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Kulsrud / Kruskal-Oberman/ Chew-
Goldberger-Low Kinetic MHD
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Drift-kinetic equation: similar to gyro-kinetic eguation but
without FLR, and includes compressional Alfven wave/ fast-wave



Mirror force hidden in CGL pressure tensor
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« Parallel component of force balance (stationary u=0 equil.):
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P, —p; > O corresponds to particles trapped in magnetic well, V” p,#0
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* Note: mirror force independent of magnitude of B, important for
arbitrarily weak B!



Evolution of the Pressure Tensor
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q,=0 CGL or Double Adiabatic Theory

Closure Models for heat flux (temp.
gradients wiped out on ~ a crossing time)
=> multipole approx. to Landau damping.

recovers Braginskii/Chapman-Enskog in
large collision frequency v limit



Real-space form of heat conduction integral
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Closure in k space: q,=—nv, kT,
Fourier-transform, get a non-local heat conduction integral along
magnetic field lines:
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(incl. callisions, in Snyder, Hammett, Dorland, Phys. Plasmas 1997)

Non-locallity means -, (2)dT/dz>0 not guaranteed everywhere,
but can show that total entropy Ssatisfies dS/dt>0

L andau-fluid closure approximations originally derived for small-amplitude
turbulence in core of fusion devices with stiff magnetic field: fast evaluation using
FFTs. For edge turbulence, and for astrophysical applications, could benefit from
nonlinear extensions (work in progress, at least some nonlinear improvements |ook

feasible...), & need to integrate along fluctuating magnetic fields.



Fully kinetic/gyrokinetic simulations more rigorous than
fluid approach & becoming very powerful, but continued
Interest in using Landau-fluid closure approximations

In fusion research, edge turbulence is high priority and very challenging. Critical
problem needs multiple codes to attack it and cross-check each other.

Must span both collisional and moderately collisionless plasmas, and wide range
of time and space scales.

Extended fluid approach would allow higher resolution and/or faster ssmulations.
[However, apparent speed advantage over kinetic simulations reduced by need
to evaluate non-local heat integral, and the fact that kinetic ssmulations of core
turbulence have found they can converge with relatively few velocity grid
points (~10 energies, ~20 pitch angles) using high-order velocity integration
and other advanced algorithms.]

Caveats. Landau-fluid closures are approximations & are inaccurate in some
regimes unless many fluid moments are kept. best for strong-turbulence
regimes where instabilities are basically in afluid-like regime & nonlinearly
couple to Landau-damped modes. Weak-turbulence regimes harder. Severd
papers on limitations of Landau-fluid approx. and extensions, e.g. to
neoclassical effects...



Form of pressure eguations used
(avoid divide by B):
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Alt. form: average p=(2p, + p, )/3 and
Pressure difference op = p; - p.
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Agrees well with Braginskii’s anisotropic viscosity (5-25% diffs).



L andau-MHD approx. contain at |least some
key mirror physics

Previous PIC simulation of mirror thought observation that T, is anti-correlated with
B was counter-intuitive. (T, =const.)

Explanation clear: although conservatlon impliesv, 2~ B (at moving particle
position), particles with high u are more easily trapped in regions of small B..

Snyder, Hammett, Dorland 1997 Landau-MHD closures:
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Inreality, 1/|k | isan integral operator when Fourier-transformed to real space,
but assume [K;| = const. and solve for g, = g,=0 equil. solutions:

V,T,=0 Vit _vn_ (I.-T)V,B
T, n T, B




L andau-fluid approx. agrees well with kinetic mirror
growth rate and threshold, much better than CGL
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FIG. 5. The linear growth rate of the mitror instability (F(i?r-kﬁ) as pre-
dicted by kinetic theory. 3+ 1 and 4+2 Landau MHD models, and CGL
theory (ideal MHD cannot predict the mirror growth rate as it posits an
isotropic pressure). The normalized growth rate [¢ ‘,-=1111(mj;"'v’2|k||\v;"] 15
plotted wversus the temperature anisotropy (I, /I, ) at constant B
={(2/3)p J_D+(].-"'B)p"ﬂ};"(BSES?T). The parameters chosen are Z=1. T,

u i
=Ty,,. Iy, =T, . B=1.and ym;/m,=40.
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FIG. 1. The real part of the normalized linear density response
(n,/ik.&.ny), versus real normalized frequency (¢;= w..-“"v/i\k”|vrn). The 3
+1 and 4+2 moment Landau MHD models are compared with linear ki-

netic theory. Predictions of CGL theory and 1deal MHD theory are also
shown. Parameters chosen are Z=1, 1", /T, =1, 7, =T, T, =T, .
0 0 0i Oe 0i De

and \m; /m, =40,
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FIG. 2. The mmagmary part of the normalized linear density response
(n,/ik.&ny), versus real normalized frequency ({;= w_.-“'v/?\k|||vrn). The 3
;—

+1 and 4+ 2 moment Landau MHD models are compared with linear ki-
netic theory. Both CGL theory and Ideal MHD theory predict no imaginary
density response. Parameters are i1dentical to those m Fig. 1.



Subgrid models for Mirror modes?

In process of comparing Landau-MHD approx. with full PIC
simulations of mirror modes. Caveat: most previous PIC simulations

done with large initial pressure anisotropy and so break u invariance...
Mirror mode unstableif (P, - p")/ P> 1/ I but is low frequency and
can't break L invariance unless (0, - Py)/ Py > 7/

Growth rate of mirror modes ~ k in MHD limit. Need hyperviscosity
or FLR to cutoff small scalesin simulation?

Try:

— Where (p, - pp/ p < 7/B |, rely oninteraction with mirror modes
naturally contained in simulation of Landau-fluid/MHD equations.

— Where(p, - p)/ P, > 7183 | » Introduce rapid scattering to model ultra-high
frequency sub-grid modes that break u invariance



