apart from a slightly
different choice of the preconditioning parameter. The well-known SSOR method,
see e.g. [2], where C=(D+L)D~'(D+LT), D=w™'D, D=diag (4) and L strictly
lower triangular, gives, with the preconditioning parameter w properly chosen, the
same rate of convergence, that is, #(C~'A)=0O(h™"), for Dirichlet problems.
This, however, is not true for problems with Neumann boundary conditions.

2. A class of first order factorization methods.

We consider certain finite difference or finite element approximations arising
from discretization of the second order self-adjoint elliptic partial differential

'~ _equation problem in two dimensions;

21
— (8/2x) @y (x, Y)(&/2xYu (x, V) — (3/09)a (x,310/0yu(x, Y) + 4 (x,3) = [ (x,1)

~ with a;(x,))>0, j=1,2, g20, (x,y) € 2<R? and with suitable boundary

conditions on JQ.

For simplicity but without loss of generality we assume that g=0. We refer to
problem (2.1) with a,(x,y)=a,(x,y)=1, ¢=0, Q the unit square and Dirichlet
boundary conditions as the model problem.

Discretization of (2.1) leads to a system of linear equations, Ax = f, where A
=(a;) is a symmetric, positive definite, sparse matrix of order N=@(h 2).
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Furthermore, since the basis functions have local support, 4 is a “local” matrix so

that the distance between two points in the mesh representing indices i and j is

following we assume that the elements g,; are normalized to be of order O(1).
By an elementary summation by parts, see [1], we obtain

-3 aij(xi—xj)2+z Z agx} .

i j>i

2.2) (Ax,x) =

For u € C4(Q) we have ¥; a;u} =0(h?) since Y ;a;;=0 except for i representing
nodal points near the boundary. Further, since 4 is local, u;—u;= @ (h)for i and j
such that a;;+0. From (2.2) and the fact that N=0(h"?) we then get

(2.3) (Au,u) = O1), h > 0, u e Cy() .

For the defect matrix R=(r;) the relation corresponding to (2.2) is

_"z z rii(x -X )2+z z ru i

i j>i

(2.4) (Rx,x) =

and for u € CL(Q) we have

2.5 (Ru,u) = z z rut+0(1), h— 0.

From (2.3) and the relation
(Ax,x)/(Cx,x) = 1/[1+ (Rx,x)/(Ax,x)]
valid for all x#+0 it is clear that a necessary condition for 5 (

(2.6) —0(1) £ (Ruu) < O(h™Y), ue CLQ).

This condition is related to the property first order method in the sense that (Ru, u)

=@(h~') when R is a first order matrix, that is
2.7 (Ru); = O(h), Vi
Notice that from

(Ru); = z

jeM;

rij{u;+0(h), ue Cy(Q),

where the number of indices in M;={j; r;;+0} is O(1), we have

(2.8) (Ru); = Z rii+ Oh), ue Co(Q) .

Also observe that (2.7) is not sufficient for (2.6). For the methods described in this -
paper, however, we have ¥ ;r;;= O(h?) for Dirichlet problems. Then it is obvious °
from (2.5) that (2.6) is satisfied. (Ru);, however, is still of order O(h). see (2.8), .

giving a first order method.
For the methods in [4] we have r;;=0 and 3;r;;=0(1) (for almost; all values of
i). Then it is clear from (2.8) that these methods are not of first order. Furthermore

CT'A)=0(h""is
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7 itis an easy matter to find (a positive) u € C5(8) for which (Ru,u)= @ (h~2), that is,

f the necessary condition (2.6) is not fulfilled. For (Ru,u)=0(h"%) we get
O(h) for a;;%0 and the number of indices j such that a;;#0is O(1) for each i. In the "3

(Au, u)/ (Cu,u)=O(h?) while e.g. ¢, =(1,0,...,007 gives (Ae,,e,)/(Ce,,e;)=0(1).

. ‘ Then it is clear that these methods give.a condition number of order (at least)

O(h~?), which is actually the same order as for 3#(A).

We shall show that, at least for A an M-matrix (that is a;;<0 for i%jand 4A™!
20), it 1s possible to construct a factorization method for which (2.6) is satisfied
with the upper bound O(1).

To this end let
2.9) C=LLT = A+R = A+R+D,
where R= (7;;) is negative semidefinite (that is, (Rx,x)£0, ¥ x) and =0, Vi,
and the choice of the positive diagonal matrix D depends on the boundary
conditions.

