Chapter 4

Nonlinear Tests of
One-Dimensional Closures

The linear theory of Landau-fluid equations works very well, and improves with the
number of moments used. A relevant question, however, is whether the fluid equa-
tions can reproduce second-order nonlinear effects, such as ion Compton scattering.
Mattor (1992) has questioned the ability of Landau-fluid equations to reproduce this
effect near marginal stability. The analysis of Compton scattering is inherently 3D.
However, the essential nature of the approximation of the second-order propagator
can be illustrated in the simple exactly solvable one-dimensional problem of electron
plasma echoes.

Plasma echoes (Gould et al. 1967) are an effect that can occur in highly colli-
sionless plasmas due to the Hamiltonian nature of flows in phase space. Spatial per-
turbations that appear to have decayed have in reality become convoluted in phase
space and disappeared in an averaged sense only. In some circumstances, additional
perturbations can interact with the existing convoluted perturbations to produce a
second-order perturbation that unfolds in time to produce a response much later,
the echo. The simplest possible derivation of an electron plasma echo is presented
here. There is an exact kinetic solution for this problem. The problem is solved using
a finite moment system with closure and compared to the exact solution. An esti-
mate for the number of moments required to accurately model second-order effects
is therefore obtained. Finally the form of the second-order propagator obtained from
the moment system is computed to illustrate the nature of the approximation being
made.

4.1 Plasma Echoes

Plasma wave echoes (Gould et al. 1967; O’Neil and Gould 1968) are a second-order
effect arising in the one-dimensional Vlasov equation. If the plasma is perturbed
at a given wavelength, a density perturbation is excited and will die away due to
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Initial perturbation with £ = 3.

Advected perturbation at time ¢t = 1.

Figure 4.1: Tllustration of the Plasma Echo. An initial density perturbation is shown in
the first picture with spatial structure having wave number £ = 3. After some time, the
perturbation has tilted in phase space, so the perturbation averaged over velocities has
decayed.
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Figure 4.2: Continuation of the plasma echo illustration. A second perturbation with
longer wavelength (k = 2) is superimposed on the initial perturbation in the first picture.
The second-order perturbation is indicated by the dark grey regions. The second picture
shows a later time, at which both first-order perturbations have been stretched out in phase
space, but the second-order perturbation has reconstituted with a spatial structure with
wave number £ = 1. This reconstituted perturbation at a later time is called the plasma
echo.
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Figure 4.3: The plasma echo response. The density response to two pulses in the potential
at wave numbers k; and kg is plotted here. (For this graph, e = 0.01, ¢;kyv¢ = 4, and
ky = 1.7k1.) The solid lines denote the exact response for the first-order density components
at ky and k9 and the second-order “echo” component at k9 — ki. The dashed lines indicate
the approximate second-order response obtained when 10, 20, 30, and 40 moment equations
are used.

Landau damping. The perturbation has not disappeared, however, it has just become
convoluted in phase space (phase mixing). If the plasma is then perturbed at a shorter
wavelength, a density perturbation will be excited at that wavelength and die away as
well. The second perturbation will also interact with the initial perturbation, though,
generating a perturbation at the difference wave number that “un-phase-mixes” to
appear as a density perturbation at a later time, the plasma echo.

Figs. 4.1 and 4.2 present a rough cartoon of the physics of the plasma echo. In
Fig. 4.1, an initial perturbation is represented by shaded areas. The streaming of the
plasma leads to the usual phase mixing, so the real-space density decays even though
the perturbation continues to exist. In Fig. 4.2, a second perturbation is added,
which is assumed to interact with the first to produce the second-order contribution
indicated by the dark grey regions. At a later time, the second-order contributions
line up to produce a spatial density variation at a lower wave number equal to the
difference of the two original wave numbers. Note that in the second picture of
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Fig. 4.2 the second-order contributions have remained sufficiently localized to produce
a perturbation at the low wave number. The criterion for an echo to occur is that the
second perturbation occur at a higher wave number than the first. The second-order
parts will still line up at a later time if this criterion is not satisfied, but in that case
they will have become extremely elongated and produce a small response.

