Turbulent Heating and Fluctuation Characteristics in Alfvenic Turbulence

William Dorland Center for Multiscale Plasma Dynamics Department of Physics University of Maryland

In collaboration with

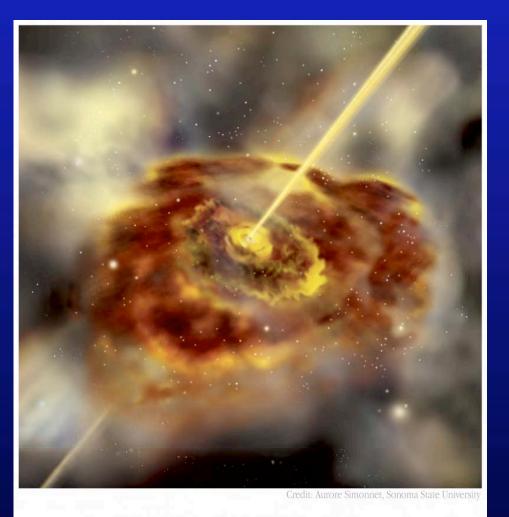
Steve Cowley, UC-Los Angeles Eliot Quataert, UC-Berkeley Greg Howes, UC-Berkeley Greg Hammett, Princeton University Alex Schekochihin, Cambridge University

Center for Multiscale Plasma Dynamics

Extending established first-principles, microscopic, kinetic simulation techniques to problems that intrinsically involve the slow evolution of the macroscopic system, and validating simulations against experimental observations.

http://cmpd.umd.edu

Astrophysical Plasmas are Turbulent



The Inner Part of an Active Galactic Nucleus (Artist's Impression)

© European Southern Observatory

 Magnetohydrodynamic turbulence driven at very large scales: transport is MHD process

 Turbulent energy absorbed at microscopic scales: heating is gyrokinetic process

 Electrons radiate; ions swallowed: Emitted radiation is strong function of gyrokinetic physics!

ESO PR Photo 18a/03 (19 June 2003)

- Many examples of MHD turbulence in nature: Interstellar medium, solar wind, accretion flows, *etc.*
- Alfvenic component does not directly heat plasma $(E_{\parallel}=0)$
- Fundamental question:

How is MHD turbulence dissipated in a collisionless plasma?

$$\omega = \pm k_{\parallel} v_A$$

$$\omega = \pm k_{\parallel} v_A \left(\frac{\gamma\beta}{\gamma\beta+1}\right)^{1/2}$$

Alfven

Slow magnetosonic

$$\omega = \pm k_{\perp} v_A \left(\gamma \beta + 1\right)^{1/2}$$

Fast magnetosonic

- Many examples of MHD turbulence in nature: Interstellar medium, solar wind, accretion flows, *etc.*
- Alfvenic component does not directly heat plasma $(E_{\parallel}=0)$
- Fundamental question:

How is MHD turbulence dissipated in a collisionless plasma?

$$\omega = \pm k_{\parallel} v_A$$

Alfven

$$\omega = \pm k_{\parallel} v_A \left(\frac{\gamma\beta}{\gamma\beta+1}\right)^{1/2}$$

Slow magnetosonic

$$\omega = \pm k_{\perp} v_A \left(\gamma \beta \pm 1\right)^{1/2}$$

Ignore fast wave for this talk

Fast magnetosonic

So no fast shocks

- Many examples of MHD turbulence in nature: Interstellar medium, solar wind, accretion flows, *etc.*
- Alfvenic component does not directly heat plasma $(E_{\parallel}=0)$
- Fundamental question:

How is MHD turbulence dissipated in a collisionless plasma?

$$\omega = \pm k_{\parallel} v_A$$

 $\omega = \pm k_{\parallel} v_A \left(\frac{\gamma\beta}{\gamma\beta+1}\right)^{1/2}$

Alfven

Slow magnetosonic

 $4\pi\delta p_{\perp} + B\,\delta B = 0$ Pressure balance

- Many examples of MHD turbulence in nature: Interstellar medium, solar wind, accretion flows, *etc.*
- Alfvenic component does not directly heat plasma $(E_{\parallel}=0)$
- Fundamental question:

How is MHD turbulence dissipated in a collisionless plasma?

$$\omega = \pm k_{\parallel} v_A$$

Alfven

 $\omega = \pm k_{\parallel} p_A \left(\frac{\gamma \beta}{\gamma \beta + 1} \right)^{1/2}$ Slow magnetosonic is damped when $k_{\parallel} \lambda_{mfp} \sim 1$ Barnes, 1966

- Many examples of MHD turbulence in nature: Interstellar medium, solar wind, accretion flows, *etc.*
- Alfvenic component does not directly heat plasma $(E_{\parallel}=0)$
- Fundamental question:

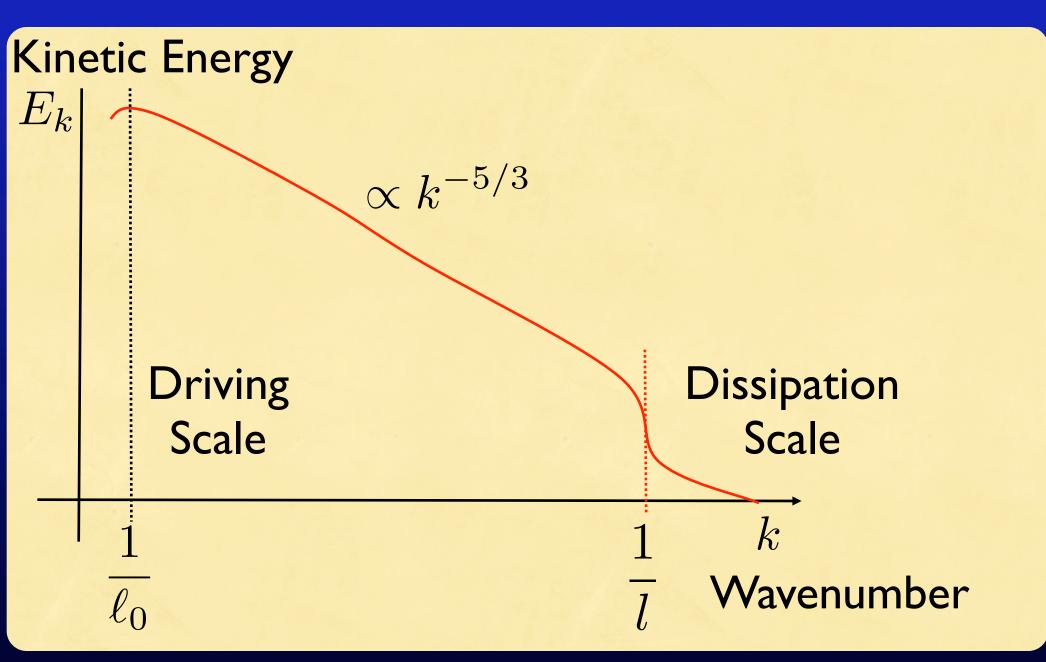
How is MHD turbulence dissipated in a collisionless plasma?

 $\omega = \pm k_{\parallel} v_A$ Alfven waves cascade to small scales without damping.

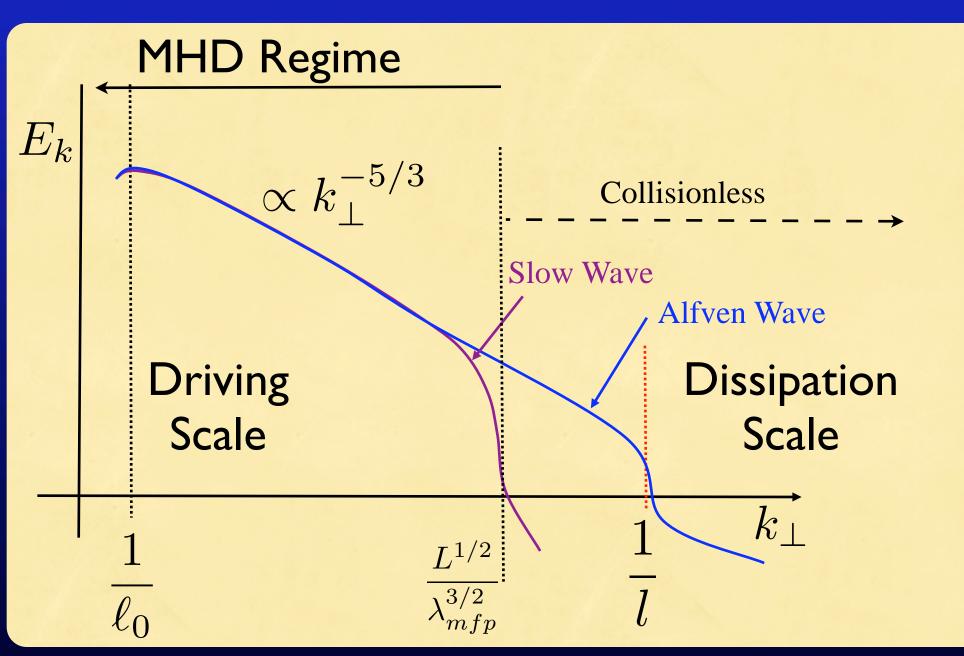
Alfven

In this talk, we consider the fate of the Alfven wave cascade at small scales.

Turbulence Spectrum: Fluid Theory



Turbulence Spectrum: MHD Theory



Strongly Turbulent Alfven Cascade is Anisotropic

Alfven waves stirred at scale ℓ_0 with velocity v_0

Energy flux from scale ℓ to scale $\ell/2$

 $\epsilon = \frac{\rho v_\ell^2}{2\tau_\ell}$

Constant from scale to scale

 $\frac{v_{\ell}}{\ell} = k_{\parallel} v_A$

Cascade time
$$\tau_{\ell} = \frac{\ell}{v_{\ell}} \quad \text{strong} \ \text{interaction} \rightarrow v_{\ell} = v_0 \left(\frac{\ell}{\ell_0}\right)^{1/3}$$

GS argue that the scale ℓ is the perpendicular scale and that the parallel scale is set by "critical balance." Nonlinear rate = Linear rate

$$k_{\parallel} = \frac{v_0}{v_A} k_{\perp}^{2/3} \ell_0^{-1/3} \ll k_{\perp}$$

Smaller scales are progressively more anisotropic

$$\frac{k_{\parallel}}{k_{\perp}} \simeq \left(\frac{v_0}{v_A}\right) \left(k_{\perp}\rho_i\right)^{-1/3} \left(\frac{\rho_i}{\ell_0}\right)^{1/3}$$

- Anisotropy goes like $\left(\rho_i / \ell_0 \right)^{1/3}$
- Small parameter for astrophysical systems:
 - * ISM: $(\rho_i/\ell_0)^{1/3} \sim 10^{-4}$
 - * SMBH Accretion Disk:
 - * Solar Wind:

- $(\rho_i/\ell_0)^{1/3} \sim 10^{-3}$ $(\rho_i/\ell_0)^{1/3} \sim 0.02$
- Frequency also scales with $(\rho_i/\ell_0)^{1/3}$:

$$\frac{\omega}{\Omega_i} \simeq \left(\frac{v_0}{v_{th}}\right) \left(k_\perp \rho_i\right)^{2/3} \left(\frac{\rho_i}{\ell_0}\right)^{1/3}$$

Gyrokinetics 101

Taylor and Hastie; Catto; Antonsen and Lane; Frieman and Chen;; Dubin

 $\frac{\rho}{L} \ll 1$

• Vlasov-Boltzmann-Maxwell eqns in low frequency, anisotropic limit $\frac{Df}{Dt} = C(f, f)$ $\frac{\omega}{\Omega_c} \ll 1$ $\frac{k_{\parallel}}{k_{\perp}} \ll 1$