.For the Dirichlet problems we will choose D=¢h? dlag(A) £>0 being a
parameter. For Neumann problems some elements of D, corresponding to points
on the part of the boundary with Neumann conditions, must be of order O (), see
[9]. In the following we confine the study to Dirichlet problems. Similar results
for Neumann problems are shown in [9].

From (2.5) it is obvious that R in (2.9) satisfies (2.6) (with the upper bound
¢(1)). From (2.8) it is also iclear that the methods in the class (2.9) are of first
order.

In the following m;, j=1,2,... are positive constants independent of h.

Since m,h*< (Ax,x)/(x,x)<m, we have 0< (Dx,x)/(Ax,x)<m; and further-
more

(2.10) (1+mz)™' £ (Ax,x)/(Cx,x) £ 1/[1+(Rx,x)/(Ax,x)] .

We will now state a sufficient condition to obtain a condition number # (C~'A4)

“of order O(h™").

THEOREM 2.1. Let A be factored as in (2.9). Then a sufficient condition to obtain

H(C ' A)=0h") is

(2.11) —(Rx,x) £ (1+kh)~Y(Ax,x), Vx,
where k>0 is independent of h.

Proor. The result is immediate from (2.10) and the definition of #°(C~1A4). ®

- In Section 4 we will prove (2.11) for some particular methods.
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3. Description of some first order factorization methods for the finite difference
approximation of a model problem.

Consider the problem (2.1) with g=0, Q the unit square and Dirichlet
boundary conditions. We will use a type of simple graph-theoretic tool, see also
[7], to show which gridpoints are involved, and coefficient-notations for 4, L, LLT
and R, regarded as operators (or corresponding matrices) applied to grid
functions. In this notation 4 is defined in Figure 3.1, where m is the band width of

the matrix.
=i

1

=B o; —B;

Figure 3.1. A.

As said above our methods can be treated as modifications of the methods
(denoted ICCG methods) in [4], and we will refer to them by MICCG(n) to point
out the relationship to a certain ICCG(n) method.

-The MICCG (0) method.

In this method the matrix L has nonzero elements in positions where the lower
part of A4 has nonzero elements. We simply say that L contains no extra diagonal
and we denote the method MICCG(0) (Modified Incomplete Cholesky &'
Conjugate Gradients with 0 extra diagonal). :

For this method L, LT, LLT and R are defined in Figures 3.2-3.5.

¢

i-m

Figure 3.2. L. Figure 3.3. LT.
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b;—yci-y aic; r;
aX+ bl [+, o [J
a;_1bi_y a;b;
b mCim
Ci-mi-m

Figure 34. LL”. Figure 3.5. R.

It is easy to see that (2.9) implies that the coefficients have to satisfy the
formulas

a? g ;(1+8)—r,—rimper — b —
i by = —Bya;
(1) ¢ =
ri = biycioy
§=2¢, >0,

where elements not defined should be replaced by zeros.

This method is identical with that in [7] as well as with the generalized
SSOR method in [8] apart from a slightly different choice of the parameter &.
For the (unmodified) ICCG(0) method, for which diag(R)=0, the
corrcsponding formulas are

ai2 = ai_biz—l_ciz—m
b; = —Ba;
¢ = —yla;.

The MICCG(1) method.

A natural step to get a more accurate factorization is to allow L to have

" nonzero elements in positions where R, in the MICCG(0) method, has nonzero

elements. This leads to the MICCG(1) method defined in Figures 3.6-3.8 and the
formulas (3.2).

Ficm+1
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—ri-m+2

: T
Figure 3.6. LT Figure 3.7. R.

ad;+
b d;_y ¢ioybi_) Cia;

al+bi  +-
cl‘z—m+d12-m+l

b+ ¢y 1di—

Figure 3.8. LLT.

ai = o0(1+0)=b}_, —c] p—di i —ri=Tiimis |
bi = ~ (Bt Cimmsrdioms )/
(3.2) G = vl
d; = —c¢;_\bi_,/q
rp=b,_d;_,
§=¢r, E>0.

Continuing in this way we first come to the MICCG(2) method and then to the
MICCG(4) method. These and several other methods for finite element
fipproximations of different problems (even three-dimensional) are described and
investigated in [1] and [9].

In [4] Meijerink and van der Vorst claim that the ICCG(3) method is a good
method. The corresponding MICCG(3) method, however, is not obtained by the
general idea. presented below to get more accurate first order factorization

Fiom+2
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methods. It is also confirmed in numerical tests that this method gives only a
slightly more accurate factorization than the MICCG(2) method. In order to
compare with the unmodified methods, however, results for the MICCG(3)
method are given, among others, in.Section 3. .

