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•  Simple illustrations of gyrokinetic momentum ordering issue, 2 ways: 

–  Directly from GK Poisson equation 
–  Scott’s GK momentum conservation expression 

•  Why isn’t the momentum flux from H1 much larger than from H3? 
 A:  Several effects make momentum flux from H1 much smaller than it would 
 seem at first.  

•  Related Issues 



In a series of papers, Parra & Catto pointed out challenges of toroidal momentum 
transport in a standard regime (gyroBohm ordering, axisymmetric, up-down 
symmetric, slow toroidal flow of order the diamagnetic velocity v* ~ ε vt , where 
ε = ρ/L = ρ*).  In particular, they showed that the standard Lagrangian gyrokinetic 
approach would require the third order Hamiltonian, H3 ~ ε3 T, to calculate 
momentum transport accurately in this slow flow ordering.   They advocate 
supplementing with a separate equation for directly solving for toroidal momentum 
evolution, then need only H2. (See Krommes & Hammett, PPPL report 4945, 2013. 
http://bp.pppl.gov/pub_report//2014/PPPL-4945-abs.html) 

 
Our report gives some straightforward ordering arguments (originally due to P&C) 

demonstrating their point.  One should understand the implications in a balanced 
way.  Slow flows in this regime are so slow that usually they would not significantly 
affect the turbulence, though they might still be important for MHD stability.  Flows 
are usually more important in regimes that break some of these assumptions (like 
non-gyroBohm scaling near the edge or near transport barriers), but then still need a 
second order Hamiltonian.  P&C deserve credit for pointing out these subtle issues 
and helping people realize the importance of even H2 for a complete treatment in 
other regimes.  (Many codes at present neglect H2.) 

Summary of Gyrokinetic Momentum Issues 



Polarization Density Plays Key Role in  
Gyrokinetic Poisson / Quasineutrality Eq. 
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Looks like a Poisson equation, but actually is a statement of quasineutrality: 

-(Polarization charge density) =  guiding center charge density (including 
                                                    gyroaveraging)  

At long wavelengths (neglecting higher-order FLR corrections to polarization density): 

Because the polarization density depends on the potential, this is how the potential 
gets determined.  The polarization density can be shown to be related to the higher-
order polarization drift: 









Illustrating momentum ordering issues by starting from
Scott’s gyrokinetic momentum conservation law

This is a brief version of Sec. 5.3-5.4 of Krommes & Hammett 2013, slightly rewritten to be
closer to Scott’s notation. Start from the gyrokinetic momentum conservation law given in Eq.(80)
of Scott10 (B. Scott and J. Smirnov, Phys. Plasmas 17, 112302 (2010)):
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(This momentum conservation law has also been derived in a somewhat di↵erent way in a recent
paper by A. Brizard.) In this equation, angle brackets h. . .i represents flux-surface averaging,
and

R
P represents integration (without indicating the di↵erentials) over the gyrokinetic velocity

space coordinates. (This is somewhat di↵erent notation than used in the Scott10 paper, which
combines both of these operations into the angle brackets.) The first term on the LHS involves
the contribution to the toroidal canonical angular momentum density from the parallel momentum
(note that in Scott’s notation, pz ⇡ mvk and b' is the covariant toroidal component of the magnetic

field unit vector, b' ⌘ b̂ · @~x/@' ⇡ R). The second term on the LHS, involving the polarization

vector ~P , includes contributions to the toroidal angular momentum from the ~E ⇥ ~B drift and from
diamagnetic e↵ects. (Note that because of the way the polarization vector is defined in Lagrangian
field-theory approaches to gyrokinetics, it does not necessarily vanish when the electric field is zero,
as it also contains other contributions from FLR/diamagnetic e↵ects.) The first term on the RHS
represents the e↵ects of the radial flux of the parallel momentum.

