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Edge pedestal scalings very uncertain, but most favor
higher-field designs with stronger shaping...

« Wide range of theory & expt. evidence: A/R o p.y (3T-60U, JET), p2* 2, gii7pf
(very interesting DIII-D evidence of a second stable edge, which would have a

more favorable scaling to reactors)
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e Making two assumptions (and use Uckan formula for q¢; R1,/(Ba?)):
1. Width A o« /epy x pq/(k+/€) (scaling preferred by two largest tokamaks)

2. stability limit 938/0r o« [1 + x*(1 + 106%)]/R¢* (rough fit to JT-60U, Koide et.al.,
Phys. Plasmas 4, 1623 (1997), other expts.), get:

e [ 14 k21 + 1062) (1—(a/R)?*? 1" AR
ped = =0 Nped ) |[1 4+ K21+ 202 — 1.20%)] (1.17 — 0.65a/R)| ~K?a

(Hammett. Dorland, Kotschenreuther, Beer, PPPL-3360 (1999))



JET data supports A & phomans & 06/0r < Rq®> model.
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Fig. 4. Scaling of the stored energy in the pedestal
(MJ) versus the fit 0.54 1 (MTpgd/2)0'5. The symbols
are H=Hydrogen, D=Deuterium, D-T=50:50 D-T
mixture and 1= Tritium.
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JT-60U showed the first evidence for the A x pyinanas
dB3/dr < 1/(Rq*) model. Also find a strong triangularity

dependence.
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Fig. 1. a) and b): Increasing i, (center chord), 7, e(0.7a), T (r/a=95%), T (v/a=
95%) and edge o-parameter with increasing triangularity at onset of giant
ELMs. ¢): Time traces of D ad“’ and n(0.7a) for giant ELMs( 8=0.08) and
grassy ELMs ( 6=0.34, ﬁp=2.4) with Pyp=20MW and | p=0.6MA.



Some of the new reactor designs may have
significantly improved pedestal temperatures

Using this 7., formula (with a A « pg assumption), and other pedestal scalings
also, to scale from JET to some proposed reactor designs:

R a B I p Nped Zp—;j % Kos | Ogs Tped Tped Tped
m m T| MA | 102/m? keV keV keV
if A oc pg /e | if50% | if Aoc/Rgp

JET-norm [2.92[0.91|2.35]2.55 04040 |~11]161].17 2.1 2.1 2.1
ITER-96 8.142.80|5.68|21.0 1.3]1.52 1/1.60][.24 0.207 0.18* 1.5°
lower n,.,; |8.14]2.80|5.68 | 21.0 0.60.70| .70 | 1.60 | .24 0.94* 0.83* 4.2*
ITER-FEAT [ 6.20|2.00|5.30|15.1| 0.58|0.48| .65[1.70].33 2.9 2.1 7.4
FIRE 2.0/0.53[10.0|6.44 3.6[048] .65[1.77 .40 4.8 3.0 6.7

* should add (nT) 5,1 /npeq Which could be as high as ~ 0.5 keV.

Encouraging that even with the pessimistic pedestal scaling (A « py), it may be
possible to get high pedestal temperatures by going to stronger plasma shap-
ing, higher field, smaller size, and modest density peaking.

(Hammett. Dorland, Kotschenreuther, Beer, PPPL-3360 (1999))



Sensitivity of Fusion Power to Some Assumptions

Baseline assumptions:

IFS-PPPL model for y; . modified with A(R/Lz.;;) = 2 to roughly fit Dimits shift
seen in gyrokinetic simulations.

(ne) /Nareenwald = 0.74. Modest density peaking, ng/(n.) = 1.18, nyea/(n.) = 0.65.
n(r) = (no = pea)(1 = (r/a)*)** + npeq.