Notice that with a simple modification of the formulas for deriving the elements
in L one can avoid taking square-roots. This modification can be stated as C=
(L+ D?)(D~2)(L7+ D?), where LD ™'+ D=L and L is strictly lower triangular.

A general idea to obtain MICCG methods.,

It is proved in [4] that an unmodified incomplete factorization of a general M-
matrix gives R =0, diag (R)=0. In the same way it is easy to see that a modified
method, as above, can be constructed for a general M-matrix corresponding to a
finite difference or finite element operator to obtain R with nonnegative off-
diagonal elements and negative diagonal elements so that (2.9) is satisfied.

For more general structured problems the idea to obtain a MICCG-method is
to let L have nonzero clements in the same positions as A4, form the product LLT
to see where R has nonzero elements, extend L to have nonzero elements in these
- positions to get a more accurate factorization and possibly continue in this
manner a few steps more. -

This general idea has been used in [1] and [9] to construct modified incomplete
Cholesky factorization methods for various finite element approximations.

4. Bounds for the condition number # (C~'A) for the finite difference
approximation of a model problem.

For simplicity but without loss of generality we consider the model problem of
Section 2. For smoothly variable coefficients and general domains the results of
this section evidently can be obtained using the ideas in [7] or 8], see also [9].

In this section we will prove that the MICCG(0) and MICCG(1) methods,
introduced in section 3, for the model problem give H(C 1A)=0h").
According to Theorem 2.1 we then have to prove relation (2.11).

To distinguish elements corresponding to different MICCG(n) methods we
sometimes use notations as ", a\” etc.

The following lemma gives a bound for r* in the case of the model problem.

Lemma 4.1. Let r'® be elements defined in (3.1) of the matrix R from the

MICCG(0) method concerning the S-point approximation of the model problem.
Then e

4.0 r® < 1/[2(1+kh)], where k>0 is independent of h .

ProoF. We first prove that a universal bound for a{” is

4.2) a* =z 2(1+kh), Vi, k>0 independent of h .
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Consider the formulas (3.1) for deriving the coefficients, where for the model
problem o;=4, 8;<1,and y,£1,i=1,2,...,N. For {=0 we can simply derive the’
bound a}22,i=1,2,...,N by induction on i. Now a?=4322 is obvious and we:
further suppose that a?=2 for i=1,2,...,p—1. Then ‘

a}z) = 4_bp—l(bp_1 +Cp—1)_cp—m(cp—m+bp_"')

v

4-2/a2_ =2/a: 2 4-1-1=2
and by induction
a} 22, i=12,...,N.

It is easy to see that this bound can be obtained by solving ¥ (a) =0, where ¥(a)
=a*+4/a> 4.
In the same way, for ¢ > 0, we obtain the bound by solving ¥ (a) —4¢h? =0. This'
gives '

il

a’-2

28tha
Eh+ (ER*+2)%

a

and ‘
a? = Eh*+ER? +242hEH(ER2 +2)F > 2(1+kh),

where k= (2¢)* and (4.2) is proved.
Since

rp=bi_ici_y,

we obtain

IA

r < lad, < 1[2(1+kh)]

and the lemma is proved. ®
We also need the following lemma.

LEMMA 4.2. Let ¢ and d be positive and let a, b, and e be real. Then

(c+d)"Ha—b)* S c7Ha—ef +d ' (e—b).

Proor. This is trivially seen from
(a—b)* < (1+e)(a—e)*+ (1+c~ ) (e—b)?
valid for all >0 and in particular for e=d/c.
For the model problem and x=[x,...,x5]7 (2.2) becomes

43) (4%,%) 2 % (B0 = ;41 41— X117
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v

where

’ 0 for i=pm, p=1,2,...,m
@43) B, ={ P

1 otherwise

- and

. 0 for i>N—m

1 otherwise .

Notice that since 7, , = B;y/a? we have

(44) rie1 #0 < By +0.

For the matrix R defined in Figure 3.5 we have from (2.4)
~(Rx,x) = Y ri{xi—Xjym—1)

ri+0
and from (4.1)

_(Rxsx) < [2(1+kh)] ™! Z (xi“xi+m—1)2 .
ri%0

Using Lemma 4.2 with ¢=d=1 for each gridpoint we get

_(RX,X) = (1+kh)_lx\z [(xi—xi—1)2+(xi—l—xi+m—1)2]-

r+0
= (L+kh)™! Z 0y = %) + (X=X )]
ri+1*0
and from (4.3) and (4.4) we finally obtain
—(Rx,x) £ (1+kh)™'(Ax,x) ,

which is the desired result (2.11).

