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Chapter 1

Introduction

The books by SteverisPadmanabhahand Tribbl€ are particularly nice, concise summaries
of advanced physics at the graduate student level.

For a brief review of complex analysis, try Tribble’s book Appendix C “Pedestrian’s
guide to Complex Variables,” in Nicholson'aetroduction to Plasma Theory. (If that starts too
deep for you, check out the references he sites. | like Sdéaffrand RedhefferMathematics
of Physics and Modern Engineering.)

Summaries of E&M and classical mechanics are in K. MiyamBltasma Physics for Nu-
clear Fusion (MIT, 1980).

Unless otherwise indicated, most of the formulas here acgsnnot SI (MKS).

Acknowledgements:Thanks to my many physics and mathematics teachers oveedns,y
including Prof. Tom Stix, Paul Bamberg, George Carrier,nJ&hommes, and many others.
Useful corrections and suggestions for this document haga made by Tim Stoltzfus-Dueck,
Nino Pereira, and ...



Chapter 2

Mathematics

2.1. Basic Equations

Quadratic Equation:

B —b+/b? — 4ac

ax’ +br+c¢=0 = T
2a

Factorials:
nl=n(n—1)(n—2)---(3)(2)(1)
1'=1 0l=1
2n+ )l = 20+ 1)(2n —1)(2n — 3) - (5)(3)(1) = %
2n)1! = (20)(2n — 2)(2n — 4) - - - (4)(2) = nl2"

The number of permutations (where order matters) objects selected from a set of
objects, is
n!
(n—k)!
The number of combinations (where order doesn’t mattek)alfjects selected from a setof
objects is (this is sometimes called “n choose k”):

=nn—1)(n—-2)...(n—k+1).

The binomial theorem:



2.1. BASIC EQUATIONS

Geometry

Ellipse Area= mab.
Circle Area= 72, Circumference= 27r.

Sphere Volume= $77%, Area= 4772,

S

Solid Angle: 6Q = 05 / dQ) = 4r
R? oV

Trig identities:
sin?x + cos?z =1

sin x 1 1 1
tanx = = secr = CSCT = —
CoS T cotx CoS T sin x
9 1+ cos2z . .
cos“ T = — 5 cos(z +y) = coswcosy — sinxrsiny
. 9 1 —cos2z . ) .
s r = ————— sin(z + y) = sinx cosy + cos w sin y
Exponential identities:
e = cosh +isinb
ol _ o—if ¢t 4 i
sinf = ——— cos = ———
21 21
0 -0 0 -0
. e’ —e e’ +e
sinh 8 = —5 cosh 6§ = B

cosh? z — sinh?z = 1
For an arbitrary triangle:

a® + b* — 2abcosh = 2
sinff  sing  sing
c b a




Differentiation

CHAPTER 2. MATHEMATICS

dg(u) = g'(u)du

d(fg)
()
g
dsinx = cosxdx

dcosx = —sin xdx

dsecx = tan x sec zdx

dx
N

dx

+ 22

darcsinz =

darctanx =

= fdg + gdf

_gdf — fdg
— 792
dtan x = sec? xdx

dcotx = — csc? xdx

dcscx = — cot x csc xdx
—dx
V1—2a?
dx

Va2 —1

darccost =

darcsecx =

d
dlogx:—x
x

Taylor Series (with remainder):

f'(a) f"(a)

fle) = fla)+ ]

(x—a)+ o1

Infinite Series: |
1l—=x
1— xn—i—l

1—=2x

2

T
e =1+x+ o+ ot

2!

2P

sine =2 — -+ — +---

3! 5!

2 4

T T

cosle——+ﬂ+~-~+

2!

for -1 <z < 1: log(1 + x)

i X X
Vido=1+--"+ = —

_(x_a)2_|_..._|_

=l+z+a”+ - +a"+--

=l+z+2°+---+2a"

$3 n

T

x2n+1

IL’2 213'3 n

2 3

2 3

2 8
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Vector & Tensor Operators (in simple Cartesian geometry)

o 9 0
V= (a—x’a—m)
dA = di - VA
9
oz

, )

dA = (dz,dy, dx) BN (As, Ay AL)

0
0z
Here | am using the notation that a row vector times a colunotoves a dot product, while
a column vector times a row vector is a tensor product. Wed, is a tensor product, while
B - VAis a vector (the gradient of in the direction of5).