• Expansion parameter is
$$\epsilon = \frac{\rho}{L} \sim \frac{\omega}{\Omega} \sim \frac{\kappa_{\parallel}}{k_{\perp}}$$

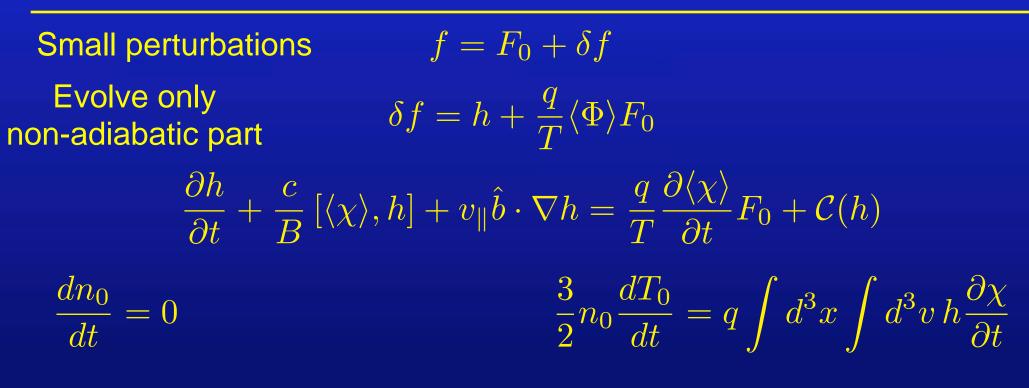
• Perturbations ordered small:

$$f = F_0 + \delta f$$
 $\frac{\delta f}{F_0} \sim \frac{v_E}{v_{th}} \sim \frac{\delta B}{B} \sim \epsilon$

- Rigorously correct, fully nonlinear kinetic physics in this limit
- No particular ordering of $eta,k_{\perp}
 ho,T_i/T_e,m_e/m_i,
 u/\omega$, etc.
- Time evolution of equilibrium allowed at order ϵ^3 but not correctly calculated, until now (multiscale physics!)

 $\begin{array}{ll} \mbox{Small perturbations} & f = F_0 + \delta f \\ \mbox{Evolve only} & \delta f = h + \frac{q}{T} \langle \Phi \rangle F_0 \\ \mbox{non-adiabatic part} & \delta f = h + \frac{q}{T} \langle \Phi \rangle F_0 \\ \mbox{} \frac{\partial h}{\partial t} + \frac{c}{B} \left[\langle \chi \rangle, h \right] + v_{\parallel} \hat{b} \cdot \nabla h = \frac{q}{T} \frac{\partial \langle \chi \rangle}{\partial t} F_0 + \mathcal{C}(h) \end{array}$

Nonlinear gyrokinetic equation



Slow evolution of background

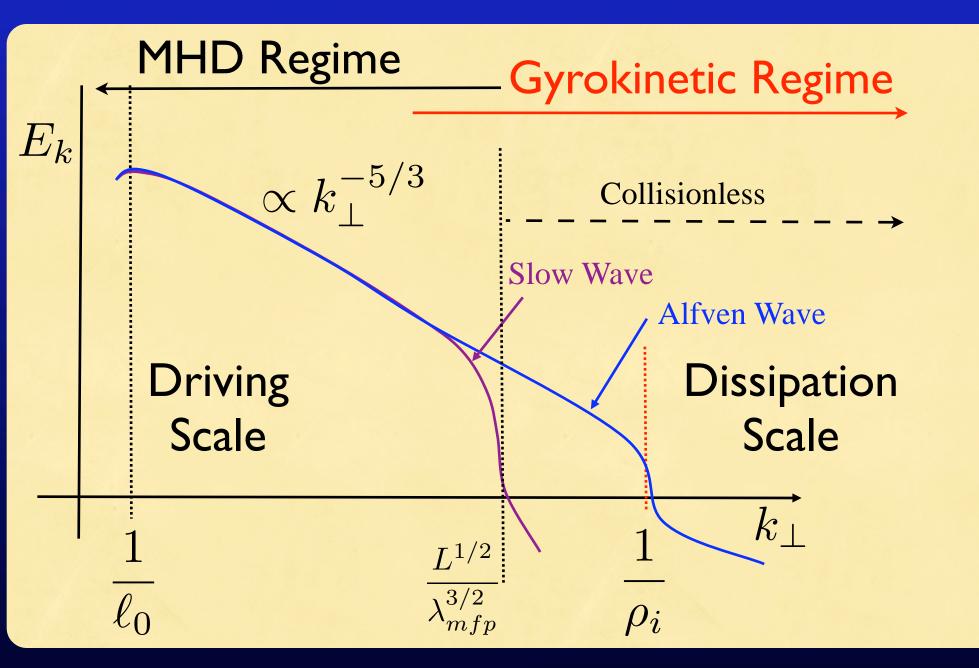
Small perturbations $f = F_0 + \delta f$ **Evolve** only $\delta f = h + \frac{q}{T} \langle \Phi \rangle F_0$ non-adiabatic part $\frac{\partial h}{\partial t} + \frac{c}{B} \left[\langle \chi \rangle, h \right] + v_{\parallel} \hat{b} \cdot \nabla h = \frac{q}{T} \frac{\partial \langle \chi \rangle}{\partial t} F_0 + \mathcal{C}(h)$ $\frac{3}{2}n_0\frac{dT_0}{dt} = q \int d^3x \int d^3v h \frac{\partial\chi}{\partial t}$ $\frac{dn_0}{dt} = 0$ $\frac{3}{2}n_0\frac{dT_0}{dt} = -T_0 \int d^3x \int d^3v \frac{h\mathcal{C}(h)}{F_0}$ Thermodynamics: heating properly