This picture should be only be view as an intuitive guide to the plasma echo,
however. In reality, plasmas rarely experience density perturbations of this sort. A
more interesting problem, therefore, is to consider the response of the plasma to
potential perturbations. The model problem to be considered here is the evolution of
a distribution of electrons in one dimension governed by the Vlasov equation (3.5),
assuming an externally applied potential of the form

é(z,1) = —q% sin(ki2)5(1 — 1) — 62% sin(ky2)5(t — ts), (4.1)

€R1 ERY

and given an initially Maxwellian distribution

flz,v,t=0) = Gr exp(—v?/2v:%). (4.2)

Assuming fixed background ions, and considering the unphysical limit where all of the
wavelengths are much shorter than the Debye length, the plasma contribution to the
potential may be ignored. Electron fluid equations in this limit are of little physical
interest, but this problem contains second-order nonlinearities that can be solved for
exactly, and therefore serves as a useful test for the nonlinear performance of fluid
moment closures. (Including the self-consistent potential leads to wave propagation
that complicates the analysis. The basic second-order effect is the phase de-mixing of
second-order perturbations.) O’Neil and Gould (1968) derived the density evolution

n(z,t) =ng Z(—i)”meiklmzjl(elklmvt(t —te))
I,m

X S (€2kimvi(t — 12)) exp(—klm%t?(t —1.)%/2) (t > ta),

ki = — lk1 + mks,
_mk2t2 — ”{fltl

e =T 7 L 4.
mk‘g—lkl ( 5)

where J,, is the usual nth Bessel function and the echo time ¢. has been defined for
each wave number k;,,, that enters the response.

Upon expanding the Bessel functions in the echo response (4.3) for small argu-
ments, one notes that the contribution at each wave number scales as €;'¢;™. As
expected, the contributions at the initially excited wave numbers k; and k; consti-
tute the first-order contributions to the response. There is a second-order contribution
at the sum and difference wave numbers. At the sum wave number ky + ko, however,
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Figure 4.4: The mass—spring system view of the plasma echo. From Section 2.7.2, there is
a correspondence between the orthogonal-polynomial moment system and the semi-infinite

mass—spring system. Even Hermite moments correspond to the velocities of the masses
and odd Hermite moments correspond to the contractions of the springs between them.
[See the mass—spring variables in Eq. (2.109).] The initial potential pulse ¢(k1) couples
the background distribution, which has only one nonzero moment ag, to the wave number
k1 component of the moments (the mass-spring system in the middle of the picture). The
perturbation travels as a wave to higher-order moments. The second pulse ¢(k3) couples the
k1 component of the moments to the k1 4+ k2 component of the moments (the mass—spring
system at the bottom of the picture). If the echo criterion is satisfied, the perturbation can
travel back to lower moments, producing a density echo.

the echo time occurs before the second pulse (t. < 13), so the exponential term in
the response in Eq. (4.3) is very small and the response is negligible. The difference
wave number k; — ky, on the other hand, has an echo time after the second pulse
(possibly much later). Higher-order echoes can appear as well, but this second-order
response in the difference wave number is what will be called the echo response, and
will calculated for closed fluid moment systems in the following section. A typical
echo response is plotted in Fig. 4.3 along with the initial density perturbation respon-
sible for the generation of the echo. Note that the echo can occur after both initial
perturbations have completely phase-mixed away.