P,.. adjusted to keep P,.; > 1.2Py;_.g = 30 MW for baseline FIRE, =57 MW for
baseline ITER-FEAT.

no Nped Tped Pfusion Q T;'O Paux

102 /m3 | 1020/m? | kKeV | MW keV | MW

FIRE baseline case 6./5| 3.6| 4.8 264 1 620.0 | 18.6 0]
1 T peqa 30% 6./5| 3.6 34 142 9./115.3] 14
flatten n(r) 3.60| 3.6| 4.8 117 22.0|21.7 5
original IFS-PPPL 6.75| 3.6| 4.8 155 13.0(129| 11
original IFS-PPPL | T,.4 30% | 6.75| 3.6| 3.4 69 2.6110.2| 26
ITER-FEAT baseline case 1.09| 058 29, 192 ©.8118.3| 32
1 T peqa 30% 1.09| 0.58| 2.0 111 241155 45
ITER-FEAT with FIRE 7)., 1.09| 0.58| 4.8 381 816.0|23.5 0
ITER-FEAT with FIRE T,.q | 30% 1.09| 0.58| 3.4 241 | 10.1119.8| 23




CAVEATS, IMPLICATIONS

e Dimits shift A(R/Ly,;;) # constant, should depend on parameters.
Core neoclassical £ x B shear ignored (gets weaker at smaller p,).

e Edge pedestal scalings very uncertain.

® Toedestat X (NGreenwaid/Mped)? Model has no explicit power depen-
dence, is only a guideline limit for certain regimes (first-stability-
limited type-I ELMS). Assumes P > Py threshold. Ignores power
needed to sustain pedestal against neoclassical transport, resid-
ual edge turbulence, ELMs, etc. Exploring extensions to include v,
dependence of bootstrap current, ...

e To study edge turbulence & transport barriers scalings, need flex-
Ibility to scan pedestal density over a wide range: high n¢,, pellet
injection, divertor pumping.

e Compact size and strong shaping of FIRE gives high ng, & im-
proved edge stability & high T)....:; pOtential. Lower bound on n,.4

needed for divertor survival appears to be easily satisified in FIRE.



MORE CAVEATS, FUTURE WORK

Many caveats, contradictory theories, contradictory experiments:

e edge very complicated, range of theories, most have
width A o p*3-1,

e largest machines (JT-60U, JET) support “standard” model of
width A x p and gradient near the ideal MHD limit

e others (DIII-D) support A independent of p and/or in second sta-
bility (boostrap current in pedestal region important in DIlI-D?). C-
MOD EDA differs from ELMy behaviour on other machines, Neu-
trals important in C-MOD?

e Useful cross-machine database being developed (Sugihara et.al.,
EPS99, ITER H-mode Edge Pedestal Expert Group Meeting, March

2000). (Sugihara uses different scaling dp/dr o« (1 + 9.265%4).)

e Detailed edge turbulence simulations rapidly becoming more re-
alistic (Xu and Cohen (LLNL), Rogers and Drake (U. Md.), Scott,
Jenko, Zeiler et.al. (Garching))

e Even with pessimistic A « p model, newer reactor designs get
significantly improved pedestal temperatures by T field, triangular-
ity, and elongation (which increase Greenwald density and edge
stability), and by assuming a modest density peaking



May 2001 Addendum

e H-mode expts give evidence of multiple regimes: ELM-free,
ELMY, Type-l, -ll, -1ll, EDA. Different experiments show different
scalings for pedestal width and height.

e Different physics may be setting limits in various regimes: The
model presented here (pedestal width A « p model with a first-
stability beta limit) may be applicable in only certain regimes.

¢ In other regimes the edge bootstrap current may lower magnetic
shear enough to lower the first stability boundary (Sugihara, EPS
1999) or even to access 2cd stability (as DIII-D expts and analysis
by Osborne, Miller, et.al. suggest). However, if the edge bootstratp
current gets too strong it may trigger a peellng mode (as Wilson,
Snyder, etc. are studying). Studying improved mixed-regime mod-
els with Onjun, Bateman, Kritz (Lehigh).

o Hopefully these uncertainties can be reduced with the new
edge database and comprehensive edge turbulence/stability sim-
ulations.