Einstein summation convention: there is an implied sum ospeated indices. This sim-
plifies working with tensors represented as their indexettim@ements. Let; fori = 1,2,3
represent the x,y,z coordinates, aficthe component ofl in the i'th direction.

L DA,
B-VA) = B.—*
( V )Z ]axj

Tensor notation (for simple Cartesian geometry, ignoring contravariantogvariant repre-
sentations and upper vs. lower indices): Writing two vextogxt to each other (without a dot
that would indicate a dot product or inner product) is caliddnsor product (or outer product)
and results in a second-rank tensdr5 = A, B; (sometimes this is called a dyad; the tensor
product is sometimes denoted Hys B or ABT, whereA is a column vector an&? is a row
vector). Tensors are matrices:

T_'~ff:TZ-jAj = T3 Pjk

W
W

T : P involves contraction with respect to two indices and isezhb colon product (or a “dou-
ble dot product”). It is a generalization of a scalar innexdarct from vectors to matrices. The

—

2 2 2\ 1/2
Frobenius matrix norm7’|| = (T:T) :

9]
(8

V1) is a vector=
8xi

VA is a tensok= iAj
8xi
V. T is a vector— iT—-
_Oxz- "
- 2 0 0 0A,; . =z N 2
(AT =L ary—alp L Tip 3 (v.T :
V(A T) = g (ATy) = Aig Ty 5T = (V-T1)+ (VA) : T

whereT't is the transpose d&F. The unit tensot = I = identity matrix= Kronecker delta

s 1iti=
PT0ifiA)
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Levi-Civita symbol:
(14) X g)z = 5ijkAjBk where

1if i # j # k cyclic permutation of 1, 2, 3

€k =« —1if i # j # k cyclic permutation of 1, 3, 2
Oifi=jorj=kori=k
i zﬂf&xj k

€ijk€ilm = jl(skm — 6jm6kl is equivalent to
(Ax B)-(CxD)=(A-C)(B-D)—(A-D)B-C)
This can be used to prove
0A; 0A;

8xi I 81']' I

= (v x B);

whereB =V x A. Thatis,(VA)-v—-v-VA =v xB.

Cylindrical, Spherical, and General Geometry

Spherical geometrydi = #dr + 6rdf + ér sin dg.

Add something here about vector operators in general coeal coordinates, Jacobians,
coordinate transformations, etc??

dS is a vector that is “normal” to the surfadd,5| measures the area.
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Integration
/fdngg—/gdf
d
= log 1
i
27
L sin? 0 df = L
21 Jo 2
Gamma Function: I'(z) = (x —1)! = / t" e tdt
0
- 1
Stirling’s approx.: n! ~v2mnn"e ™" (1 + Ton +...)
n

uniform approx. good fon =0: n! ~v2mn+1n"e™"
error< 1% for integern > 0, max error< 4% forn ~ 0.1

Generalized Maxwellian Moments for complex5; Reala > 0:

+oo 9
G, = / e e P g

o0

T 52 /(40 n0"G " oG
Go = \/geﬁ /(4e) Gon = (—1) 8@"0 Gopyr = (1) 06271-1-10

In particular, for a Maxwellian distribution function:

hu= (o ) e [0z 403 )

o T
,I.}t_
m

<v§") = /dgv vi”fM = vf"(Qn - 1!