One can also understand the plasma echo in terms of the mass—spring analogy
from Chapter 2. Each wave number k has a set of equations in Hermite moments of
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the form

Oa;(k,t , ; ;
# + kv, [\/;aj_l(k,t) +4/j+ 1aj+1(k,t)]

-3 Q\/jaj_l(k — K )ik (K 1), (4.6)

1% vgm

which can be mapped to a one-dimensional mass—spring system if the potential in-
teraction is ignored. The zeroth-order distribution only has one nonzero Hermite
moment, ag, so an initial potential pulse excites the first mass in the mass—spring
system at wave number k;. The density perturbation ag(k,t) dies away in time as the
original excitation propagates along the mass—spring chain to higher-order moments.
The potential term in the Hermite moment equation (4.6) couples the mass—spring
system for wave number &’ to that for wave number & through the potential at wave
number k — &’. [The moment a;_q(k’,1) enters the equation for a;(k,t), so the cou-
pling shifts to the next higher-order moment.] Thus the second potential pulse at
wave number ky effectively copies that propagated wave in the mass—spring system
for wave number k; to the mass—spring system for wave number &y + ko. If the echo
condition is satisfied, then k; + ko has sign opposite to that of k£; and the new mass—
spring wave travels in the opposite sense of the original, transferring energy back to
lower moments and eventually to the density ag(k1 + k2,t¢). The mass—spring wave
then bounces off the free boundary condition at the first mass ag, which is attached
to nothing on the left, and the echo decays as the wave travels back to higher-order
moments. This picture is illustrated in Fig. 4.4.

4.2 The Echo in Closed Moment Systems

The potential failing of a system that evolves a finite number of moments is clear
from the picture in Fig. 4.4. If one attempts to model a pair of pulses such as
those in Eq. (4.1) for an interaction time ¢, — ¢; that is too long, then the the first-
order perturbation wave will have hit the end of the chain of moments and been
dissipated by the closure model. The closed moment system will therefore fail to
produce the predicted second-order response in this case. Studies of series solutions
of the Vlasov equation (Armstrong et al. 1970) noted that simulations could only
capture the complete nonlinear physics for times ¢ < /m/(kv;), where m is the
number of coefficients in the series used. After that time, the effect of the truncated
coefficients is no longer negligible. Since the Hermite moment equations are equivalent
to the Hermite series approach, one expects the same limitation for fluid equations.
Solution of the application of the potential pulses in Eq. (4.1) to the closed Hermite
moment system discussed in Section 3.3 is very straightforward. The pulses will
produce nonzero Fourier components for wave numbers 0, k1, ky, and +k; + ko only.
The n-moment system solution for the echo can therefore be found by evolving the
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Figure 4.5: The plasma echo density response for short interaction time (t3 —t1)k1v; = 0.8.
The exact density responses are plotted with solid lines and there are two sets of dotted
lines indicating the responses for the 10 Hermite moment system with the ¢ = 3 closure
and ¢ = 9 closure. Both choices of closure give the correct first-order response. The ¢ = 3
closure matches the second-order response almost exactly, however, while the ¢ = 9 closure
departs slightly from the correct answer.

equations
0 :
aao(k‘l, t)—|—lk1?}ta1(k1, t) = 0, (47)
0 :
aal(k‘l, t)—l—zklvt [Clo(kl, t) + \/§Gg(k‘1, t)} = n();—l(S(t — tl), (48)
0 . , ra— .
a@(h,i)—l—zhm I:\/;aj—l(kht) + ¥ + 1Cl]‘+1(k1,t):| =0 (2 § ¥ < n),
(4.9)
9, . : )
aaj(k‘l — kg,t)+@(k1 — kg)’l)t I:\/;aj_l(kl — k‘g,t) + ¥ + 1Cl]'+1(k‘1 — k‘g,t)

_ \ﬁaj_l(kl,t);ia(t —t)  (0<j<n), (4.10)

along with the closure condition discussed in Section 3.2 for the unresolved moments
an(k1,t) and a, (k1 —k2,1). The results can then be compared to the k; —ky component
of the exact solution (4.3).
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Figure 4.6: The normalized root-mean-squared error of the second order response
[ (kg — ki,t) — n(ky — ki, t)]2dt) f3° n(ky — ky,t)?dt is plotted against the normal-
ized interaction time (ty — t1)kyv¢/+/n for closed Hermite moment systems with n = 5, 10,
15, 20 and 25 moment equations.

