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Improving Confinement Can Significantly
| S1ze & Construction Cost of Fusion Reactor

Well known that improving confinement & f can lower
Cost of Electricity / kWh, at fixed power output.

Even stronger effect if consider smaller power:
better confinement allows significantly smaller
size/cost at same fusion gain Q (nTxz,).

Standard H-mode empirical scaling:
g ~HI 0.93 P—0.69 BO.15RI.97
i
(P = 3VnT/t; & assume fixed nTty; qy5, B, 1/NGreenwaid):

$ ~ R?2 ~ ]/(H4.SB3.4)

ITER std H=1, steady-state H~1.5
ARIES-AT H~1.5

Need comprehensive simulations to make case
for extrapolating improved H to reactor scales.

(Plots assumes cost o< R? roughly. Includes constraint on B @ magnet with ARIES-AT
1.16 m blanket/shield, a/R=0.25, i.e. B = B,,,, (R-a-azg)/R. Neglects current drive issues.)
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Edge region very difficult

Tokamak magnetic fusion device Simulated edge-plasma region
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Edge pedestal temperature profile near the edge of an H-

mode discharge in the DIII-D tokamak. [Porter2000].
Pedestal is shaded region.

Present core gyrokinetic codes are highly optimized for core, need new codes to
handle additional complications of edge region of tokamaks (& stellarators):

open & closed field lines, plasma-wall-interactions, large amplitude fluctuations,
(positivity constraints, non-Maxwellian full-F), atomic physics, non-axisymmetric
RMP / stellarator coils, magnetic fluctuations near beta limit...

Hard problem: but success of core gyrokinetic codes makes me believe this is
tractable, with a major initiative



Progress & Plans for Discontinuous
Galerkin Gyrokinetic Code Gkeyll

® Developing new gyrokinetic code using advanced continuum/Eulerian algorithms
(Discontinuous Galerkin, DG) that can help with the challenges of the edge region of
fusion devices. Want to study edge problems like the height of the pedestal, suppression
of ELMs, how much improvement can be made with lithium walls.

® Code or techniques could eventually be applied to a wider range of problems where
kinetic effects become important, including astrophysics and non-plasma problems.

® Good progress:
- Extensive tests in lower dimensions (Hamiltonian properties, parallel & perp
dynamics of gyrokinetics, collisions), http://www.ammar-hakim.org/sj/
- Invented several DG algorithm improvements. Improved treatment of diffusion
terms: Hakim, Hammett, Shi (2014) http://arxiv.org/abs/1405.5907
-Demonstrated ability to do 1D SOL Test problem of ELM on JET,
30,000x faster than full orbit (non-gyrokinetic) PIC code
Shi, Hakim, Hammett (2014) http://arxiv.org/abs/1409.2520
- Demonstrated ability to handle magnetic fluctuations in an efficient way.
- Now 2x+2v (x, y, v/, v1), including Lenard-Bernstein collision operator, logical
sheath boundary conditions. Working towards full 3d+2V for gyrokinetics.




General goal: robust (gyro)kinetic code
Incorporating several advanced algorithms

Several advanced algorithms (some in planning) to significantly improve efficiency:

- A version of Discontinuous Galerkin (DG) algorithm can conserve energy exactly for
Hamiltonian systems (even with upwinding, for continuous time)

- DG flexibility to handle optimized (Maxwellian-weighted) basis functions
(Landreman JCP 2013: just 6 basis functions in v for accurate neoclassical theory)

- sub-grid models in phase space

- efficient use of massively parallel computers (GENE continuum code has excellent

strong scaling to over 100,000 cores)

DG: Efficient Gaussian integration --> ~ twice the accuracy / interpolation point:
* Standard interpolation: p uniformly-spaced points to get p  order accuracy
* DG interpolates p optimally-located points to get 2p-1 order accuracy

Kinetic turbulence very challenging, benefits from all tricks we can find. Potentially
big win: Factor of 2 reduction in resolution --> 64x speedup in 5D gyrokinetics

Goal: a robust code applicable for a wider range of fusion and non-fusion problems,
capable of relatively fast simulations at low velocity resolution, but with qualitatively-
good gyro-fluid-like results, or fully converged kinetic results at high velocity resolution
w/ massive computing.



2.0

Discontinuous Galerkin (DG) Combines Attractive
Features of Finite-Volume & Finite Element Methods
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Standard finite-volume (FV) methods evolve just average value in each cell (piecewise
constant), combined with interpolations

DG evolves higher-order moments in each cell. |.e. uses higher-order basis functions,
like finite-element methods, but, allows discontinuities at boundary like shock-capturing
finite-volume methods --> (1) easier flux limiters like shock-capturing finite-volume
methods (preserve positivity) (2) calculations local so easier to parallelize.

Hot topic in CFD & Applied Math: >1000 citations to Cockburn & Shu JCP/SIAM 1998.