So that(E) = 3m(v2 + v2 4+ v2) = 3T. le., the average energy per degree of freedofis
“Normal” distribution function:

o= oo [4(52)]

“Error” function:

9 v oo, +yv20
O(y) = —/ e Vdt = / dxf(z,0,0)
0 —yV20

(0) =0 ®(Fo0) = +1 ®(1o/V20) = 0.68 ®(20/v20) = 0.95
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2.2. Complex Analysis

f(z) is analytic in some region if its derivativelf /dz exists (i.e., is independent of the
direction ofdz in the complex plane). The terrhslomor phic, monogenic, andregular are also
used. More formally/ is holomorphic if f satisfies the Cauchy-Riemann equations (where
andwv are real-valued functions):

f(z) =u(z) +iv(2) z2=x+1y
ou_o o o
oxr 0Oy oy Oz

Equivalently,f is holomorphic ifd( fdz) = 0 in modern differential geometry notation. ffis

holomorphic, then it satisfies
0*f  O*f
2 = — _— =
Vof = 92 + By 0
Cauchy’s integral formula: For € regionD, andf(z) holomorphic everywhere i, then
the n’'th derivative of f is related to the following integral around the boundarylofgoing

counter-clock wise around the contallj:

f(n)(z)_ n!/a &dg

©2mi Jop (€= 2)nt?

The leads to the formula for contour integrals:
j{ f(¢)d¢ = 2mi x (sum of the residues inside the contoyr C
C

If f(2) has a pole of ordet at z = «a, then its residue is defined as

residue— —— Tim (- f(2)

Fourier Transforms:

o0 o0

Convolutiontheorem:/ e_thF(w)G(w)dw:/ gt =) f(t)dt

—0o0 —0o0

. . : 1
Fourier transform of a Gaussian is a Gaussifit) = e~ — F(w) = ——e /(4
V2a
: , 1 [ .
Common forms of Dirac delta function:  §(t) = 2—/ dwe™™"
™ o0
sin Lt €
o(t) =1 o(t) = lim ————
®) e (®) Do (e +t2)
1
lim —— = P.V. +imd(x — a)

0+ T — a F i€ ‘T —a
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2.3. Differential Equations

ODE’s, WKB methods, PDE’s. Green'’s functions.
Dirichlet boundary conditions take the forfitz = xy) = C.
Neumann boundary conditions take the faffidz|,—,, = C.
Three main classes of partial differential equations:

e Hyperbolic (wave-like with characteristics); = u., Or tuy = Uy,.
e Parabolic (diffusion-like)u; = u,,.
e Elliptic (Poisson-like):u,, + uy, =0

Generalized Langevin equation, Green'’s function solution
Special Functions.

2.4. Linear Algebra and Matrices
2.5. Numerical Methods

ODE's: First order explicit and implicit, Second order Rerlgutta or Predictor-Corrector
Schemes, Adams-Bashforth, Leapfrog, Backward diffeagiotn formulas (BDF) for stiff
equations. Numerical stability, phase errors of variolestes
PDE’s: Diffusion equations and implicit methods. Convestequations and upwind differ-
encing and limiter methods. Tri-diagonal matrix solver

Finite Fourier Transforms, Convolution equations. Desdd pseudospectral methods by
the (2/3) rule.

Modern higher-order upwind algorithms for hyperbolic cemnvation laws: Total Variation
Diminishing flux-limited algorithms, WENO.

2.6. The Greek Alphabet

Alpha A o Nu N v
Beta B I5; Xi = £
Gamma T v Omicron 0] o]
Delta A ) Pi II T, W
Epsilon E € € Rho P Py 0
Zeta Z ¢ Sigma )y 0,§
Eta H n Tau T T
Theta S 0, v Upsilon T v
lota I L Phi o o, ¢
Kappa K K Chi X X
Lambda A A Psi v P
Mu M 1 Omega Q w
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Math and LaTeX dictionary

N \aleph aleph

R \Re real part

R \Im imaginary part

00 \infty infinity

v \forall for all

= \exists there exists

R \mathbb R the set of all real numbers

C,Z2,Q the set of all complex numbers, integers, or rationals
{... lists the elements of a set

€ \in element of

C \subset subset

N \cap intersection

U \cup union

(a, b interval with open and closed enfls : a < = < b}
<~ oriff if and only if

Examples of mathematical notation: LEtZ, ) be a function that maps an m-dimensional
vector® and a real valuedlto a real number. The notation for this j5; R™ x R — R.