related to entropy change

Small perturbations $f = F_0 + \delta f$ **Evolve** only $\delta f = h + \frac{q}{T} \langle \Phi \rangle F_0$ non-adiabatic part $\frac{\partial h}{\partial t} + \frac{c}{B} \left[\langle \chi \rangle, h \right] + v_{\parallel} \hat{b} \cdot \nabla h = \frac{q}{T} \frac{\partial \langle \chi \rangle}{\partial t} F_0 + \mathcal{C}(h)$ $\frac{3}{2}n_0\frac{dT_0}{dt} = q \int d^3x \int d^3v h \frac{\partial\chi}{\partial t}$ $\frac{dn_0}{dt} = 0$ $\frac{3}{2}n_0\frac{dT_0}{dt} = -T_0 \int d^3x \int d^3v \,\frac{hC(h)}{F_0}$ $\mathcal{E} = \int \frac{d^3x}{V} \left\{ \int d^3v \sum \left[\frac{T_0 \delta f^2}{2F_0} \right] + \frac{(\delta B)^2}{8\pi} \right\}$

Nonlinearly conserved gyrokinetic energy identified

Turbulence Spectrum: MHD Theory



Collisionless absorption at gyroradius scales in turbulent plasma

- Anistropic cascade brings in gyrokinetics
- Quataert & Gruzinov calculated linear damping of shear Alfven waves using hot plasma dispersion relation; predicted conditions for strong absorption by ions (or electrons)
- Problem has appealing universal aspect: absorption is unlikely to be a function of large-scale physics. Absorption is a function of only a few plasma parameters
- Excellent opportunity to solve a basic problem in plasma physics; hard b/c high accuracy required, 5-D

Remainder of this talk

- Linear physics: Demonstration that GS2 properly calculates damping, heating
- Nonlinear physics
 - ➡ Alfven cascade

(scales large compared to ion gyroradius)

➡ Kinetic Alfven cascade

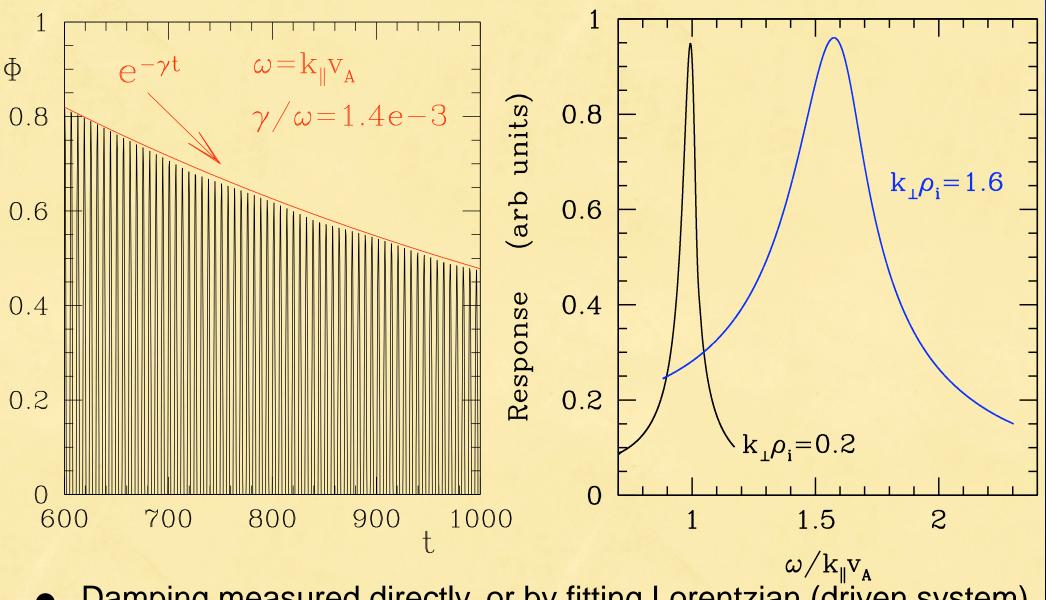
(scales between ion gyroradius and electron gyroradius)

➡ Transition region: absorption, spectra

(ion gyroradius scale)

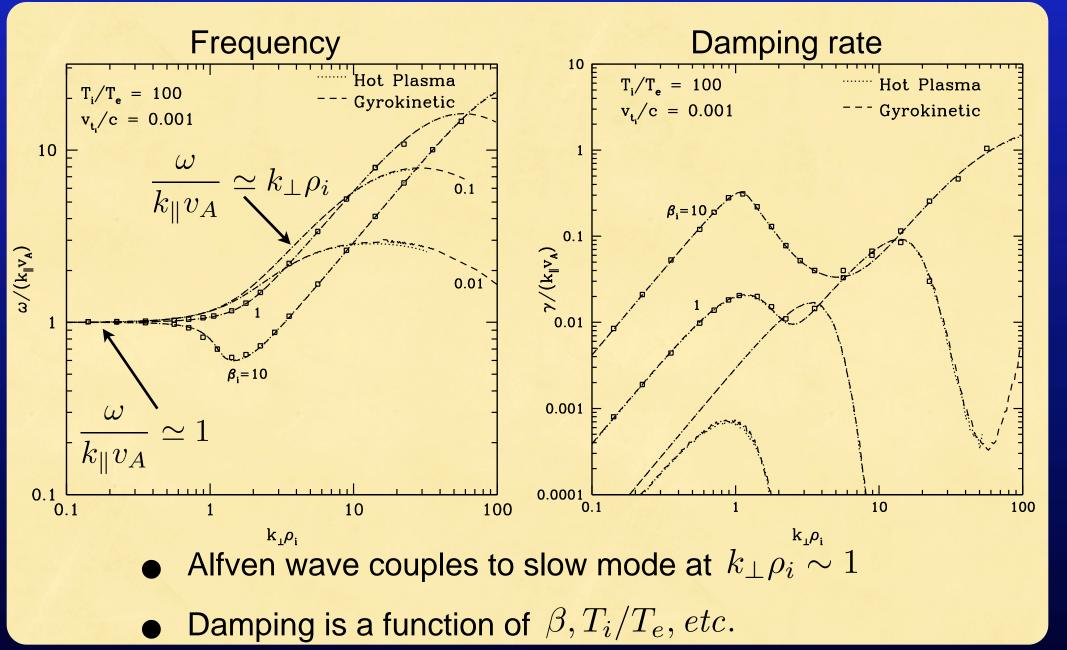
Conclusions

Landau, Barnes Damping in GS2



Damping measured directly, or by fitting Lorentzian (driven system)