Discontinuous Galerkin (DG) Combines Attractive
Features of Finite-Volume & Finite Element Methods
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Don’t get hung up on the word “discontinuous”. Simplest DG is piecewise constant:
equivalent to standard finite volume methods that evolve just cell averaged quantities.

Can reconstruct smooth interpolations between adjacent cells when needed.

Need at least piecewise linear for energy conservation (even with upwinding).

DG has ~ twice the accuracy per point of FV, by optimal spacing of points within cell.



Contributions Made to DG Algorithms

* First to note that a version of DG (based on C.-W. Shu & Liu, 2000) spatial
discretization can exactly conserve energy for general Hamiltonian problems,

of/ot = {H,f} (for continuous time). Interestingly, does so even with upwind fluxes or
limiters for f, to preserve positivity, artificial oscillations.

* While we use DG for £, this energy conserving algorithm requires H to be in
continuous subspace of 1 (i.e., standard finite elements for fields). Developed an
extension that allows H to be discontinuous also (preserves separability of gyrokinetic
Poisson equation into independent 2D problems).

* Discovered improvements for diffusion terms 6%f/0x? in widely used Local DG
method. Instead use Recovery method by van Leer. (Not noticed before because it is
a very transient initial error in diffusion equations.)

* Discovered a way to efficiently handle Alfven waves in DG, by using smoother basis
functions for phi. Discovered a class of self-adjoint filter-projection operators that
accomplishes this while avoiding global matrix inversion of a full projection operator.

* Flexibility of DG: plan to implement Maxwellian-weighted basis functions.

* Plan to implement subgrid models in both physical space and phase-space.



Simulation journal with extensive documentation of
tests at http://www.ammar-hakim.org/sj

T=0.000000

Tested various features of perpendicular
and parallel dynamics of gyrokinetic
equations separately, and tested
collisions. Now working to integrate
together into a full 5D gyrokinetic code

Results for various test problems: ﬂ ﬂ




Simulation journal with extensive documentation of
tests at http://www.ammar-hakim.org/sj

Hasegawa-Wakatani
drift-wave turbulence
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Gkeyll uses modern code architecture

* Gkeyll is written in C++ and is inspired by framework efforts like Facets, VORPAL
(Tech-X Corporation) and WarpX (U. Washington). Uses structured grids with arbitrary
dimension/order nodal basis functions.

* Linear solvers from Petsc' are used for inverting stiffness matrices.

* Programming language Lua?, used as embedded scripting language to drive
simulations. (Lua in widely played games like World of Warcraft, some iPhone apps, ...)

* MPI is used for parallelization via the txbase library developed at Tech-X

* Package management and builds are automated via scimake and bilder, both
developed at Tech-X.

* (I am beginning to explore Julia / iJulia for postprocessing: http://julialang.org. New
high-level language oriented to scientific programming being developed at MIT. Fast,
parallelization, ...)

11



Test Problem Geometry

Target Plate Target Plate
|

A

@ ELM crash simulated as a source
of plasma at the midplane

o Target plates at edges of
symmetric computational
domain, midplane in the center

@ Evolve plasma and calculate heat
flux vs. time at target plates

First done by Pitts (2007), widely used test
case (Havlickova, Fundamenski et al. (2012),

Y Omatani & Dudson, 2013, ...)

Target Plate Target Plate

1D ELM Divertor Heat Pulse Test Problem Graduate Seminar Talk 11/27



Axisymmetric SOL (Side View)

(Perp.)

z (Para11e1)

& (Poloidal)

C (Toroidal)

Use gyrokinetic equations: keeping not just parallel dynamics, but also
perpendicular ion polarization in GK quasineutrality / vorticity equation.

Don’t have to resolve Debye length (use sheath boundary conditions), much faster:

-0, ("0.0) = e(r; ~ n)

(using simplified lower bound on k, 2 at first.)



Gkeyll can now Model ELM Heat Pulse in 1D SOL

gx 10° Gkeyll:
Simulation of ELM pulse to divertor plate on JET agrees well 3 [=Toml
with full PIC and Vlasov codes (Pitts, 2007, Havlickova, 4l |~lons
Fundamenski et al. 2012). Confirms sheath potential rises < —Electrons
to shield divertor from initial electron heat pulse. 23

C

2
30,000x faster than full PIC because gyrokinetics
doesn’t have to resolve Debye length. 1

=

10 T 10 10°
Ly/ve t(us) Ltv,f ELM off
< 10° Full PIC: «10° 1D Viasov:

Q [Wm_2]

(small differences because
initial conditions not
precisely specified.)