Some results are displayed for a fairly long interaction time [kjvs(ty — t1) = 4] in
Fig. 4.3. With 40 Hermite moments the echo is reproduced almost exactly in that case,
but for 10 moments the system produces almost no echo. The 10-moment system fails
for this example because the initial perturbation has become sufficiently convoluted
after this interaction time that it is no longer represented by the first 10 Hermite
moments. In Fig. 4.5, the results for a shorter interaction time (kyv;[t2 — t1] = 0.8)
are displayed for the 10 Hermite moment system, which is successful in this case. Two
choices of ¢, the number of times the linear response is matched in the w — 0 limit,
are illustrated in this figure. For ¢ = 3, the dotted line for the second-order response
is indistinguishable from the exact response. For ¢ = 9 there is some error, although
the simulation still gives a reasonable response. Both choices of ¢ give an excellent
fit to the linear theory, so for large numbers of moments it is probably best to take a
small value of g. (The linear theory converges very slowly for ¢ = 1, however, so the
choices ¢ = 2 or g = 3 are better.)

The mean-squared error in the second-order response was calculated for a number
of closed moment systems with ¢ = 3 for various interaction times. The results are
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plotted in Fig. 4.6. For a sufficiently large number of moments, there is almost no
error in modeling the second-order response for interaction times (t,—¢1)k1v; < v/n/2,
and there is a transition of increasing error until ({3 — ¢;)kivs > /n, at which point
the closed moment system gives virtually no second-order response, so the error is 1.
These results indicate, however, that a small number of moment equations can model
the second-order response for very short interaction times only.

4.3 Relation to Perturbation Expansions

It is instructive to derive the response for this model problem perturbatively. Assume
the potential is small, ¢(z,t) = e(z,t), and expand the distribution formally in a
perturbation series

f(Z,U,t) = fO(Zvvat) + éfl(Z,’U,t) + 62f2(Z,U,t) e (411)

Solving the Vlasov equation (3.5) term by term with the potential given by Eq. (4.1)
yields the hierarchy of equations

afo afo .
ot v 9z =0 412)
oh O _ a9¢0k (4.13)

ot 9z moz v’
0f2  0f: _ 4 0v0/
ot tv 9z moz v’ (4.14)

Assuming a Fourier decomposition with periodic boundary conditions, ¢(z,t) =
Spexp(ikz)i(t) and fi(z,v,t) = Y, exp(ikz) fi(k, v, 1), these equations are easily
solved to give the evolution of each term in the expansion,

fo(z,v,1) :;Tovﬂ exp(—v?/2v:%), (4.15)
Filk, v, ) q/ ~ iRt (- 1) vfo(v)dtl, (4.16)
2k, 0, 4) /E —kol g ek — KL — 1)
° W (4.17)
X %fl(k‘ v, t— )dtl

The density response therefore expands as n(z,¢) = ng + eny(z,¢) + e2na(z, ) + - -,
and one finds that the second component is

t— t2
6n2kt—n0// (k — Kk — K1 — t3)
k! mvt

X qub(k‘/,t — 1y — tl)RQ(kUttQ, ]{f/’l)ttl) dtl dtg,

(4.18)
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where the second-order response function is
Ry(79,71) = mo(m1 + m2) exp(— (7 + 72)?/2). (4.19)

This second-order response gives the density at time ¢ caused by the potential at
times ¢t — ¢ and t — t; — ¢;. The response is typically exponentially small unless the
argument 7, + 7 vanishes, which will occur if £ and &k’ have opposite signs. (This is
equivalent to the echo criterion that the wave number k& — k" of the second pulse is
larger than that of the first pulse, £’.)

Note that the echo response increases linearly with the delay ¢; between the two
potential pulses. The exact nonlinear response in Eq. (4.3), on the other hand, re-
places €2Ry(71, 72) with Ji(2em).J1(2¢(m1 + 72)) exp(—(71 + 72)?/2). Thus, the second-
order expansion is only valid for analyzing delay times such that ekv;ty < 1. The
second-order perturbation is a function of the velocity derivative of the first-order
perturbation. Even when the first-order perturbation is rigorously small, the deriva-
tives increase with time as the perturbation becomes convoluted in phase space. One
should be careful, therefore, in interpreting the long-time behavior of any second-order
perturbation theory.