Gyrokinetics, Hot Plasma Dispersion Relations Agree; GS2 Accurate



Poynting's theorem can be derived from Maxwell's equations:

$$\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{S} = -\mathbf{J} \cdot \mathbf{E}$$

- $\bullet u$ is the electromagnetic energy density. S is the Poynting flux.
- Integrate over spatial domain to find

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

• Electromagnetic energy:

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

• Total plasma heating can be derived from kinetic equation:

$$\left(\frac{d}{dt} + \mathbf{v} \cdot \nabla + \mathbf{a} \cdot \nabla_v\right) f = -\mathcal{C}(f, f)$$

Electromagnetic energy:

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

• Total plasma heating can be derived from kinetic equation: $\sum_{s} \int d^{3}x \, d^{3}v \frac{1}{2} m v^{2} \left[\left(\frac{d}{dt} + \mathbf{v} \cdot \nabla + \mathbf{a} \cdot \nabla_{v} \right) f = -\mathcal{C}(f, f) \right]$

Electromagnetic energy:

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

• Total plasma heating can be derived from kinetic equation $\sum_{s} \int d^{3}x \, d^{3}v \, \frac{mv^{2}}{2} \left[\left(\frac{d}{dt} + \mathbf{v} \cdot \nabla + \frac{q}{m} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \nabla_{v} \right) f = -\mathcal{C}(f, f) \right]$

• Electromagnetic energy:

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

Total plasma heating can be derived from kinetic equation

$$\sum_{s} \int d^{3}x \, d^{3}v \, \frac{mv^{2}}{2} \left[\left(\frac{d}{dt} + \mathbf{v} \cdot \nabla + \frac{q}{m} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \nabla_{v} \right) f = -\mathcal{C}(f, f) \right]$$

• Result of integration is

$$\frac{d\mathcal{E}_k}{dt} = \int d^3x \,\mathbf{J} \cdot \mathbf{E}$$

Electromagnetic energy:

$$\frac{d\mathcal{E}_{\rm em}}{dt} = -\int d^3x \,\mathbf{J}\cdot\mathbf{E}$$

Total plasma heating can be derived from kinetic equation:

$$\frac{d\mathcal{E}_K}{dt} = \int d^3x \,\mathbf{J} \cdot \mathbf{E}$$

- These relations are true on the heating timescale; must average over dynamical timescale. Signal can be noisy!
- Helpful to use gyrokinetic thermodynamics; entropy does not decrease, can be measured directly, and used to calculate thermalized turbulent energy, species by species.

Entropy and Heating in Gyrokinetics

Start with gyrokinetic equation:

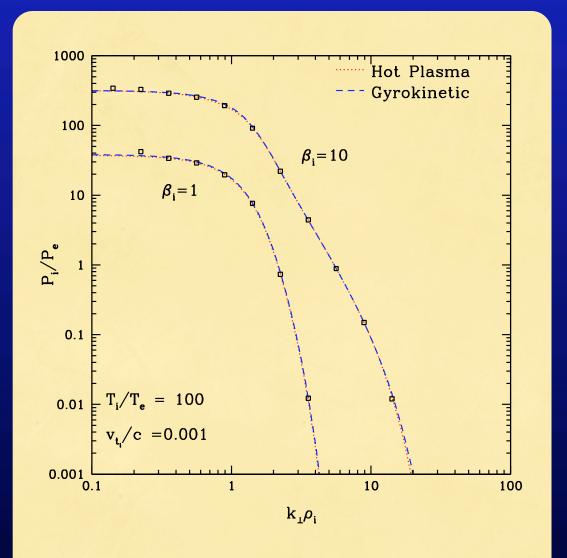
$$\frac{\partial h}{\partial t} + \frac{c}{B} \left[\langle \chi \rangle, h \right] + v_{\parallel} \hat{b} \cdot \nabla h = \frac{q}{T} \frac{\partial \langle \chi \rangle}{\partial t} F_0 + \mathcal{C}(h)$$

• Multiply by *h* and integrate over space, velocities

$$\frac{d\mathcal{E}_k}{dt} = T_0 \frac{dS}{dt} = -T_0 \int d^3x \, d^3v \, h\mathcal{C}(h)$$

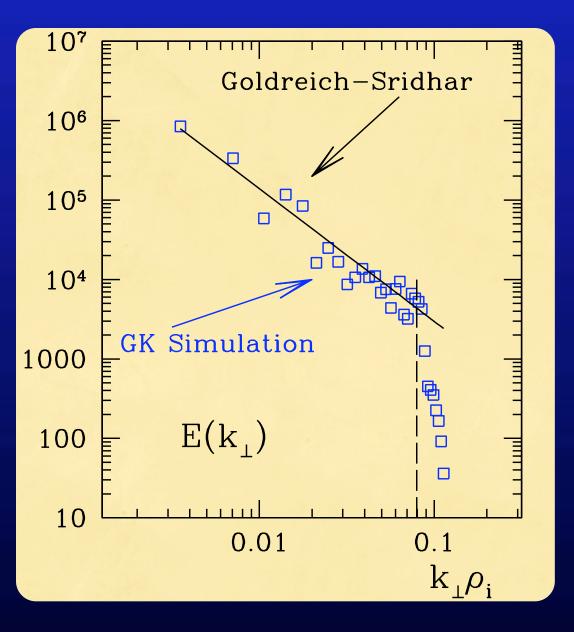
- Collision operator (or other dissipative terms) is negative definite; relations good species by species
- Essential technique for extracting heating from nonlinear simulations -- requires accurate collision operator (which GS2 has)

