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The steep density and temperature gradients associated with the edge and 
scrape off layer regions of a fusion plasma complicate the numerical 
simulation of plasma turbulence.  Spectral methods and Arakawa finite 
differencing have the useful property of exactly preserving certain 
conservation properties of Hamiltonian systems and work well for
simulating well-resolved, small amplitude fluctuations.  However, such 
algorithms can exhibit Gibbs phenomena, small overshoots in the vicinity of 
large gradients. While these overshoots are unimportant for well-resolved 
small amplitude turbulence in the core region of tokamaks, these algorithms 
can lead to negative density or temperature in the tokamak edge region. 
Here we consider a 2-D test case and compare several different methods of 
solving multi-dimensional hyperbolic equations, including modern shock-
capturing algorithms such as 3rd order WENO/UNO, the Suresh-Huynh 5th

order algorithm, and a recent extremum-preserving 4th order method [P. 
Colella, M. D. Sekora, J. Comp. Phys. 227, 7069 (2008)], which combines 
features of the Piecewise-Parabolic Method and Zalesak's version of Flux-
Corrected Transport.  In future work we will also explore discontinuous 
Galerkin algorithms.



Desired Algorithm Properties 
for Edge Gyrokinetics

• Large variation in density, large amplitude fluctuations, large ρbanana/L, wide 
range of collisionalities:  No clear separation of scales,  Not useful or necessary 
to separate F=F0+δf, stick with full F formulation

• Want to ensure particle conservation exactly (small charge imbalances lead to 
large fields) such as with finite volume, finite element, spectral methods.  

• (some finite-difference, point-based semi-Lagrangian, and δf weighted-particle 
algorithms (see Idomura, JCP 07) don’t conserve particles exactly).

• Want positivity preserved even with large density variations (e.g. blobs 
advecting through low density SOL):  many traditional algorithms have Gibb’s 
phenomena:  oscillations around steep gradients that lead to negative densities.

• Want robust algorithms:  in addition to converging to the right answer in the 
appropriate limit, it shouldn’t be too bad in other regime.

• Want to minimize numerical dissipation (though no need to eliminate it 
completely, dissipation at small scales actually models physical effects.)



Desired Algorithm Properties 
for Edge Gyrokinetics (2)

• It has been surprisingly challenging to develop good algorithms 
(accurate, efficient, robust, & not too hard to implement) that do well on 
all of these properties simultaneously.

• There has been a lot of work over the past 30 years on improving
algorithms to address these types of issues for various kinds of CFD 
applications, with continuing advances in the last decade: 

• General category of “shock-capturing” or “high-resolution upwind” “finite-
volume” algorithms, developed primarily for compressible shock 
problems in Euler/Navier-Stokes (aeronautics and astrophysics 
applications, etc.)  But applicable to a wide range of problems including 
weather simulations, and our problems

• Alphabet Soup of algorithms:  FCT, MUSCL, TVD, PLM, PPM, ENO, 
WENO, CWENO, SSP, MP, DG, …



Simplest Fluid Advection Algorithms:
2cd Order Centered & 1st order upwind

Discrete grid, f(zj,t) = fj(t) Conservative differencing:
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Std 2cd order centered differencing 
(okay for smooth regions, phase 
errors too large for sharp-gradient 
regions, gives unphysical 
oscillations):

1st order upwind (eliminates unphysical 
oscillations, but too dissipative):
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Arakawa Finite Differencing

• Clever differencing formula for Poisson brackets (in JCP 
special issue on most famous algorithms):

• Arakawa finite differencing has discrete analogs of 
conservation of

• In 1-D, (df/dy=0, dΦ/dy=v), Arakawa reduces to 2cd order 
centered finite differencing.  Although it has these nice 
conservation properties for Hamiltonian systems, it does 
not insure f >0, and has significant phase errors at 
moderate kΔx that can cause spurious oscillations.
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3rd order SSP-RK used here.  Looks better at CFL=0.5 with 2cd order single-step time-space-coupled time advancement, 
(becomes exact at CFL=1), but for complex flows there will be regions at many different values of CFL=v*dt/dx, incl. CFL<<1.







(My incomplete understanding of) Historical 
Development of Shock-Capturing Fluid Algorithms

• Initial ideas from physicists (Boris, van Leer) & (applied) mathematicians: Phil 
Collela, Ami Harten, Stan Osher, Chi-Wang Shu, Bjorn Enquist, Eitan Tadmor, …

• earliest numerical viscosity, simple upwind: von Neumann & Richtmeyer (’50), 
Courant, Isaacson, & Rees (‘52), Rosenbluth.