The difference between kinetic theory and Landau-fluid theory that was demon-
strated by Mattor (1992) can be understood by looking at the Hermite moment
expansion. From the picture in the previous section illustrated in Fig. 4.4, one can
see that the second-order density response can be decomposed as the linear density
response to initial conditions in higher-order moments that are in turn linear re-
sponses to an initial perturbation in the first moment a;(k1). In terms of the general
orthogonal-polynomial responses defined in Eq. (2.62), the second-order echo response
can be decomposed as

Ry(ms,7) i Ro+1(72)/7R;a(m). (4.20)

The errors introduced in the second-order response for a truncated moment system
with closure are fairly complicated then, since we must consider the errors introduced
in all the linear responses of the form Ry ;41 and R;;. The theory from Chapter 2
indicates that the Laplace transform of all the components of the linear response
matrix will eventually converge, given enough moments. From Result 3, if the first p
closure coefficients are set to zero for p > 1, then the errors in Rg ;41 for 7 +1 < p
and all R;; are all related to one another by factors of Hermite polynomials. For the
Maxwellian (Gaussian) case, the response functions converge with increasing numbers
of moments for any fixed choice of ¢, the number of times the response is matched in
the w — 0 limit. Thus a set of closures exists for which n — oo and p — oo, so that
all the response functions eventually converge.

For a given closed moment system with a sufficiently large number of moments n,
therefore, the main source of error in the second-order response will come from the
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truncation of the decomposition (4.20) due to the fact that moments with j > n
are not modeled. (The responses that are modeled are modeled very well with large
numbers of moments.) Assume that the linear time response of each moment could be
modeled exactly. The Hermite moments are expanded in the formal series a;(z,t) =
a3(z,t) + eaj(z,t) + a’(z,1) 4 --- , where a9(z,1) is the jth Hermite moment of
fo(z,v,t) and so on. Expanding the first-order response (4.16) in terms of the first n
Hermite moments yields an approximation to the first-order part of the density:

filk,o,t) ~ 3 aj(k, t)\/l_ (v/fvt)mexp(—UQ/Qth)

no
Vo exp(—v?/2v,%)
¢

{(—zkvt )]—H (4.21)

. 2
—|—] (—ikvttl)]_ } 6_(kvtt1) /2 dtl

By inserting this approximation into the equation for the second-order component of
the density equation (4.17), one obtains an approximation to the density response,

RY™ (72, m1) ~ 73 (12 + 1) exp(—(71* + 72%)/2)

i To(—Tom )"t
X lz (= m)l—% . (4.22)
Using a finite set of moments effectively replaces the term exp(—my71) in the second-
order response (4.19) with a Taylor series in 7. For small 7 and small 7, the
Taylor series is a good approximation. For large 7 and 7, the exponential terms
in the approximate echo response (4.22) dominate to give an exponentially small
response. This result is a good approximation to the true response (4.19) except
near the line ;4 = —7, where the combined exponential terms are O(1). [When
the argument of exp(—77) is positive it can balance the other exponential terms.]
Since the n-term Taylor series of exp(z) is a good approximation out to |z| ~ n,
this approximate second-order response is valid for interaction times |7373| < n. The
response is exponentially small except where 71 ~ —7,, so this condition corresponds
o (kvit1)* < n, which is essentially the recurrence-time condition discussed in the
previous section.
This response is very similar to that obtained for second-order perturbations in
weak-turbulence theory (Mattor 1992). The Laplace transform of the second-order
response in Eq. (4.18) can be written as

sk, w) =5 / (k — K)ok — K, w )k d(k',w — wr)
0 1 m ’Ut

~ w W —wi
R, , dwr, (4.23)
4|k||k’|vt (\/_|]{7|’Ut \/§|]€/|U7§) !
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where the transformed second-order response is given by