GS2 Resolves Extreme Ratios of Ion/Electron Heating



Three datasets here: direct evaluation of the hot plasma dispersion relation; direct evaluation of the gyrokinetic dispersion relation; and points calculated with GS2

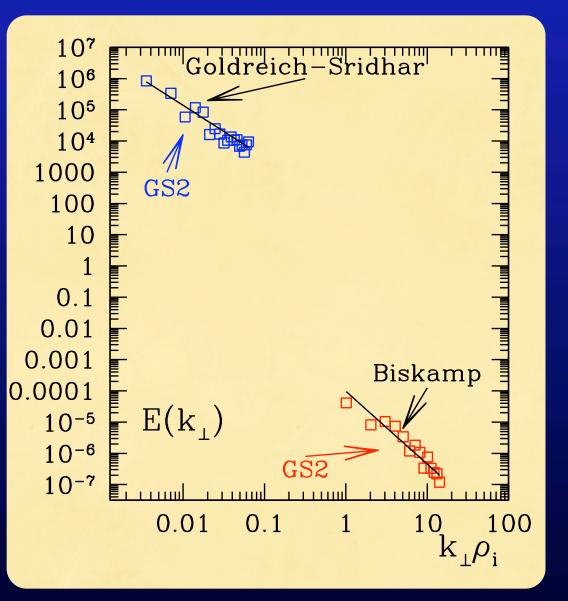
Nonlinear Studies: Alfven Cascade



- Run GS2 in a large domain
- Stir with Langevin antenna at box scale
- Drain energy at small scales with hyper-viscosity and hyper-resistivity (as is normal in MHD)
- Find good agreement between expected spectrum of turbulent energy fluctuations and theory:

 $E(k_{\perp}) \sim k_{\perp}^{-5/3}$ $(\beta = 4 = 400\%)$

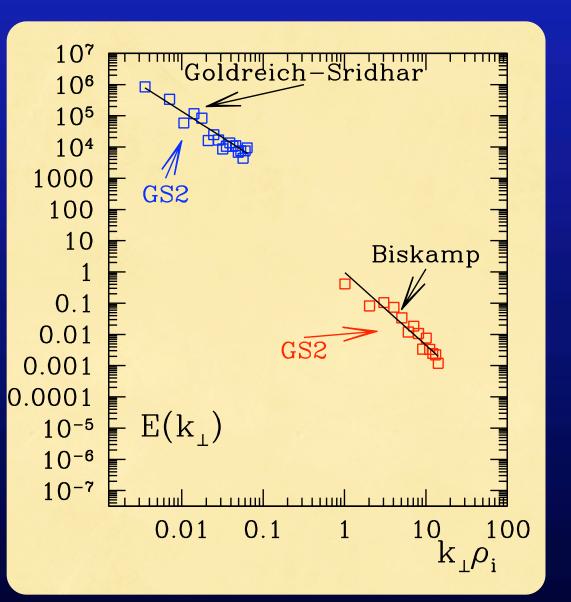
Nonlinear Studies: KAW Cascade



- Run GS2 in a small domain
- Stir with Langevin antenna at box scale
- Drain energy at small scales with hyper-viscosity and hyper-resistivity (as is normal in EMHD)
- Find good agreement between expected spectrum of turbulent energy fluctuations and theory:

 $E(k_{\perp}) \sim k_{\perp}^{-7/3}$

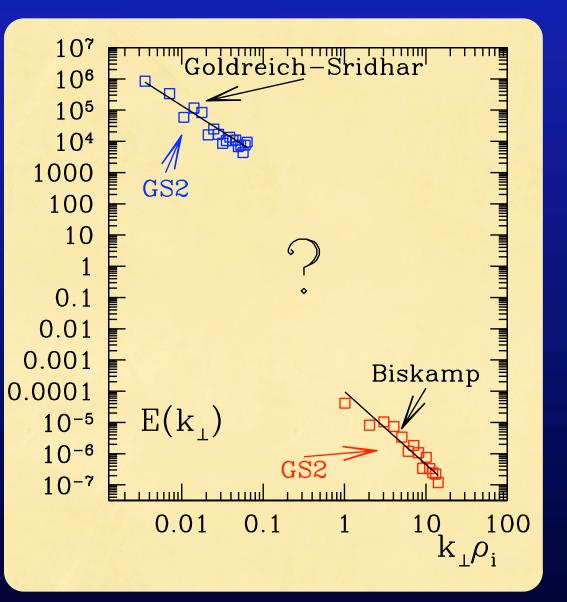
Free Parameter to be Fixed by Physics in the Absorption Region



- Run GS2 in a small domain
- Stir with Langevin antenna at box scale
- Drain energy at small scales with hyper-viscosity and hyper-resistivity (as is normal in EMHD)
- Find good agreement between expected spectrum of turbulent energy fluctuations and theory:

 $E(k_{\perp}) \sim k_{\perp}^{-7/3}$

Free Parameter to be Fixed by Physics in the Absorption Region



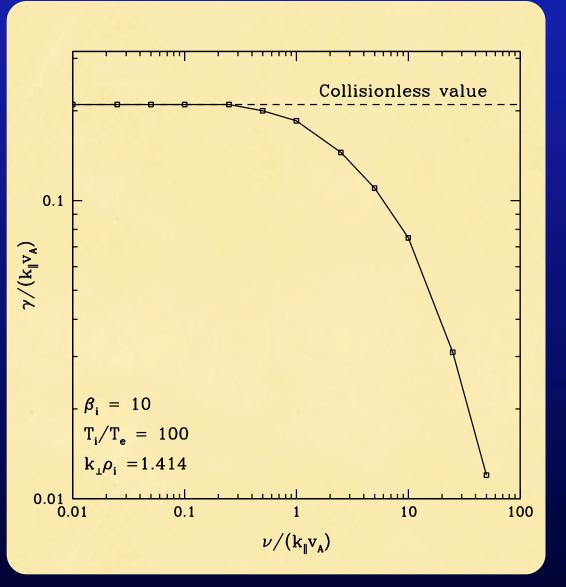
- Run GS2 in a small domain
- Stir with Langevin antenna at box scale
- Drain energy at small scales with hyper-viscosity and hyper-resistivity (as is normal in EMHD)
- Find good agreement between expected spectrum of turbulent energy fluctuations and theory: $E(k_{\perp}) \sim k_{\perp}^{-7/3}$

Consider Two Cases: Low and High Beta

"Low" beta case has β = 4 = 400% and T_i/T_e = 100 Expect ions to dominate absorption, but absorption weak Use hyper-(visc, res) to mimic transfer to smaller scales
High beta case has β = 40 = 4000% and T_i/T_e = 100 Expect ion to dominate absorption and absorption to be strong

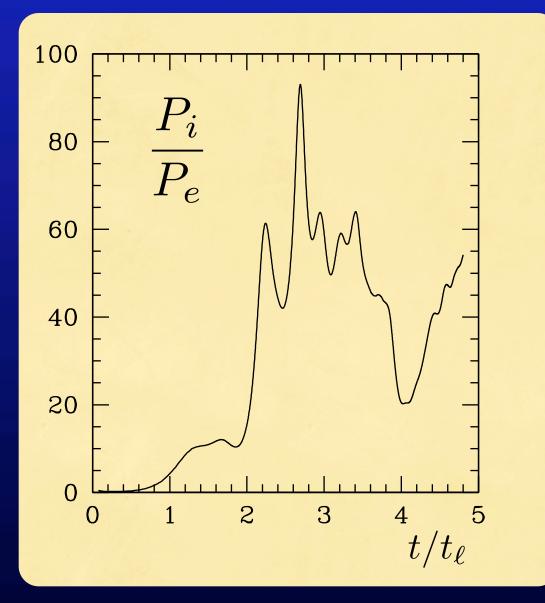
 In both cases, require collisions to make system irreversible, but use values small enough that waves are not affected.

Aside: Collisions Can Reduce Damping



- For large values of collision frequency, Alfven waves and slow modes are undamped
 - (You already knew that!)
- Effect is shown in series of runs at left

Low Beta Case: Ions Heated, but...

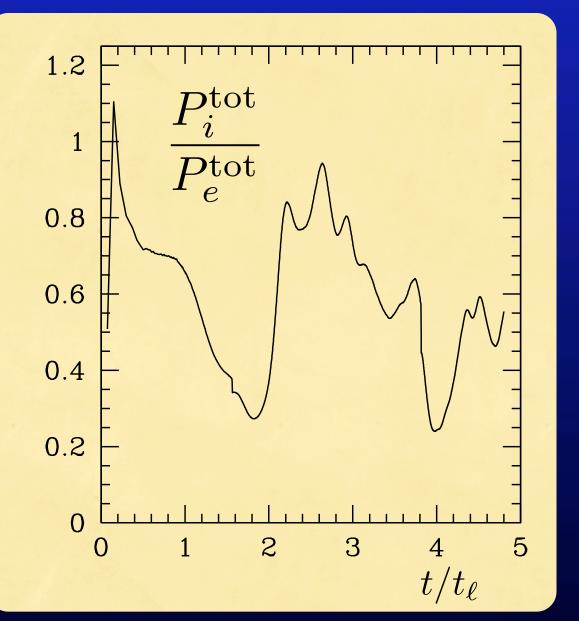


Thermal energy deposited in ions is much larger than thermal energy in electrons

$$P_s = -T_s \int h \, \mathcal{C}(h)$$

- But heating is dominated by hyperdiffusive terms
- Energy mostly cascading through

Low Beta Case: Ions Heated, but...

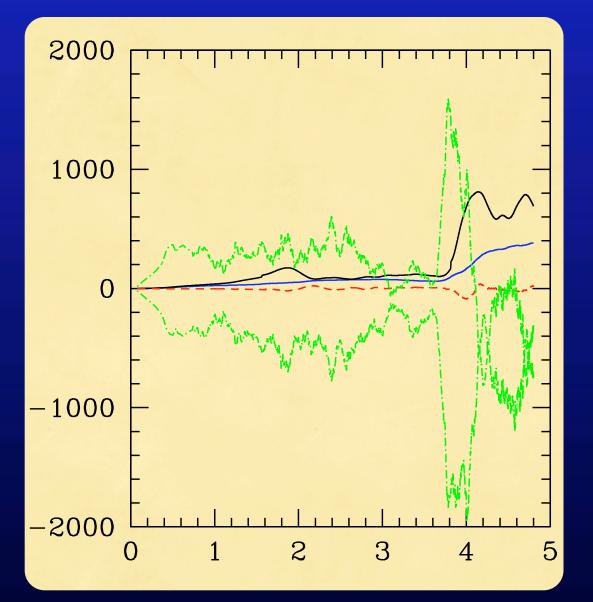


- Thermal energy deposited in ions is much larger than thermal energy in electrons
- But heating is dominated by hyperdiffusive terms