Chapter 3

Classical Mechanics

Classical (non-quantum, non-relativistic) Lorentz eguabf motion for a particle in an elec-
tric and magnetic field:

i
at
v = . 7 x B(Z)
— =F=ma=c¢|EZ
mo ma e( (Z) + . )

Lagrangian formulation for generalized coordinajes

d (OL\ OL
dt \ Oq; oq;

1 -
L(qi, 4i) = 5”’“’2 + ZU‘ A—eg

whereg; = dg;/dt. The Hamiltonian formulation uses the generalized monmantu

To obtain the Hamiltonian
H(pi,gi) = =L+ Y _ pidi

1
(p - —A) + e
2m
And the Hamiltonian equations of motion are:
., OH . 0H

The meaning of all this?
K = KineticEnergy

U = PotentialEnergy
L=K-U, H=K+U

Note thatL = L(q,q) while H = H({,7), so thatd/dq; in the two different approaches
(Lagrangian and Hamiltonian) holds different independeaniables fixed becauge# ¢.
The time evolution of any function defined on phase spacefiare) f (7, 7, t) is
d 3} of . 0 Of 0OH O0f 0H 0
f _of of . f._of n S S f LS H)

it ot "ot T op T ot T ag 0p  Opiog ot

which serves to define the Poisson brackétH }.

13



Chapter 4
Electricity & Magnetism

“To convert any expression from Sl to cgs units, make theaaphentsB — B/c, ¢¢ —
1/(4m), wo — 4m/c% The inverse transformation is more complicated, and igritesd in
Jackson (1975%"and in the NRL formulary.

14
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Chapter 5

Plasma Physics

Fundamental phenomena electron plasma oscillations, Debye shielding, gyraradgyro-
frequency, collisions, plasma skin depth.

Debye shielding from Boltzmann response in thermodynamgwilierium: f
exp(—H/T) o exp(—(mv?/2 4 q®)/T — n o< exp(—q®/T)

Plasma ParameterA = n)\?, = # of particles in a Debye sphereA > 1 defines the
usual plasma state. Nearest neighbor interactions wealter{pal energy of nearest neigh-
bors)/(kinetic energy)~ 1/A%3. Collective interactions strong (quasineutrality, Debye
shielding length is short, 2-stream instability, frozanfield lines, Alfvén and other plasma
waves).

Fundamental length scalegevaluated for\ ~ 106):

90° impact average Debye
aram‘()ater - interparticle : shielding - mean free path
P spacing length
b : n~t : Ap : Amfp
AT AL A/logA
10_6 : 10_2 . 1 : 105

b is the “distance of closest-approach” for a singflé collision (though it turns out that the net
scattering rate is enhanced by a factologfA due to many small-angle scatters,);, ~ v/v
is the mean free path between collisions.

Time scales: Collision frequency is weakfw,. ~ logA/A.

?? Guiding center drift equations (Lagrangian formulgtion
Laser-plasma interactions. Figure-8 orbits.

5.1. Fundamental Kinetic Theory

Classical (non-quantum) non-relativistic Lorentz equatrf Motion for thei’'th particle:
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A trick for replacing thes@ N ODE’s with a single PDE is to use the Klimontovich-Dupree
equation forf, (¥, v,t) = >, 0(Z — Zi(t))6 (T — 4;(t)),

ofc | - 0fc - Of
ot oz T aw
The Vlasov equationfor f is identical to this equation fof,, except thatf is considered to
be a smooth density of particles in phase-space (and so leascdoerse-grained, averaging
over a finite volume, oy is considered as a statistical probability function fromeaisemble
average). This smootfi (which produces a smooth electric field) thus ignores thecsfof
collisions between discrete particles (where the eleéigid blows up if any two particular
particles get too close). Collisions must be reintrodudadavcollision operator on the right-
hand side (or will arise from next order corrections in tharse-graining/averaging procedure
as in the BBGKY hierarchy), leading to ti®ltzmann equation

of . of . of

ot uc o7 +a ov =C()

Another approach: Multidimensional Conservation Laws.