Although the last term on the RHS does not look like it is in conservative form, by using
some non-trivial identities, Scott demonstrated that it in fact can be written in conservative form
as the divergence of a flux. The general form is somewhat complicated, but an example of the form
is given in Scott2010’s Eq. 83:

⌧Z

P
f
@H

@'

�
=

@

@V

⌧Z

P
f
@�

@'
rV · @H

@r�

�
+ . . .

where � is the electrostatic potential and the volume V is used as a radial flux-surface coordinate.
Now consider the order of magnitude of the first and last term in this gyrokinetic momentum

conservation law. For the gyro-Bohm transport time scale in the low flow ordering, the first term
is of order
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In the last term, we will use @�/@' ⇠ k?L� and rV ⇠ V/L (again ignoring ordering-unity factors
including geometrical factors of q or B'/B✓), and find
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Balancing these two terms, LHS ⇠ RHS, we find that we need to calculate the Hamiltonian H to the
accuracy of H3 ⇠ ✏3T , the same result found from the previous quasineutrality order-of-magnitude
argument.
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In order for a non-local/global gyrokinetic code to have a conserved energy-
like quantity using just the lowest order drifts (ExB, grad(B) and curvature) 
from the first order Hamiltonian H1 ~ (ρ/L) T, the density on the LHS must be 
replaced by a time-independent ns0.  Okay for short time scales. 
 
 In order to allow a time varying ns, and conserve the energy properly, one 
must include drifts from the second order Hamiltonian H2 ~ (ρ/L)2 T.   
Natural consequence of Lagrangian field theory approach. 
 
(Local gyrokinetics also satisfies energy conservation, H2 effects 
incorporated in the higher-order transport equations.) 

At long wavelengths (neglecting higher-order FLR corrections to polarization density): 



Two main types of gyrokinetics 
•  Original local “δf” iterative/asymptotic gyrokinetics, directly expands Vlasov Eq. and 

F = F0 + ε F1 (Frieman and Chen).  Rigorous for small ρ* = ρ/L gyroBohm limit, 
important limit to study.  Eddy size Leddy ~ ρ << L.  Simulate small-scale turbulence in 
a local region where radial variation of parameters (ω*(r),ν(r), etc.) can be neglected.  
(I.e., both n0 and dn0/dr are treated as constant, as in Hasegawa-Mima eq.)  The 
most complete derivations, including both gyrokinetic turbulence equation & next 
order transport equations: 
–  Ian Abel, Rep. Prog. Phys. 76 (2013) 116201 (69 pp) 
–  Sugama and Horton, Phys. Plasmas 5 (1998) 2560 (14 pp) 

 
•  Global “full F” Lagrangian/Hamiltonian gyrokinetics.  Does not break up F = F0 + δf. 

Does not assume eddy sizes Leddy << L, and so includes effect of radial variation of 
parameters and possible non-gyroBohm regimes.  (Probably important near plasma 
edge and near transport barriers.) Maybe consistent only in some case: 

•  ρ ~ Leddy << L, (gyroBohm regime) or  
•  ρ << Leddy ~ L, (i.e., k⊥ ρ << 1, Bohm regime) but not  
•  ρ ~ Leddy ~ L (but perhaps generalizations exist for SOL, ...) 

–  First derivation in Lagrangian field theory approach that gave particle+field energy 
conservation consistently is Sugama (2000), followed quickly by Brizard (2000) 
and others. 



Outline of Iterative local gyrokinetics 

•  Original “2-scale” local “delta f” gyrokinetics with direct iterative/asymptotic 
expansion of Vlasov eq. and F = F0 + ε F1  (or δf) 
 

•  Involves 4 orders of expansion to go through transport time scale  (Sugama 98, 
Barnes 08, Plunk 09, Abel 13): 

•  ε-1:  F0 independent of gyro-angle: 

•  ε0:  parallel force balance and  
polarization from gyro-phase dependence: 
  

•  ε1: standard GK equation on ω* turbulence time scale 
(free energy/entropy balance) 
 

•  ε2: transport equations for slow variation of F0 
 on transport time scale. 
(energy conservation) 

F̃1 = �q(�� h�i)
T

F0