 $P_s^{\rm tot} = q \int h \, \frac{\partial \chi}{\partial t}$

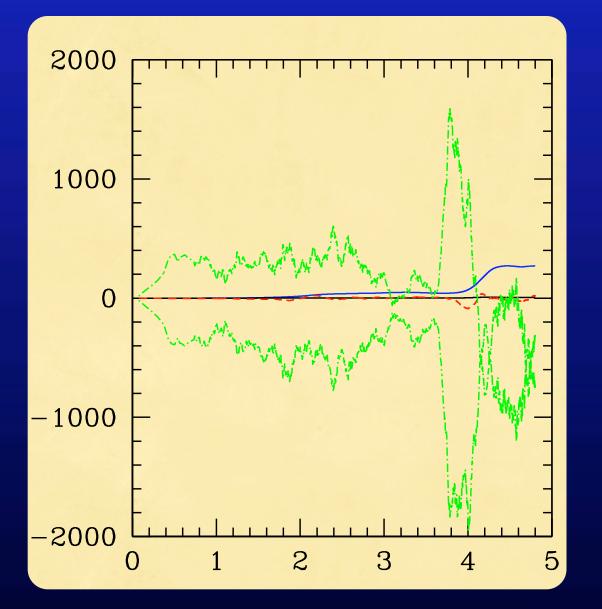
 Energy mostly cascading through; diagnostic sees equal heating

Heating is Not Dominant Effect



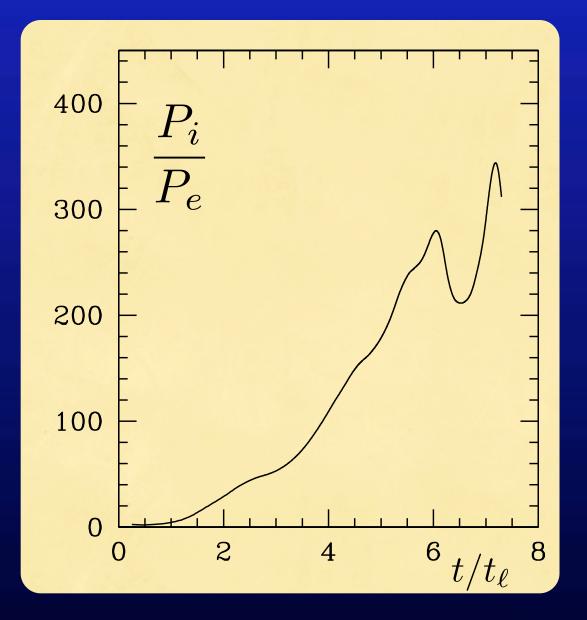
- Various terms in total power balance shown
- Sum to the red curve, which should be zero
- Large (green) signals are instantaneous power input and instantaneous change in total energy

Thermalization is Small Effect



- Blue curve is ion thermalization
- Black curve is electron thermalization
- Need full power of pseudo-spectral algorithms in GS2 to see this signal in the turbulence!

High Beta Case: Ion Heating Dominant



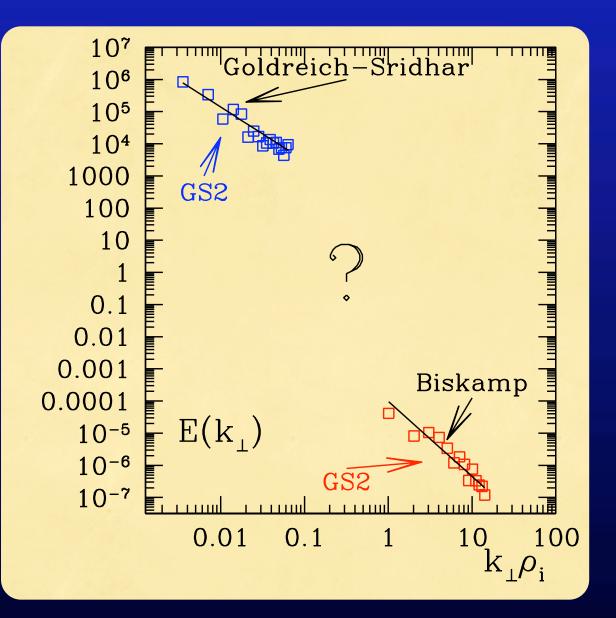
 Ion heating is much larger than electron heating (as expected for these parameters)

$$P_s = -T_s \int h \, \mathcal{C}(h)$$

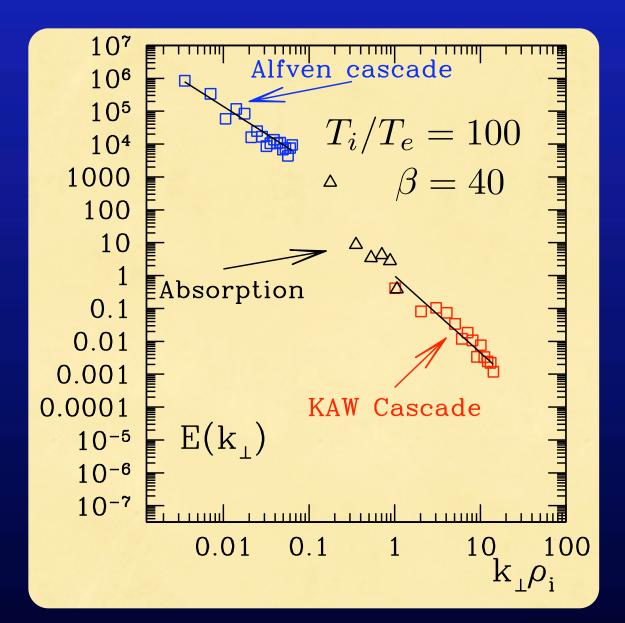
 Ion heating dominant because Barnes damping sees large ion magnetic moment

 $(T_i/T_e \gg 1)$

What Does Spectrum Look Like?



Significant Absorption in High Beta Case



 First calculation of absorption and spectra from Alfven cascade

 High beta case is easiest: will be more challenging to extend this to the rest of the interesting parameter space

Summary and Conclusions

- Gyrokinetics has application to astrophysical plasmas
- Energy absorption can be calculated for realistic physical parameters
- Transport time-scale equations in the gyrokinetic hierarchy derived
- Gyrokinetic energy, entropy relations derived and tested
- Parametric studies of the heating and spectral characteristics are plausible: two main parameters: β , T_i/T_e