Let f(z1,x2,...,2N,t) be a distribution for anV-dimensional phase space, where the
equations of motion arér; /dt = 2; = u,;. Then particle conservation can be expressed as:

Za:m §¥,mf -V - (if)

Breaking up the phase-space in to the canonical positioas(z, z,, ..., zy/2) and the
canonical momentg = (zy/2+1,- - -, 2y ), then the phase-space conservation law/fgr, ¢)

can be rewritten as o7
'a+—(f) o () =0

Using the Hamiltonian equations of motion one can then shiounille’s theorem

DI_0f g0 0
Dt ot 0q op
i.e., f is constant along trajectories in phase space (consema@itishase-space).
Equilibrium solutions (iff a function only of constants of the motion, Boltzmann thermo
dynamic equilibrium...).
2-stream instability, Landau damping.

=0

=0,

5.2. Fokker-Planck Collision Operator and Coulomb Scatteing

General expression for probabilistic transitions. If€f, ¢) be the density of particles (or
the probability distribution for a single particle) at veity v at timet. If Pxy(v,€) is the
probability of a particle initially at’ taking a step to' + &, then

1@0) = [Pt - APa(T-E8)
This is also known as a Markov process. Doing a Taylor-sesgansion for smal

. L . 0 .
f(l_f—g,t— )PAt( 6 )%f(ﬁvt_At)PAt(gvg)+§Z%f(6vt_At)PAt(gv )
1 0 0 LR
+ 5y, (01— AN PAEE)
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integrating over alfand taking the limitA¢ — 0 gives the generi€okker-Planck equation:

of B 0 L (Ay) o 0 L (AvAvy)
() =ctn=— [r00852] + 2 0800
0 : o 0 0J;
= gy, [F@EO8] + 55 (1@ 0Dy = -5

Where(Av;) = [ d*¢Pa,(7,€)¢;, and similarly for(Av;Av;). For finite size time steps, the
diffusion tensor should be given by
((Av; — (Av;))(Av; — (Av;)))

(2A¢)

Dij —

(assuming | did the multi-dimensional generalization @ tight??)..J = P J°f is given in
the NRL formulary and is the flux in velocity space of speciadue to collisions with species
3. Because of the analogy with electrostatics noted by Rds#ntihe Rosenbluth potentials
in the NRL can also be written as

2

VZH = —(1+ —2)4 VG = —

If fs5 is Maxwellian, then the collision operator simplifies to foem at the top of NRL p. 36
(this ignores the back-reaction ¢f due to collisions with the non-Maxwelliaf),). A useful

1.D.: 5 ) .
9ol Tl =22
ov [22}3( UU)] v3

Coulomb logarithm: The NRL formulary gives a recipe for a general Coulomb |ctyani

In Ans = In(rmax/mmin) fOr a test particlex colliding with field particles3 with relative veloc-
ity u = |v, — v|. Note that the symmetrin \,5 = In g, is important in proving various
conservation properties of the collision operator, and:ihe,; factor should be kept inside the
v" = vz integral in the Landau form of the collision operator on pa3%he 2002 NRL formu-
lary, if the dependence &f A,z on the relative velocity is retained. (Since the collisigem-
tor is only accurate te- 1/ In A, often this can be neglected, but the symmaéiry, s = In \s,
should still be preserved.) The NRL's recipe says that the@mmam impact parameter is cut off
by Debye shieldingy .. = (47 ZV nye?y/kTy)—l/% “where the summation extends over all
speciesy for which#? < U%’y” (wherew is the relative velocity). An obvious question is what
happens for suprathermal particles that are even fastertieamal electrons, do they not ex-
perience Debye shielding at all? The answer is that theytdrslgelded, but only on a longer
spatial scale on which their transit frequency is of orderglasma frequency. Thus a possible
generalization of this recipe is to replaggl, = > w2 /v7, — 3 (w), + Q)% / (07, + @),
keeping a sum over all species. The Coulomb logarithm isllysdarived for the standard
weakly-coupled plasma regime where is it very large. A maregal approximation is to
replaceln A,z = In(rmay/Tmin) — W((1+ 72, /r2;)Y?). This will give approximately the
correct collisional relaxation rates, but in this regimeafirangle collisions no longer dominate
so the diffusive approximation is no longer rigorous.