Further straightforward calculations give #(C~'4)<m,+msh™!, where for
the model problem ms=m4(¢) is minimized for ¢ =n2/8 and then # (C714)<2
+4(nh)~ 1.

For the MICCG (1) method the proof is similar and details are left to the reader
‘(however, see [1]). The following lemma gives a bound for r{".

LemMa 4.3. Let 1V be elements, defined in (3.2), of the matrix R from the
MICCG(1) method concerning the S-point approximation of the model problem.
Then

(4.5) 1 < 1/[5(1 + kh)], where k>0 is independent of h .
Proor. Considering the formulas (3.2) for the model problem we see that a
bound for a{’ when ¢=0 is obtained by solving ¥ (a)=0, where

¥Y(a) = a’*+1/a*+[a(1—1/a®)]"*—4.
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¥ (a) has the positive solution a= (1 +]/«5)/2 and therefore
= [(1+)/9)/2% i=12,... N

From (3.2) we can obtain corresponding bounds for the other coefficients for ¢
=0. This gives

Before summing up the results of this section in Theorem 4.2 we notice that the
number of nonzero elements in L for these methods is (O(N) and therefore each
iteration in (1.1) can be carried out in ((N) arithmetic operations.

THEOREM 4.2. The MICCG(0) and MICCG(1) methods for solving the model
problem with 5-point approximation need O(N'-*° In (2/¢)) operations to reduce the
relative error by a factor e.

~b; = (5+}/3)10,
—d; £ (5-)/9)10

Proor. This is an immediate consequence of (1.2) and the results in this

and finally
. section. B

rp=>b_d_; £1/5.

This author believes that it is possible to prove relation (2.11) and thus obtain
the result of Theorem 4.2 for the other methods described and investigated in [1]
and [9] in the same way as above, at least when the matrix A is an M-matrix. This
belief is supported by the numerical tests.

For £>0 we have to solve ¥(a)—4&h* =0 which leads to

a? = [(1+)/5)/20*(1 + kh)
and '

ro < IS(1+kh)], i=1,2,....N.

where k>0 is independent of h, which proves the lemma. u

" 5.-Comments to numerical experiments and conclusions.

For the matrix R defined in Figure 3.7 we have, see (2.4), Several testproblems with various approximations and boundary conditions,

even problems with discontinuous material coefficients and three-dimensional
problems, have been investigated in [1] and [9].
All the results properly reflect the theoretical result #(C~'A)=0(h").
Although this result is not yet covered by the theory for problems where A is not
- an M-matrix, the same rate of convergence has been observed for such problems.
The experiments show that the number of iterations is almost independent of
the parameter ¢ in a fairly wide range.

_(Rxax) = Z FC TR ST L
%0

Using (4.5) and Lemma 4.2 twice, first with ¢c=2, d=3 and then with ¢= 1,d=2
we obtain

(4.6) —(Rx,x) £ (1+kh)™! Z %('xi—xi+m—2)2
%0

For the model problem MICCG (n) methods with different values of n have been
S (L+kh)” { 2 0 [3xiv s —x)? ‘*'%(X.'—me)z] studied. The result was that it is worth computing nonzero elements in only a few
it subdiagonals of L to get a more accurate factorization of the matrix. In Figure 5.1
+ Y x— xR —x )1 and Flgure 5.2 the ngmber of 1'terat10ns anq the total work, factorization and
Fiomsy 0 solution work, respectively, are given for the different methods when N =1600 and
_ -6
From (4.3) we have e=107"
(4.7) (4x, x) Z (B (x;—x; - 1)2'*'2 Viem(Xi—m—X)*] In comparison with other iterative methods the best first order factorization

methods need about 309, less arithmetic operations than the SSOR-method or
the unmodified methods in [4], for average-sized (N =1000-2000) Dirichlet
problems. In Fig. 5.3 the number of iterations which was needed for some
methods to solve the model problem, is given for different values of N and
£=1075. It is observed that for large values of N the number of iterations for the
unmodified ICCG methods grows as ¢ (N*), which is in agreement with the result
H(C 'A)=0(h"?). For the modified methods as well as for the SSOR method,
however, the number of iterations grows as (D(Nl‘).