§2,§1 / / Z§27—2 ZCITIRQ(S\/— /\/—) dry dry

_ 9 (8’%% 9 ) S2(G) — 5 7(6) (4.24)

Fle ) sl — G

(To simplify the expression, the sign variables s = k/|k| and s’ = k'/|k’| have been

introduced.) The series expansion from Eq. (4.22), on the other hand, gives approxi-
mately the response

- 9 9 oN|=21/1 0,0V
Rulia ) = s (e + ) [;7 (St

Mattor (1992) pointed out that the Landau-fluid approximation to the response re-
mains finite for all (; and (3 and therefore misses the resonant behavior in Eq. (4.23)

Z(Q)S/Z(Q)-
(4.25)

when ss’ = —1 and ¢ — —(,. It is worth pointing out, however, that this approxi-
mation converges with increasing numbers of moments. Near the resonance, however,
this expression (4.25) converges extremely slowly with increasing n, the number of
moments.

4.4 Limitations of Moment Equations

The time response for the linear Vlasov equation is modeled extremely well by
Landau-fluid equations with as few as four moment (Hammett et al. 1992). The echo
phenomenon, however, reconstructs information from the entire velocity-dependent
part of the distribution function. Hence, although a plasma echo is essentially a linear
response to the perturbation of a linear response, simply getting the linear response
correct is not sufficient to model the echo. The ability of any set of moment equations
to model a plasma echo is limited by the amount of velocity-dependent distribution
information that is contained in the finite number of moments kept.

Previous studies using truncated Hermite series expansions noted this time limit as
well. For example, Armstrong et al. (1970) were forced to terminate their simulations
at a time ¢ < v/N/kv,. Part of this time restriction arose from their choice of closure
an(z,t) = 0, which effectively reflects information back to lower moments, causing
recurrence. With the linear closure used here, perturbations will decay correctly
according to the linear theory without recurring. What is missed, however, is the
interaction between waves separated by times larger than ~ y/n/kv,. In reality,
however, a second interaction cannot occur for arbitrarily large separation times.
Echoes can only occur in an almost collisionless plasma, since they depend on delicate
convolutions in velocity space that are easily destroyed by collisions.
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By considering the simple collision model in equation 3.5, Su and Oberman (1968)
found that a free-streaming perturbation of wave number k is damped by an expo-
nential term of the form exp(—vk?v,2t*/3). This decay implies that for separation

times of the order
| 1/3
g — 1 ~ (7) , (4.26)

vk tv?

there will be no second-order response when the effect of collisions is taken into
account. The number of moments required to model this separation time scales as
N ~ (ty —t1)viky, so a rough estimate of the number of moments N needed to model
all second-order effects that can occur is given by

N (@)”‘“’. (4.27)

14

4.5 Summary

The dissipative Landau-fluid closure has a significant impact on the linear physics
of closed moment systems. A model nonlinear problem, the plasma echo, was con-
sidered as a simple nonlinear test of the closure. The plasma echo is essentially the
second-order component of the nonlinear response expanded in the limit of small per-
turbations. The second-order response has an exact solution (4.3) in the limit where
the self-consistent potential is dropped. This exact solution was used to gauge the
weakly nonlinear performance of moment systems with closure.

In contrast to the linear picture, the choice of linear closure does not have a
large impact on the second-order response. (See Fig. 4.5.) The number of moments
simulated, however, is an essential factor in resolving second-order effects. The results
summarized in Fig. 4.6 that modeling the second-order response for interaction time
ly — 1y requires n ~ [(ty — t;)kyvs]> moments. A simple model of the rate of decay of
perturbations due to a finite collision rate v indicates that n ~ (kv;/v)*?
are sufficient to resolve all second-order effects.

moments

Clearly this second-order streaming nonlinearity cannot be accurately modeled
with small numbers of moments. This effect is second-order, however, so for per-
turbations that are small with respect to the background, the unresolved density
perturbations should be a small correction.