Quialitative collision rates:



5.3. BRAGINSKII FLUID EQUATIONS 19

Electron-ion collisions cause pitch angle-scatteringyogiving rise to resistivity (electrons
lose momentum to ions), and electron-electron collisicnsse f, to approach a Mawellian
(preserving the electron energy, in the ion rest frame)-idoncollisions caus¢; to approach
a Maxwellian (preserving the ion energyl), andT, equilibrate only at the very slow;, rate.
v ~ 1/v3 so energetic particles are less collisional.

5.3. Braginskii Fluid Equations

The summary of Braginskii in the NRL is supplemented hereagBrskii uses the Landau
collision operator for Coulomb collisions between ionigeticles (thus ignoring atomic pro-
cesses, collisions with neutrals, external sources orssiflparticles or energy). (Note, the

NRL reverses the definition af and P relative to Braginskii's original notation.)

Ng = /dgvfa Nty = Ne(V)a = /dgvfaﬁ

— —
— -

Pressure tensor [ — p 14+ P, = nama (0550)a = nama{(— (7)) (—(T)a))a

1
Heat flux G = na§ma(|677|2677)a

. .. _ ) 1
Friction / Collisional drag rateR,, = /d% ma07 C, & heating Q = /dngma\MP C,

Definingp = nT gives(m|§v|?/2) = (3/2)T, i.e. T/2 of energy per degree of freedom (di-
mensions or modes among which energy can be shagresi}he isotropic part of the pressure

tensor, soP must be traceless. Braginskii used a Chapman-Enskog-igeoach to calcu-
late the closures in the collisional limit. The NRL has sumiggof Braginskii forQ2.7 > 1
or < 1, though Braginskii has more general expressions. The NRlressions are for a
hydrogen-electron plasma, while Braginskii gives expmessfor a plasma with arbitrary ion
chargeZ; and for multiple ion species;. = >, n;Z;. To generalize the NRL formulas for
arbitrary Z;, the electron and ion collision times and various coeffigseare modified in the
following way:

_ 3ym I  3ym I
T N, 22N T A /A Z1eA

Z; dependence of various transport coefficients (Bragin$abje 1)

First term of
Z; ofl Ry andg® K| KS
1 1.96 0.71 3.16 4.66
2 2.27 0.9 4.9 4.0
3 2.50 1.0 6.1 3.7
4 2.63 1.1 6.9 3.6
00 3.40%0 1.5 13.61Y 3.2

l.e., the equation fov is oy = 1.960, for Z; = 1, ando, = 2.630, for Z; = 4. Spitzer’s
result for resistivity is identical to Braginskii's. Spées result for the energy equilibration rate
reduces to Braginskii's result fon, /msz < 1.
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The NRL/Braginskii expressions fq?/ can be applied to arbitrary, non-straightfields,
as long as one properly identifiesvith b = B/B. There is a potential ambiguity in the NRL
expressions: the proper relationis, /0x., = (b- Vv) - b, andnot dv, /0x, = b- V(v -b). For
exampleV., =b- W -b=2b- (V) -b— (2/3)V - 7. More generallyW = Vv + (Vv)" —

(2/3)1V - v. Note thatP and W are tracelessi{,, + W,, + W.. = 0) and symmetric. In
the strongB limit (2.7 > 1, wherer is the collision time), Braginskii’s stress tensor becomes
diagonal to lowest orde? = —no[W..bb — (W../2)(I — bb)]. Even without strong collisions,

in the strongB limit (w/$). < 1, p/L < 1) the rapid gyration of particles means thygt)

to lowest order must be isotropic perpendiculaitoso the pressure tensor must be diagonal,

yielding the CGL (Chew-Goldberger-Low) pressure teri$ot p,bb + p. (I — bb). The CGL
“double adiabatic” equations of state (neglecting heatsleawd collisions):

% <%) =0 (from . conservation)

n

d B\’ B (if the magnetic field and plasma move togethéy,
dt \ "\ 'n - changes only due to compression paralleBjo