where elements not defined should be replaced by zeros.
From the formulas (3.2) it is clear that r,, ; =r;_ ., , =0 for such an i that §8,=0,
ﬁl 1_0 '))1_0 or yl m_O
~ Comparing (4.6) and (4.7) we therefore obtain
—(Rx,x) £ (1+kh) 7' [3(Ax,x)+ 5(Ax, )] = (1+kh)™" (Ax,%)
and (2.11) is proved. ‘
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4 Number of 1 Number of
iterations iterations
\ 30+ 1CCG(1)
20 4 26 4
=< 22-
S SSOR
15 RO 18 MICCG(1)
S~ 1CCG(3)
T~~~ . _ 14
o T - - 2

10 4 12 -

) ) MICCG(3)
10
54 8 -
n 6 -

L 1 1 1 Il
0 1 2 3 4 © 51
N
7 1 | 1
Figure 5.1. The number of iterations for the MICCG (n) methods for the mode] problem with N=1600 - 100 400 1600

and £=107°.

Figure 5.3. The number of iterations for some methods as a function of N for the model problem with ¢
=107, logarithmic scale.

Work

For Neumann problems and problems with discontinuous material coefficients
j'the gain from the SSOR method to the best first order factorization method often
exceeds 609, for average-sized problems. This is in particular valid when the
'ri)umber of points with Neumann conditions is large in relation to the number of
points with Dirichlet conditions or when the rate of discontinuity is important.

In {17 a comparison is also made between the first order factorization methods
~and some direct methods namely band-elimination, the nested dissection method
[10] the one-way dissection method [11] and the minimum degree method [12].
The result was that the first order factorization methods compare with the best
direct methods when one or a couple of righthand sides are present with the same
matrix in two-dimensional problems of average size. For several righthand sides,
“however, a fast direct method is to prefer as long as the problem is not too large so
\th‘at the limited capacity of the memory has to be taken into account.
~ For three-dimensional problems the iterative methods are superior to the direct
“methods even for an infinite number of righthand sides.

Other advantages with the iterative methods are that they need less storage, can
benefit from a good initial approximation (as in time-dependent problems, in
iterative design of boundary value problems and in quasi-linear problems), often
have less accumulation of rounding (cancellation) errors, and are easy to
program.

350 4

300 ~

250

200 4

1 A i A

0 1 2 3 4

Figure 5.2. The number of arithmetic operations per unknown for the MICCG(n) methods for the
model problem with N =1600 and e=10"¢.



156 IVAR GUSTAFSSON BIT I8 (1978). 157-169

¢

Finally it is of interest to mention that the first order factorization
methods have successfully been used to factor even nonsymmetric matrices, see
{13], and in problems where it is sufficient to have only an approximate
factorization of a matrix (of current interest), for instance when the Navier
equations of elasticity are solved by iterative methods, see [14].

ON THE A-STABILITY OF IMPLICIT
RUNGE-KUTTA PROCESSES
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ARIEH ISERLES
Abstract.

A new technique to calculate the characteristic functions and to examine the A- -stability
of implicit Runge-Kutta processes is presented. This technique is based on a direct
glgebraic approach- and an application of the C-polynomial theory of Neorsett. New
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1 Introduction.

The implicit Runge-Kutta processes were defined by Butcher [2] and a large
amount of papers were devoted to their properties, focusing on their A-stability
(see [1]-[9], [15], [18] and [19]). Nevertheless, the general method for the
determination of A-stability only suits processes equivalent to collocation ([157],
[19]). The stability analysis of other processes [9] can actually be accomplished
only by a direct computation of the simplest cases.

In this paper we suggest a straightforward, algebraic method for the
determination of the characteristic function of a given implicit Runge-Kutta
process. In the sequel we analyse thg Subject of applying the theory of C-
polynomials, developed recently by Nersett ([15], [16]). We conclude by
suggesting a new family of processes with some desirable properties.

It is widely known that the implicit Runge-Kutta process based on Legendre
points suggested by Butcher [2] and whose A-stability was determined by Ehle
[8] is of maximal possible order. Hence, the research of different processes
requires some justification. Actually, the problem of A-stability of various general
implicit Runge-Kutta processes is essential if one is ready to sacrifice the excellent
order properties of the Legendre processes in exchange for the exponential fitting
[14]. The exponential fitting of a given numerical method can be performed in
two distinct ways. The first, considered by Liniger and Willoughby [14] and Ehle
[10], consists in the determination of certain free parameters of a given scheme.
The second, suggested by Iserles [12], [13], is based on computing the numerical
solutions by two different A-stable methods and then a weighted average of the

solutions. We shall consider the application of both approaches in conjunction
with the implicit Runge-Kutta processes.
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