Simplest Alfven Wave in Gyrokinetics

afe afe Ye % 6*AH 8fe, .

ot Ul 0z +m¢3 (_62_ ot ) oy =0
e

—nk pag T¢ dv|| fe — 1
el
k1A = poge / dv)) fev)
If w > k| v, this gives:
1Vt e k”vA

2 A
1 + k I pg/ lBe
where 8, = (8./2)(m;/m.). The electrostatic case Aj| = 0 corresponds to
the low 3 limit, where there is an Qg mode that is even faster than electrons

at low & :
,_ Kjjvi ./ Be ki vie

— 72
1+k2p2/6.  Kkip3
It would seem that finite 3 should be easier because it limits the fastest wave
at low k| to be no faster than the Alfven wave
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Handling the 0A,/0t term

dfe Ofe Ge 6_@ 6A|| 6fe_
ot "Vl T (az ot ) du,

0z  m,

Codes usually eliminate the A /0t term with the substitution 6f. = g +
(ge/me)A| | OF.0/0v) (or by going to p;| = mw| + ¢g.A| coordinates, which is
equivalent linearly). Ampere’s law become:

(kl+0 “T(r)bqe /dpnfe) A —Cgﬂo—/dpufepn

€ e

- o

C, wl‘f,e/c2

“The Ampere Cancellation Problem”: the ratio of the first to second term
is very small, klps/ﬁ 1072, for ki ps = 0.01 and Be ~ 1%. Small errors
(represented by C,, or C; # 1) in large terms can have a large effect:

k? 2 p2 o RY:
If w> kjvge: w2 ||vte |:k s T (C C )ﬂe]

k_l_ps k ps =t Cn,Be

GS2’s implicit formulation never had a problem. | worked with Jenko in 2001 to fix this
problem in GENE. Related papers by Candy & Waltz JCP 2003, Y. Chen & S. Parker JCP 2003,

B. Cohen 2002, Dannert & Jenko 2004, Belli & Hammett 2005, Bottino et al. IAEA 2010. 16



Challenge for magnetic fluctuations in DG

We were first to note a version of the Discontinuous Galerkin (DG) algorithm

can exactly conserve energy for general Hamiltonian problems 8f/0t = {H, f}.
(Based on algorithm by C.-W. Shu and Liu, 2000.) Requires H (and thus ¢ and
Aj)) to be in a continuous subspace of f.

Shortest wav ele,na-m b (x):

In the MHD limit, we need // // \
dp A \ \

Bij=—-o"——-=0
i (x in these fi
Ey= - J ¢/ DX shoudbe2)

0z ot

but there is no way for a continuous A (2)
to offset this discontinuous d¢/0z.

This electrostatic field drives a current that is a square wave, and wants to
make a square wave A)(z). But projection of this square wave A onto a
continuous subspace gives A| =0, as if f=0. This gives very high frequency
mode at grid scale, requiring a very small time step At < kj|,max Vie / (kL min ps).

17



Fix for magnetic fluctuations for DG

There are several solutions. One is to project ¢(z) onto a C; subspace
where ¢ and 8¢/0z are continuous. (¢ must be at least piecewise-parabolic
in this case.) This allows a Cy A /(2,%) to better approximate the ideal MHD
condition E|| ~ 0 = —0¢/0z—0A| /0t. Allows Gkeyll to reproduce Alfven wave
even at very low k) p, with a normal time step.

10
— Exact
8 e o Gkeyll
o—e (0.1% Error in Density
~ 9 In order to conserve
> energy, the projection
= operator must be self-
S 4 adjoint. We have
found a local filtering/
projection operator
2 that is self-adjoint.
>
0
10~ 10" 10°

K, ps 18



Progress & Plans for Discontinuous
Galerkin Gyrokinetic Code Gkeyll

® Developing new gyrokinetic code using advanced continuum/Eulerian algorithms
(Discontinuous Galerkin, DG) that can help with the challenges of the edge region of
fusion devices. Want to study edge problems like the height of the pedestal, suppression
of ELMs, how much improvement can be made with lithium walls.

® Code or techniques could eventually be applied to a wider range of problems where
kinetic effects become important, including astrophysics and non-plasma problems.

® Good progress:
- Extensive tests in lower dimensions (Hamiltonian properties, parallel & perp
dynamics of gyrokinetics, collisions), http://www.ammar-hakim.org/sj/
- Invented several DG algorithm improvements. Improved treatment of diffusion
terms: Hakim, Hammett, Shi (2014) http://arxiv.org/abs/1405.5907
-Demonstrated ability to do 1D SOL Test problem of ELM on JET,
30,000x faster than full orbit (non-gyrokinetic) PIC code
Shi, Hakim, Hammett (2014) http://arxiv.org/abs/1409.2520
- Demonstrated ability to handle magnetic fluctuations in an efficient way.
- Now 2x+2v (x, y, v/, v1), including Lenard-Bernstein collision operator, logical
sheath boundary conditions. Working towards full 3d+2V for gyrokinetics. 19