The fluid equations are often simplified further (such as mpée¢ MHD) by assuming
isotropic pressure and neglecting heat flows and collisienergy exchange between species:

dp B . d (py\
E#—v-Vp——FpV-v or E(F)_O

i.e., an adiabatic equation of state where a fluid elementpcesses or decompresses as an
ideal gas withp = Cn' (C is constant as the fluid element moves, but may differ between
fluid elements because of the spatial variation of the iniemperature, so the above form
d/dt(p/n*) = 0is more general)l' = 5/3in 3-D, or" = (2 + d)/d with d = # of degrees of
freedom in general. While this equation of state correspaadero heat flux (which may be
appropriate for waves that propagate faster than particlgs > v,), choosingl’ = 1 allows
one to consider the opposite limit of a heat flux so rapid thattemperature is uniform (this
isothermal closure may be appropriate for phenomenawith< v;). For some phenomena,
an even simpler closure pf= 0 (the cold-plasma approximation) is made. Intermediate<as
wherew /k ~ v, gives rise to Landau damping. Approximate fluid models ofdaandamping
use closures for higher moments that correspond to chaistitelamping rates of ordey|%|,
the phase-mixing rate.

Equations of state summary: adiabaticp « n°/3, isothermal p < n, cold-plasma
p=0.

Braginskii's equations are derived for a specific ordering tnere are corrections that can
become important in some regimes. For example, see papetatby and Simake¥ circa
2002-2005. Mikhailovskii and Tsypt#i have terms like

V-1~ e Vi+ Vi
wherec; is Braginskii-type terms and, are Mikhailovskii’'s new heat flux terms?

Spitzer’s resolution of the Fluid-Particle paradox: Theédflilow velocity is the sum of the
particle guiding center drifts plus a diamagnetic velogéyk.a. magnetization current). l.e.,
the current from a particular species is

j:jEXB _‘_jVB _._jcm‘v +jpol+---+]M
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where the magnetization current is given By = V x M = —V x (cn,(u)b) = —V x

A~

((¢/B)p,b), and{us) is the mean magnetic moment for species



22 CHAPTER 5. PLASMA PHYSICS

5.4. MHD/One-Fluid Equations

The standard ordering assumptions to derive simple MHDsdosv time scales compared
to the gyrofrequency and large spatial scales comparecetgyttoradius (similar to the drift
equations)w/Q.; ~ p;/L ~ ¢ < 1. m,/m; < 1is used and quasineutrality is assumed
(this orders out high-frequency electron plasma osailfet), andv4/c < 1 is assumed (the
displacement current is ignored to order out light waves)HDMallows flowsu ~ cE x
J}?/B2 ~ v, andpg ~ 1, though subsidiary orderings can be made later. Switch freonfluid
variables to one-fluid variables: mass dengity= > n,m,, mass-weighted flow velocity

pu = Y, NaMaTa, Current density] = > nagata, and define pressure relative #p Il =
S0 Mana (0 — @) (T — @))a ~ pl

. 0
Conservation of Mass a—f +V - (pt)=0
. di jx B
Momentum conservation, force balance pd—? =—-Vp+ e
. . . d
Energy conservation, adiabatic pressure d—? =—-I'pV-u
. — 0 é — e é
Generalized Ohm’s Law (FLR but, — 0) E+l *Z nj — Vbe | J X
C ne nec
. OB - . Amo
Magnetostatic Maxwell’s Eqgs: o = —cV x E VxB= —Wj
C

Other Maxwell’'s equationsV - B = 0 is only an initial condition, and’ - £ = 4o is used
only to verify quasineutrality assumption. The last ternthed generalzied Ohm’s law is the
Hall term, and the last two terms of the Ohm'’s law are usually. smaller than the first two
terms and are neglected in standard MHD. Extensions of silrlmbiD are sometimes made to

keep a CGL pressure tensor or a full pressure te¥gpr~ V - II, using equations of state or
Braginskii transport coefficients from the previous settio

There arethree main waves in MHD. Linearizing the MHD equations for a uniform
plasma with a straight magnetic field and an adiabatic eguati stateip = 24p, the general
dispersion relation is

(W? = B (w* — Wk +v}) + KPkicdv]) =0

where the Alfvén speed, is given byv% = B?/(4mp), and the sound speed is given by