• Godunov (‘59): generalized upwind to multiple eqs. w/ shocks (Riemann solver), 
theorem: only 1st order near discontinuities; piecewise-constant reconstructions

• Two indep. breakthroughs (FCT, van Leer):  nonlinear switches enhance diffusion 
only near discontinuities or under-resolved features

• FCT (Flux-Corrected Transport) (71-79), Boris, Book.  Zalesak version (79)
• van Leer (72-79), MUSCL (Monotone Upstream-Centered Schemes for 

Conservation laws)  piecewise linear interpolation with slope limiters to avoid 
overshoots (2cd order in smooth regions, but const. near extrema, “clipping”)

• TVD (Total Variation Diminishing) (variations of 2cd order van Leer)
• Colella & Woodward 84 PPM (Piecewise Parabolic Method) (4th order for smooth 

solns, except const. near extrema)  Widely-used gold-standard.
• ENO/WENO (Weighted Essentially Non-Oscillatory, ’87/’94-’96) Elegant solution to 

long-standing Gibbs osc. problem, arbitrary order (3rd, 5th typical) (related to fitting 
with a Sobolev norm?)  [Local operations, parallelizes easier than splines…]



• Main idea behind these algorithms:  detect discontinuities / under-resolved features, 
revert to lower-order polynomial in non-smooth regions, allow discontinuities 
(allowed for hyperbolic eqs.), introduce minimum necessary numerical diffusion in 
non-smooth regions to preserve (or encourage) monotonicity, positivity.

• Suresh-Huynh (‘97):  relaxed previous limiters to allow higher order interpolations 
near smooth extrema, 5th order in smooth regions, essentially a more efficient way 
to implement WENO

• Colella-Sekora (’08):  alternate way to relax piecewise-constant assumption at 
extrema, 4th order in smooth regions (even order = no numerical diffusion in smooth 
regions)

• Discontinuous Galerkin looks like another potentially interesting approach…

Suresh, Huynh ‘97



Central differencing to determine
slopes can lead to overshoots in
reconstruction

Just going to higher order doesn’t 
help near sharp gradient regions 
(Gibb’s phenomena)

Top Fig. From  R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).
2cd Fig. From C.B. Laney, Computational Gasdynamics, Cambridge Univ. Press (1998).



Simplest Fluid Advection Algorithms:
2cd Order Centered & 1st order upwind

Discrete grid, f(zj,t) = fj(t) Conservative differencing:
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(okay for smooth regions, phase 
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regions, gives unphysical 
oscillations):

1st order upwind (eliminates unphysical 
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Higher-order upwind Methods with
clever monotonicity-preserving slope limiters

Reconstruct f(z) in each cell, extrapolate to bdys:
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modminVan Leer’s (MC) limiter:

“Monotonized Central”

in smooth regions, sj+1/2 ≈ sj-1/2, and fj+1/2 is 2cd order accurate (upwind biased)



Central differencing to determine
slopes can lead to overshoots in
reconstruction

MC limiter gives much more robust 
result.

From R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).



Arakawa in 1-D is simple centered 2cd order method and has large overshoots and poor performance on steep gradient regions, but 
it has no numerical dissipation from the spatial differencing (though there is some from the 3rd order Runge-Kutta time advance).



2-D vortex merger test case

• Test case used by Naulin & Nielsen ’03.  We agree with them that WENO3 
is fairly dissipative.

• Initialize 2 Gaussian vortices.



Vortex Merger Test







Arakawa WENO3 SuHu-PPM

1-D Slices of Vorticity Along x = 5

(for vortex merger test)

SuHu & extended PPM are essentially non-oscillatory, not rigorously non-oscillatory,
but can be combined with FCT to enforce rigorous positivity if needed.



Without enough viscosity, Arakawa has enstrophy pileup at high k.  
(Though little effect on long wavelengths at this time.)



Even w/out explicit viscosity, high-order upwind methods provide dissipation near the 
grid scale, make spectra more realistic. (better than nothing, but as a subgrid model it could be 
improved to handle shearing effects.)



Summary
• Suresh-Huynh 97 (5th order) & Colella-Sekora 08 (4th

order), or hybrid between the two, look like very good 
options:  preserve high-order accuracy in smooth regions 
(including extrema), while still being robust and 
preventing artificial overshoots near shocks or under-
resolved regions; i.e., provides useful dissipation near 
the grid scale.

• (Discontinuous Galerkin also looks interesting…)
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