2 =Tp/p = T(T; + T.)/m;. Approximate formulas that interpolate for arbitatyare: the
shear Alfvén wavew® = k7v?, thefast magnetosonic (compressional Alfén) wavew?® =
k*(v? +c?), and theslow magnetosonic wave, a.k.a. the slow mode (at high betansetimes
called the pseudo-Alfien wave, and at low beta it becomes an ion acoustic wavej =
k2vic?/(v4 + ¢2). (There is also the lesser known entropy mode, but this isiedited by
using an adiabatic equation of state instead of the timesudgnt pressure equation. In ideal
MHD the entropy mode is zero frequency and has# 0 butédp = 0 (i.e., force balance is
maintained by opposite density and temperature gradignts)

??6W Energy principle, Grad-Shafranov Equation, MHD equibiin general geometry.

5.5. Waves

cold-plasma dielectric tensor? quasilinear theory?
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5.6. Stochasticity, Turbulence, and Transport

5.7. Tokamak Equilibrium

5.8. Common Plasma Physics Parameters

“Safety factor” (better, “inverse rotational transform”‘avinding ratio”):

2 _ AV 1B
= = 4Upol ~ R B,
Magnetic shear
. rdg
§=——
qdr
Random walk diffusion coefficient
1(Ax)?
D=
2 At

2
Dclassical = VeiPe

Turbulent mixing length estimate

Y
D, =—=
Bohm LT
c
Dom:_ =
Boh 16 eB

Gyro-reduced BohmAx ~ 1/k ~ p, At ~ 1/vy ~ 1/w, evaluated ak, p ~ 1):

cTe ps

D » = s
9B B L,

- CspsL_

Ps

Reaction rates are of the forth= n,ng(ov)/(1 + ¢,;), where thej,; corrects for the case

of self-collisions.

?? The form of 1.5D transport equations in general geometry.
?? 0-D scaling relations for reactor design studies: Trdyeta limits o« I/(aB), global

energy scaling, Greenwald density limit, pedestal scalifgmode power thresholds. shaping

effects, bootstrap fraction. Trubnikoff's ECE cyclotroovger losses.



Chapter 6

Quantum Mechanics

6.1. The essential guantum mechanic

Schrodinger’s Equation:

a B B p2 B hZ )
Zﬁa\P—H\I’—<%+V)\I’—<—%V +V)|w

Plane waves (with momentum= Ak and energyy = hw):

i(kx—wt) i(px—Et)/h

U xe =e

Commutatorsiz, p] = xp — px = ih

d dA i
S = (5 + 2 A)
Heisenberg Uncertainty Princip{éAA)%)((AB)?) > 1|[(¢|[A, Blv)||*.

“Natural units” uses 3 fundamental units: action (or angat@mentum) §), velocity c,
and energyV. The 3 fundamental units of cgs are length, mass, and tinte{aation” has
units of [momentumk[length]. . In natural unitsh = ¢ = 1, and all physical units are
reported in “eV”.

?7? Could add: Harmonic oscillator, Variational methodsyiBb state non-degenerate per-
turbation theory, degenerate perturbation theory, tieggeddent perturbation, scattering the-
ory, Born approximation, angular momentum and spin, at@ngrgy levels.
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Chapter 7
Astrophysics

1 parsec (pc)= 3.086 x 10'%m = 3.262 lyr
1 light year (ly)= 9.461 x 10"%m
1 Julian year= 365.25 days= 3.156 x 10"s

Approx. a hundred, thousand, millioh0(!!) stars per galaxy.

Approx. a hundred, thousand, millioh0!!) galaxies in the visible universe.
Approx. 1 supernova explosion per galaxy per century.

Age of the universe: 14 billion years.

?? Could add a length/mass scale object plot, starting aitiekt scale at the size of the
(visible) universe, clusters, groups, elllitical and spalusters, AGN/MBH, globular clusters,
red giants, stars, white dwarfs, neutron stars, jupitetheatc. (like Padmanabhan Table 1.1
or elsewhere), and continuing down to molecules, atomdenus...

Add a phase diagram plot like Fig. 1.1 of Padmanabhan?

Could add a time history plot: big bang, first 3 minutes, liglgment fusion, recombina-
tion, first stars, reionization, galactic formation, agetd solar system, earth, ...

Stellar structure, stellar life cycle...
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