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Abstract

Closures are necessary in the study physical systems with large numbers of degrees
of freedom when it is only possible to compute a small number of modes� The modes
that are to be computed� the resolved modes� are coupled to unresolved modes that
must be estimated� This thesis focuses on dissipative closures models for two problems
that arises in the study of plasma turbulence� the �uid moment closure problem and
the subgrid scale closure problem�

The �uid moment closures of Hammett and Perkins 	���
� were originally ap�
plied to a one�dimensional kinetic equation� the Vlasov equation� These closures are
generalized in this thesis and applied to the stochastic oscillator problem� a standard
paradigm problem for statistical closures� The linear theory of the Hammett
Perkins
closures is shown to converge with increasing numbers of moments�

A novel parameterized hyperviscosity is proposed for two�dimensional drift�wave
turbulence� The magnitude and exponent of the hyperviscosity are expressed as func�
tions of the large scale advection velocity� Traditionally hyperviscosities are applied
to simulations with a �xed exponent that must be arbitrarily chosen� Expressing the
exponent as a function of the simulation parameters eliminates this ambiguity� These
functions are parameterized by comparing the hyperviscous dissipation to the subgrid
dissipation calculated from direct numerical simulations� Tests of the parameteriza�
tion demonstrate that it performs better than using no additional damping term or
than using a standard hyperviscosity�

Heuristic arguments are presented to extend this hyperviscosity model to three�
dimensional 	�D� drift�wave turbulence where eddies are highly elongated along the
�eld line� Preliminary results indicate that this generalized �D hyperviscosity is capa�
ble of reducing the resolution requirements for �D gyro�uid turbulence simulations�
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Chapter �

Introduction

Moment closure problems appear in a wide range of applications� In statistical the�
ories of turbulence� for example� equations for second�order statistics 	energy� are
coupled to equations for third�order statistics 	transfers�� which are coupled to higher�
order statistics ad in�nitum� A number of theories exist that attempt to close the
system by estimating the third�order correlations as a function of the second�order
terms� In �uid mechanics the equations for momentum� a �rst�order velocity moment
of the particle distribution� contain terms involving second�order velocity moments
	the pressure tensor�� For common �uids� the high collision rate and short mean free
path enable one to derive simple models for the pressure tensor that work very well�
Viscosity is essentially a closure for some second�order particle�velocity moments 	o��
diagonal components of the pressure tensor� as functions of gradients of the �rst�order
particle velocity moment 	�uid momentum�� In many plasma turbulence problems�
the long mean free path has led to the need to consider new approaches to the
�uid moment closure problem� Ion�temperature�gradient�driven 	ITG� instabilities
in collisionless plasmas� for example� experience strong collisionless damping from
the interaction of resonant particles with waves 	ion Landau damping�� The correct
choice of �uid moment closure can enable �uid equations to model these kinetic e�ects
	Hammett and Perkins ���
� Chang and Callen ������

A simple illustration of the moment closure problem is given by the stochastic
oscillator problem 	Kraichnan ����� Kubo ����� Kraichnan ������ a simple model
that has served as a useful paradigm for studying statistical moment closures� The
oscillator problem considers an ensemble of phases y	t� that evolve according to

�y

�t
� iby � 
� yjt�� � �� 	����

where b is a constant�in�time random variable that sets the frequency at which each
phase oscillates� The phases of di�erent realizations in the stochastic oscillator or
di�erent velocity components of a given perturbation will eventually become decorre�
lated� causing the ensemble average hyi to decay in time� 	Averages of the form hbnyi
will be called moments of y�� For this simple problem� the exact time behavior of

�



� CHAPTER �� INTRODUCTION

this average is easy to compute directly by integrating the evolution equation 	���� in
time and then taking averages� Instead� if one takes the ensemble average of Eq� 	����
�rst� one obtains the evolution equation

�hyi
�t

� ihbyi � 
� hyijt�� � �� 	����

The initial condition for and time derivative of the moment hyi are given by this
equation� This equation contains the unknown moment hbyi� however� so it cannot
be integrated alone to give the time behavior of the moment hyi� After multiplying
the evolution equation 	���� by bn and taking the ensemble average� one obtains the
moment hierarchy

�hbyi
�t

� i
D
b�y

E
� 
� hbyijt�� � hbi�

� hb�yi
�t

� i
D
b�y

E
� 
�

D
b�y

E���
t��

�
D
b�
E
� 	����

���
���

Because the evolution equation for a given moment contains the next higher�order
moment� no �nite set of these equations can be integrated� Determining an appropri�
ate estimate for the unresolved moment in terms of resolved moments is the moment
closure problem�

The stochastic oscillator problem may appear overly simpli�ed� However� the
oscillator is a good model problem for the physical process of phase mixing� which is
a fundamental process in many systems� With the substitutions y	t� � f	v� z� t� and
ib� v���z� the stochastic oscillator becomes the propagator of the Vlasov equation
in plasma physics� 	This transformation was pointed out to us by Dr� John Bowman
and will be used in this thesis to map closures for the stochastic oscillator to �uid
moment closures of the Vlasov equation�� With the substitutions y	t� � v	x� t� and
ib� v � r� the stochastic oscillator equation becomes the Euler equation describing
�uid turbulence in the absence of dissipation� 	The �uid advection term is nonlinear
in the advected term� unlike the stochastic oscillator� There are limits� however� in
which phase�mixing processes are important� such as the coherent straining of short�
wavelength modes by long�wavelength modes��

There are many approaches to obtaining closures for unresolved terms in moment
hierarchies� This thesis focuses on a set of simple closures that model the phase�
mixing decay process by linear dissipative terms that introduce damping proportional
to the spread of frequencies� For �uid moments of the Vlasov equation� the spread
of frequencies for a given wave number k is proportional to jkjvt� where vt is the
average thermal velocity� The subgrid�scale closure problem for drift�wave turbulence
considered in Chapter � can also be understood in terms of phase mixing� The phases
of di�erent points on an eddy with wave number k become decorrelated at a rate
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proportional to j�V � kj where �V is the di�erence in the advecting velocity at the
two points� An estimate for the velocity di�erence is given by �V � �x � rV
where �x is the distance between the two points� For isotropic turbulence� a rough
scaling of the damping rate that should be introduced by the subgrid�scale closure is
therefore given by the average magnitude of the shear tensorrV� since j�xj � ��jkj�
Extending the results to three�dimensional 	�D� ITG turbulence� one must be slightly
more careful to account for the elongated nature of the eddies� 	The perpendicular
wave number is much larger than the parallel wave number� so the eddy turnover rate
is enhanced over the basic shearing rate rkV� by a factor of jk�j�kk��

��� Closures in One Dimension

Statistical moment closures for the stochastic oscillator problem are considered �rst�
The procedure of Hammett and Perkins 	���
� for deriving �uid moment closures is
generalized and applied to the stochastic oscillator moment hierarchy� The n closure
coe�cients for the n�moment system are computed using conditions obtained by
matching the response function for the closed moment system to the exact response
function q times in the � � 
 limit and n � q times in the � � � limit� Results
concerning the form of this closure are easily expressed for closures written in terms
of polynomial moments where the polynomials are orthogonal with respect to the
underlying distribution� Numerical evidence is presented indicating that the response
function for the closed moment system converges to the true response for a Gaussian
distribution of frequencies� The convergence rate is faster for larger q� A closure
for n moments is shown to match the linear response for background distributions
that can be written as a polynomial of order n � q in the frequency b multiplied by
the original background distribution� Therefore� a series of closures for which the
number of moments n increases and q and n � q increase will exhibit linear theory
that simultaneously converges for a wide class of frequency distributions�

Transformations are presented to show that the stochastic oscillator problem is
equivalent to the linearized Vlasov equation� so results concerning convergence of
the response function carry over to Landau��uid closures� There is a transformation
from �uid moments to Hermite polynomial moments� which in turn are equivalent
to coe�cients in the Hermite series traditionally used in simulations of the Vlasov
equation 	Armstrong et al� ���
��

A simple nonlinear problem in one dimension� the electron plasma echo� is used
to test the higher�order behavior of moment systems with closure� The number of
moments retained turns out to be the primary factor in determining how well the
second�order response is modeled� The precise form of the linear closure seems to be
relatively unimportant for higher�order e�ects�
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��� Subgrid�Scale Closures in Two Dimensions

A simple one��eld two�dimensional 	�D� drift�wave model is used to study the transfer
of �uctuation energy to unresolved scales� This model equation contains the so�called
�i�� term 	Terry and Horton ����� Liang et al� ������ which produces linear drive�
and a simple model for Landau damping� which provides the dominant source of
dissipation� While this model cannot accurately reproduce the linear physics of ITG
modes captured by more comprehensive �uid models� it does share the basic E�B
advection nonlinearity responsible for the transfer of �uctuation energy to small scales�
The advantages of studying the simpli�ed �D model are that simulations can be
performed at high enough resolution to ensure convergence� and that a large number
of simulations can be performed to parameterize the results�

Numerical simulations of drift�wave turbulence can be very expensive computa�
tionally� Typically one would like to obtain the saturated turbulent state for a large
number of choices of parameters in order to study the scalings of macroscopic quan�
tities such as the heat or particle �ux� Performing the simulations at reduced spatial
resolution saves a substantial amount of computation time� At su�ciently low reso�
lutions� however� the absence of nonlinear coupling to smaller scales mode causes the
simulations to fail to saturate or to yield wildly inaccurate results� It is possible to
recover accurate results at low resolutions� through the use of simple dissipative terms
that model the �uctuation energy transfer to smaller scales� A novel parameterized
hyperviscosity proposed by Smith and Hammett 	����� is presented and applied to
the simpli�ed �D model considered here�

The transfer of energy to small scales was calculated in direct numerical simula�
tions for a wide range of parameters and cuto� wave numbers� The resulting subgrid
damping rate was well parameterized by a hyperviscous dissipation term with mag�
nitude that scaled with the mean rate of shear in the �ow and exponent that scaled
with the cuto� wavenumber� Traditionally hyperviscosities are applied to simulations
with a �xed exponent that must be arbitrarily chosen� Expressing the exponent as a
function of the simulation parameters eliminates this ambiguity�

The parameterization can be used as a nonlinear damping term in numerical
simulations of drift waves� 	The parameterization assigns a linear damping rate to
each Fourier mode� but the magnitude of the damping rate is a function of the mean
�ow� so the damping is nonlinear�� Tests of the parameterization demonstrate that
it performs better than using no additional damping term or than using a standard
hyperviscosity�

The parameterized hyperviscosity contains no reference to the linear physics of
the simple �D drift�wave model studied here� The damping rate is a function of the
large scale E�B �ow only� One would therefore expect this nonlinear damping term
to be applicable to more general �uid models that contain more accurate models of
the linear physics�
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��� Extension to Three Dimensions

Heuristic arguments are given to extend this hyperviscosity model to �D drift�wave
turbulence where eddies are highly elongated along the �eld line� Due to the computa�
tional cost of �D turbulence simulations� a comprehensive study of the performance
of this hyperviscosity has yet to be performed� Some preliminary results are pre�
sented� however� that demonstrate that this generalized �D hyperviscosity is capable
of reducing the resolution requirements for �D gyro�uid turbulence simulations�
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Chapter �

Moment Closures in One

Dimension

To connect theory of kinetic �uid�moment closures to statistical closure theories� the
main results of this chapter will be explained in terms of the stochastic oscillator
problem 	Kraichnan ����� Kubo ����� Kraichnan ������ which is precisely analogous
to the linearized Vlasov equation� Several common statistical closures are reviewed
here� including simple truncation� cumulant discard� and Pad�e approximations�

One would like to evolve a �nite set of equations for the �rst n statistical or �uid
moments� denoted by g�	t�� g�	t�� � � � � gn��	t�� The equation for gn��	t� contains the
next higher moment gn	t�� which must somehow be approximated� Early simulations
of the Vlasov equation 	Armstrong et al� ���
� solved this problem by truncation
�analogous to setting gn	t� � 
 and noting that the simulations are only rigorously
correct as long as the e�ect of the missing term is small� This time limit turns out
to be a very severe restriction� however� since for a purely collisionless plasma the
number of moments necessary to simulate a given time t is proportional to t�� Even
in highly collisionless plasma� though� one expects that the �uctuations transfered
to �ner and �ner scales will eventually be wiped out by the small collisionality� It
is reasonable� therefore� to propose a dissipative closure at a moderate number of
moments that models the collisionless transfer to small scales� In fact� a closure of
the form gn	t� � C�g�	t� � � � ��Cn��gn��	t� was proposed by Knorr 	����� for series
solutions of the Vlasov equation that guaranteed dissipative behavior� The size of the
damping� which is determined by the coe�cients� was left undetermined� however�

The linear response for the one�dimensional Vlasov equation is easily calculated
and can be expressed in terms of the plasma dispersion function Z	��� Using the
exact response� it is possible to construct a closed set of �uid equations that exactly
reproduces the linear theory of the Vlasov equation 	Chang and Callen ������ Such a
closure is frequency dependent� however� so implementation in numerical simulations
would require the calculation of time�history integrals�

The novel idea of Hammett and Perkins 	���
� was to construct linear single�

��
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time closures that have a very low computational cost� The resulting �Landau��uid�
equations are optimized to approximate the exact linear theory of the Vlasov equa�
tion by choosing appropriate closure coe�cients� For n moment equations� matching
in the �adiabatic� limit � � 
 limit to O	�q� and in the �uid limit � � � to
O	����n���q��� where q � n is an integer� gives n conditions that uniquely determine
all the coe�cients� This procedure yields a set of equations with a linear response
that matches the exact response somewhat uniformly over a wide range of frequen�
cies� The choice of limits in which the matching is performed is somewhat arbitrary�
but the limits � �� and � � 
 are natural choices� Simply adding more moment
equations improves the short�time response of the system and hence improves the
matching in the high�frequency limit� � ��� Matching purely in the high�frequency
limit� however� yields a system of equations that fails to capture the long�time decay
due to collisionless dissipation from Landau damping� Obtaining some conditions at
low frequencies introduces dissipation into the closure that models Landau damp�
ing� 	Hence� the Hammett
Perkins closure is often referred to as the Landau��uid
closure�� One might ask why the low�frequency matching is not performed at some
other natural frequency� such as the mode frequency� The mode frequency for a given
wavenumber is a complicated function of the background gradients and plasma pa�
rameters� Matching at � � 
 yields simple expressions for the closure coe�cients and
gives a response that matches the exact response simultaneously at all frequencies�
In the saturated turbulent state� �uctuations are not locked to the mode frequency�
but instead are driven at over a broad band of frequencies by the nonlinear coupling
to other modes� It is therefore appropriate to attempt to model the linear response
simultaneously at all frequencies� the matching technique of Hammett
Perkins that
is generalized here meets this objective�

In Section ����� it is demonstrated that for moment systems closed with this two�
point closure the response function converges to the exact response function with
increasing numbers of moments for the standard Gaussian 	Maxwellian� background�
Convergence is demonstrated for any �xed q� the number of times the response is
matched in the � � 
 limit� but the convergence is faster for larger q� Similar results
were observed for three� four and �ve moment equations in the application of Landau�
�uid closures to resistive g modes by Hedrick and Leboeuf 	������ Recently� a novel
renormalization�group like approach to the Hermite series formulation was proposed
by Parker and Carati 	����� to generate closures corresponding to the q � � case�

Orthogonal polynomial moments provide the natural basis for expressing results
about linear closures for the stochastic oscillator and the Vlasov equation� The major
results obtained in Section ����� concerning the behavior of the error of the approx�
imate response function are expressed in terms of setting the �rst n � q closure
coe�cients to 
� When the closure condition is not expressed in terms of orthogonal
polynomials� the n � q conditions for these results become general linear combina�
tions of the closure coe�cients with no simple form� The Vlasov equation is typically
modeled by assuming a Maxwellian background� For a Maxwellian� the orthogonal
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moments are the Hermite moments de�ned in Section ���� The Hermite moments
correspond precisely to the Hermite series expansions of the Vlasov equation consid�
ered in the past� It has often been observed for statistical closures that cumulants
have nice properties 	Kubo ������ Cumulants are shown to be linearly equivalent to
Hermite moments for linear closures about a Maxwellian background�

��� The Plasma Dispersion Function

The Laplace transform in time is a natural tool in the study of plasma instabilities�
since the assumption of a �xed 	in time� background distribution leads to di�erential
equations with constant 	in time� coe�cients� The convention used here is to de�ne
the Laplace transform of a function of time� f	t�� by

bf 	�� �
Z �

�
exp	i�t�f	t� dt� 	����

for � with positive imaginary part� and by analytic continuation for � in the lower�half
complex plane� The inverse transform is given by

f	t� �
�

�	

Z ��i�

���i�
exp	�i�t� bf	�� d�� 	����

where the i� in the limits indicates that the contour is to be taken in the complex
plane above any singularities of bf	��� At the risk of some ambiguity� the hats will
be dropped throughout this thesis and f	�� should be interpreted as the Laplace
transform of f	t��

Named by Fried and Conte 	������ the plasma dispersion function Z	�� can be
written simply as the Laplace transform of a Gaussian time response�

Z	�� � i
Z �

�
exp	i�t� exp	�t���� dt� 	����

The !Z function� has the series and asymptotic expansions 	Brook �����

Z	�� � i
�X
j��

	�i�j"�	j � �����

"	j � ��
�j 	� � 
�� 	����

Z	�� � �
�X
j��

	�j�#

j#��j
�

��j��
	j�j � �� Im	�� � 
�� 	����

Plotted for reference in Fig� ���� the Z function is useful for expressing the frequency
response of systems involving Gaussian distributions�
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Figure ���� The plasma dispersion function�

��� The Stochastic Oscillator Problem

The random�oscillator problem is de�ned by the ensemble of initial�value problems��
d

dt
� 


�
y	t� � iby	t� � 
� y	
� � �� 	����

where b is a real�valued random variable with probability density function 	PDF�
�	b�� This oscillator equation has the simply computed exact solution

y	t� � exp��	ib� 
�t� 	t � 
�� 	����

and yet is su�ciently interesting to illustrate the behavior of several standard approx�
imation schemes for turbulence 	Kraichnan ������ In the limit of no damping� 
 � 
�
the behavior of statistical moments of the oscillator equation is directly analogous to
the behavior of �uid moments due to phase mixing�

A particular class of statistical moments is de�ned by

gn	t� � hbny	t�i � 	����

where h�i is an average over the ensemble of possible values of b� �The average can
be written as hfi �

R�
�� f�	b� db� One is typically interested in the time behavior of
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the lowest�order moments� g�	t� in particular� By taking moments of the oscillator
solution 	����� one directly obtains the exact time response

gn	t� � hbn exp��	ib � 
�t�i
�
Z �

��
bn exp��	ib� 
�t��	b� db�

	����

The ensemble of amplitudes y	t� have frequencies b with distribution �	b�� Initially
y	
� � �� so all realizations are �in�phase�� As time progresses� the phases change at
di�erent frequencies and become decorrelated from one another� This phase mixing
leads to a decay of the moments� since realizations that are out of phase 	�bt 	 	� will
cancel one another� The spread in the frequencies 	given by the standard deviationq
hb�i � hbi�� is a good estimate of the rate of damping due to phase mixing� The

dissipative closures introduced later in this chapter introduce a damping rate that
scales with this frequency spread�

Several of the standard closure techniques will be applied to the case where b has
a Gaussian distribution with PDF

�G	b� � 	�	����� exp	�b����� 	���
�

In this case� the response of the lowest moment is just

g�	t� � exp	�t��� � 
t� 	t � 
�� 	�����

which is plotted against several approximation in Fig� ���� The decay is faster than
exponential� so simple exponential damping at the same rate can only roughly model
the true decay� However� as we will �nd� combining several moment equations with
a dissipative closure of the right magnitude enables one capture both the short�time
behavior g�	t� � � � 
t � 	
� � ��t��� � � � � and the decay for large times�

��� Review of Closure Techniques

Taking moments of the oscillator equation 	���� directly �operating on both sides byR�
�� �bn�	b� db � an in�nite hierarchy of moment equations� The nth moment equation�

d

dt
� 


�
gn	t� � ign��	t� � 
� gn	
� � hbni � 	�����

couples the nth moment to the 	n� ��st moment� A �nite subset of equations in this
hierarchy cannot be solved directly� since the evolution of higher�order moments is
required� A moment closure that expresses the nth moment gn	t� in terms of the �rst
n moments g�	t�� g�	t�� � � � � gn��	t� can be used with the �rst n moment equations
to form a closed �nite system that approximates the in�nite�dimensional moment
system�
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De�nition �
The n�moment system with closure for the stochastic oscillator problem is the system
of equations

�
d

dt
� 


�
g�	t� � �ig�	t�� g�	
� � h�i ��

d

dt
� 


�
g�	t� � �ig�	t�� g�	
� � hbi �

���
��� 	������

d

dt
� 


�
gn��	t� � �ign	t�� gn��	
� �

D
bn��

E
�

gn	t� � F 	g�� g�� � � � � gn��� t��

In general� the closure function F 	�� can be nonlinear and can depend on the time
histories of the resolved moments g�	t�� g�	t�� � � � � gn��	t�� The solution of the closed
moment system �����	 will be denoted ga�	t�� g

a
�	t�� � � � � g

a
n	t� in order to di
erentiate

it from the exact solution ����	�

A natural criterion for evaluating the performance of a given moment closure
F 	�� is the ability of the response ga�	t� for the lowest moment of the closed system
to reproduce the exact response g�	t� from Eq� 	����� For convergence of the two�
point approximation closures considered in Section ���� the transformed approximate
response ga�	�� will be compared to the transformed exact response g�	���

The de�nition of a closure function used here is su�ciently general that one can
trivially reproduce the exact response� When the frequencies have a Gaussian PDF�
for example� the exact solution for the �rst moment is known� so the �rst moment
closure

g�	t� � F 	g�� t� 
 �it exp	�t��� � 
t� 	�����

and the zeroth moment equation form a system that exactly reproduces the response
g�	t�� This closure for the �rst moment uses no information about the state of the
zeroth moment� and obviously leads to incorrect results for problems where the fre�
quencies have a di�erent non�Gaussian PDF 	or even a Gaussian PDF with di�erent
variance�� One would like to apply statistical closures to more complex problems� so
the stochastic oscillator problem should be regarded as a simple test case only� In or�
der to be generally applicable� a closure should be derived using as little information
about the speci�c problem as is possible� The types of closure functions considered�
the criterion used to evaluate convergence of a closure scheme� and the nature of
convergence considered will all depend on the desired application�

For the statistical moment closure problem considered by Kraichnan 	������ the
desired application of the closures is to statistical moment hierarchies arising in the
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study of �uid turbulence� For the statistical turbulence problem� the probability dis�
tributions of most �eld quantities are likely non�Gaussian� and one does not know
ahead of time what form the probability distributions will take� In this case� it is
unreasonable to use information about the probability distribution in the derivation
of the closure� An expansion based on the form of the equations was derived by
Kraichnan 	������ The result is a sequence of Pad�e approximations to the �rst mo�
ment of the form g�	�� � Fi�g�	���� where i � 
 takes on integral values� 	When
this expression is transformed back to the time domain� it will contain time�history
integrals when the function is nonlinear��

The results obtained in this chapter will be applied to the derivation of �uid
moment closures for the study of plasma instabilities� In contrast to the turbulence
problem� the underlying distribution is assumed to be known� Information about the
exact response will be used to construct linear closures for the nth moment of the form
gn	t� � Fn�q�g�	t�� g�	t�� � � � � gn��	t�� for integers 
 � q � n ��� The �uid moment
closures are to be used in numerical simulations that follow the time evolution of
plasma turbulence� so closures that involve time�history integrals are prohibitively
expensive to compute� The linear closure function costs very little to compute� but
has a limited number of degrees of freedom 	n� that can be adjusted to �t the response�
Convergence in this case is considered for a set of closures with increasing numbers
of moments� n � �� as opposed to the statistical turbulence closures that consider
successively higher�order nonlinear closures for the �rst moment�

Note that the closure techniques derived in this chapter do not directly carry
over to statistical moment closures for turbulence� since the form of the background
distribution is used in deriving the closures� However� the nature of the convergence
of the response for these linear closures with increasing numbers of moments may
provide some insight for those attempting to extend nonlinear turbulence closures to
arbitrary numbers of moments�

����� Realizability and the Approximate Distribution

An estimate for a �nite set of statistical moments is called realizable if an ensemble of
realizations with non�negative probability exists that has those moments 	Kraichnan
���
�� 	By de�nition the true moments of a probability distribution are realizable��
Realizability constraints can lead to some interesting closures for turbulence models
	Kraichnan ������ For the problem at hand� the closed moment system 	������ only
single�time moments hbny	t�i that are �rst order in y	t� are considered� A particular
ensemble is constructed here that has a useful physical interpretation�

For the closed moment system 	����� of the stochastic oscillator� it is possible to
construct an ensemble of realizations that satisfy the stochastic oscillator evolution
equation 	����� but with a modi�ed distribution of frequencies� From the exact so�
lution 	���� Kraichnan 	����� noted that� for 
 � 
� the PDF of b is related to the
transform of the zeroth moment response by 	�	b� � Re�g�	��j��b�� If the Laplace
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transform of an approximate solution ga�	t� exists for a given closed moment system�
then we can de�ne the approximate distribution

�a	b� �
�

	
Re�ga�	��j��b�� 	�����

�The approximate distribution for a given closure is called the spectral density in
the discussion by Kraichnan 	������ The approximate distribution for an n�moment
system with closure has the same moments to order n as the exact distribution �	b��
The one�time joint PDF for b and y	t� � yr � iyi given by

P �b� yr� yi� � �a	b���yr � cos	bt����yi � sin	bt�� 	�����

describes an ensemble of realizations with moments that satisfy the closed moment
system 	������ A requirement that the approximate distribution be non�negative�
�a	b� � 
� can be viewed as a kind of realizability condition� 	A closed moment
system may yield an approximate distribution that fails this criterion and still be
realizable� however��

In the analogy between the stochastic oscillator problem and the linearized Vlasov
equation� the PDF �	b� corresponds to the background distribution� For a given �uid
approximation� Hammett and Perkins 	���
� de�ne the equivalent background distri�
bution f� in a manner analogous to the de�nition of the approximate distribution here�
Requiring that the background distribution be non�negative leads to the condition
on the approximate distribution� �a	b� � 
� 	This condition is desirable even if one
has no philosophical qualms with a negative distribution of particles� A background
distribution of particles that goes negative for some velocities can lead to spurious
bump�on�tail instabilities��

����� Taylor�Series Approximation

The simplest possible closure for the n�moment system 	����� would evolve the �rst n
equations and set the nth moment to zero� gn	t� � 
� where it arises in the 	n� ��st
equation� �The closure function is simply F 	g�� � � � � gn��� � 
� The solution of the
truncated system�

ga�	t� �
n��X
j��

	�i�j
D
bj
E tj
j#
� 	�����

is a Taylor�series approximation to the true response 	����� This series converges to
the correct answer for any �xed time t as n � �� For a �xed number of moment
equations� however� the approximate solution behaves horribly for large t� blowing up
instead of decaying to zero� The truncated system has no approximate distribution�
since the Laplace transform of the response does not exist�
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����� Cumulant�Discard Approximation

Another commonly used approximation scheme is found by assuming that the nth
cumulant average is zero� hbny	t�ic � 
� Cumulant averages for two variables b and y
are de�ned by identifying coe�cients of powers of 
 and � in the series expansion of
the equation

hexp	
b � �y�i � exp

�� �X
j�k��


j

j#

�k

k#

D
bjyk

E
c

�A 	�����

	Kubo ������ One is interested in moments and cumulants that are �rst order in y
such as gn � hbnyi� The �rst derivative of the cumulant de�nition 	����� with respect
to � evaluated at � � 
 is the expression

hy exp	
b�i �

�� �X
j��


j

j#

D
bjy

E
c

�A exp

�� �X
j��


j

j#

D
bj
E
c

�A � 	�����

which relates the moments and cumulants that are �rst order in y� Using this de�ni�
tion� one can obtain closure approximations for an arbitrary number of moments�

g�	t� � hbi g�	t��
g�	t� �� hbi g�	t� �

�D
b�
E
� � hbi�

	
g�	t�� 	���
�

g�	t� �� hbi g�	t� �
�
�
D
b�
E
� � hbi�

	
g�	t� �

�D
b�
E
� �

D
b�
E
hbi� � hbi�

	
g�	t��

g		t� �� hbi g�	t� �
�
�
D
b�
E
� �� hbi�

	
g�	t� �

�
�
D
b�
E
� ��

D
b�
E
hbi � �� hbi�

	
g�	t��

�

D
b	
E
� �

D
b�
E
hbi� ��

D
b�
E
hbi� � �

D
b�
E� � �� hbi	

�
g�	t��

���

For centered Gaussian distributions� the only nonzero cumulant is the second�order
cumulant� so cumulant expansions work very well when the actual PDF is nearly
Gaussian� Kraichnan 	����� illustrated the behavior of the cumulant discard closure
on the stochastic oscillator problem by considering the fourth�cumulant closure� which
takes the form

g		t� � �g�	t�� �g�	t�� 	�����

when the frequency b has a Gaussian distribution 	���
�� For the closed system
containing this closure and the �rst three moment equations 	������ the lowest moment
evolves as

ga�	t� �
�

�

�
	� �

p
�� cos	t

q
� �

p
�� � 	� �

p
�� cos	t

q
� �

p
��


�

	�����
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Unlike the simple closure that yields a power series� this approximation gives a so�
lution that at least remains bounded for t � �� Also� the error from the exact
solution 	����� as t� 
 is O	t
� for the fourth�cumulant closure instead of the O	t	�
error that one obtains from the simple fourth moment closure g		t� � 
� This closed
system has a non�negative approximate distribution that can be written as the sum
of delta functions�

�a	b� �
� �p�

��

�
�	b�

q
� �

p
�� � �	b �

q
� �

p
��



�
� �

p
�

��

�
�	b�

q
� �

p
�� � �	b�

q
� �

p
��


�

	�����

which is quite unlike the true continuous Gaussian distribution�
Several results of the cumulant closure approach in the aforementioned case$

realizability� bounded solutions� and higher�order accuracy as t� 
$arise because a
Gaussian distribution of frequencies was assumed� For a Gaussian distribution 	���
�
of frequencies� the �rst�order cumulant equation 	����� becomes

�X
j��


j

j#

D
bjy

E
c

� hy exp	
b�i exp	�
����

�
D
y exp��	
�

p
��	b�

p
��� 	
�

p
����

E
�

�X
j��


j

j#
��j��

D
Hj	b�

p
��y

E
�

	�����

where Hj is the jth Hermite polynomial de�ned in Table ���� 	The exponential
generating function for Hermite polynomials�

exp	�xt� t�� �
�X
j��

tj

j#
Hj	x�� 	�����

is used to obtain this result�� Therefore� the cumulant averages can be written as

hbnyic � ��n��
D
Hn	b�

p
��y

E
� 	�����

The Hermite polynomials Hn	x�
p

�� are also the orthogonal polynomials with re�
spect to the weight function given by the Gaussian distribution� For a Gaussian
distribution� therefore� the nth cumulant�discard closure is equivalent to setting the
nth orthogonal�polynomial moment to zero� Realizability and bounded solutions for
systems closed by truncation in orthogonal�polynomial moments follows from the
connection to the physical mass
spring system demonstrated in Section ������ The
higher�order accuracy as t � 
 for orthogonal polynomial moment truncation is a
simple corollary of the asymptotic behavior of this form of closure demonstrated in
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Result �� However� note that for non�Gaussian distributions the cumulant moments
will be di�erent in general from the orthogonal polynomial moments� Thus� the
cumulant�discard approach should not be expected to produce bounded solutions in
general�

One can easily construct examples where the cumulant�discard procedure fails�
Consider a distribution with large kurtosis 	hb	i�hb�i���

�	b� �
�

���
p

�	

�
��

�
exp	��x����� � ��
 exp	��x��



� 	�����

which has moments� hbi � 
� hb�i � �� hb�i � 
� hb	i � ��� and so on� Using the
fourth�cumulant closure for this example �g		t� � �g�	t� � �g�	t� in this case gives
the approximate response

ga�	t� �
�

�
cos	

p
�t� �

�

�
cosh	t�� 	�����

The approximation in this case blows up exponentially as t��� and only matches
the true solution as t� 
 to O	t	��

����� Pad�e Approximations

Pad�e approximation refers to the use of ratios of polynomials to approximate func�
tions� They are a standard tool in analysis that can often give uniformly excellent
approximations to functions even in situations where series approximations are diver�
gent� The monographs of Baker 	����� and Baker and Graves�Morris 	����� provide
an excellent overview of Pad�e theory and are the source of the basic results and
notation used in this thesis�

De�nition �
Suppose a function f	z� has a power series f	z� � c� � c�z � c�z

� � � � � � The L�M
Pad�e Approximant to f is a ratio of polynomials

�L�M  f 	z� �
Q�L�M �	z�

P �L�M �	z�
	�����

such that Q�L�M �	z� is a polynomial of degree at most L� P �L�M �	z� is a polynomial of
degree at most M � and the �rst L�M � � coe
cients in the series for �L�M  � f	z�
are zero� Pad�e approximants to an asymptotic series f	w� � c� � c�w

�� � c�w
�� � � � �

are obtained by taking z � ��w in the de�ning equation �����	�

One expects to be able to ful�ll the L�M �� conditions required to match the series
since Q�L�M �	z� has L�� coe�cients� P �L�M �	z� has M �� coe�cients� and one degree
of freedom is lost since the ratio is taken� It is possible with this de�nition for the
Pad�e approximation to fail to exist in some cases�
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Kraichnan 	����� obtains interesting Pad�e approximations to the response func�
tion by considering the Laplace transform of the moment equations 	������

	�i� � 
�g�	�� � ig�	�� � ��

	�i� � 
�g�	�� � ig�	�� � hbi �
	�i� � 
�g�	�� � ig�	�� �

D
b�
E
� 	���
�

���

Upon expanding in inverse powers of � � i
� one easily obtains the asymptotic series
solution

g�	�� � i
�X
j��

hbji
	� � i
�j��

� 	�����

which can be divergent for distributions of interest�
For example� consider the Gaussian case with the distribution in Eq� 	���
�� The

exact response is

g�	�� � �iZ�	� � i
��
p

���
p

�� 	�����

and the asymptotic series 	����� is divergent for all choices of � and 
 in this case�
The N�N Pad�e approximations to g��

���� g 	�� � i
	� � i
���

�
�

���� g 	�� � i
	� � i
���

�� 	� � i
���
�

���� g 	�� � i
	� � i
��� � 	� � i
���

�� �	� � i
���
� 	�����

���

are equivalent to the solutions obtained using the cumulant�discard closure 	���
�
for the Nth moment� The diagonal Pad�e series �
�
 � ���� � ���� � � � � corresponds to
convergents of a Jacobi�type continued fraction� In this case the continued fraction
expansion

g�	�� �
i

� � i
 � �

� � i
 � �

� � i
 � �

� � i
 � � � �

	�����
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converges for 
 � 
� but diverges for 
 � 
 	Kraichnan ����� Wall ������ The
Pad�e series is therefore an improvement over the asymptotic series� Many physical
problems of interest� however� are analogous to the low�dissipation limit 
 � 
� where
even the Pad�e series converges increasingly poorly�

The Pad�e and asymptotic series are derived in the high�frequency � � � limit�
This limit is matched naturally for the closed moment system 	����� as increasing
numbers of moments are taken� The cumulant discard approximation and the Pad�e
approximation discussed here match the exact response extremely well in the high�
frequency limit� but fail to capture the long�time decay due to phase mixing� The
Landau��uid closures achieve highly accurate response functions by generalizing to
two�point Pad�e approximations that are constructed by matching in the low�frequency
limit � � 
 as well as the high�frequency limit � ���

����� Random�Coupling Model

An alternate approach suggested by Kraichnan 	����� is to consider expansion in
powers of the response g�	�� itself� For the Gaussian case� there is evidence that the
continued fraction expansion

ig�	�� �
g�	���

� �
g�	���

� �
�g�	���

� �
��g�	���

� � � � �

	�����

converges even in the limit 
 � 
� and therefore provides more robust closure approx�
imations� The lowest�order approximation�

ig�	�� � g�	���� 	�����

is equivalent to the random�coupling approximation of Kraichnan 	������ This closure
has a corresponding non�negative approximate distribution

�a	b� �
�

	

q
�� 	b���� 	�� � b � ��� 	�����

and gives the time response

g�	t� � J�	�t��t� 	�����

where Jn denotes the standard Bessel function of the �rst kind� One obtains a re�
sponse that decays to zero as t � � with this approximation at the expense of
introducing a nonlinear closure�
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Figure ���� Response functions obtained from several approximation schemes for the
stochastic oscillator with Gaussian�distributed b and � � �� Results are displayed for
the fourth�order Taylor�series approximation ����	
� the fourth�cumulant discard closure
�����
� and the random�coupling approximation ����

� The random�coupling approxima�
tion matches the exact response to O�t�
 as t� ��

����	 Hammett
Perkins Closure

Consider a generalization of the cumulant�discard closure to a linear closure with
arbitrary coe�cients� The simplest such closure is the a linear closure for the �rst
moment�

g�	�� � A�g�	��� 	�����

�For constant A�� the closure is the same in the time domain� g�	t� � A�g�	t�� In
reality� the �rst moment g�	�� is not simply a multiple of g�	��� so this closure can�
not be exact� The advantage to constant linear closures of this form is that they are
easily implemented in numerical simulations� �Replacing A� with � �

p
��Z	��

p
��

in Eq� 	����� results in a closure that matches the response exactly� However� imple�
menting such a closure in a numerical simulation would require expensive computa�
tions of time�history integrals� Using the Laplace transformed stochastic oscillator
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Figure ���� Response functions obtained using one� two� three� and four moment Hammett�
Perkins closures compared to the exact time response for the stochastic oscillator with
Gaussian�distributed b and � � ��

equations 	����� in the limit 
 � 
� one easily �nds the response for this closure�

ga�	�� � i
�

� �A�
� 	���
�

We would like to choose the closure coe�cient A� so that this approximate response is
a good estimate of the exact response 	������ Hammett and Perkins 	���
� considered
linear closures of this form where the coe�cients are chosen by matching the exact
response in the � � 
 limit as well as � ��� 	The structure of moment equations
causes the response to match in the high�frequency limit as more moment equations
are added� and the low�frequency limit gives conditions that cause the coe�cients to
capture the physics of Landau damping�� The resulting closures yield linear responses
that match the exact response well simultaneously at all frequencies� For the �rst

moment closure here� taking A� � �i
q

��	 matches the exact response 	����� at

� � 
� �Alternately� one could derive this closure by considering the low frequency
limit of the exact closure coe�cient � �

p
��Z	��

p
��� 

To illustrate the method more generally� consider the fourth�moment closure

g		�� � A�g�	�� � A�g�	�� � A�g�	�� � A�g�	��� 	�����
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For the Gaussian case with 
 � 
� this closure results in a Pad�e approximation to the
exact response�

ga�	�� � i
�� � � �A�	�� � ���A�� �A�

�	 �A��� �A��� �A�� �A�
� 	�����

The coe�cients 	A�� A�� A�� A�� can now be chosen to try to approximate the true
response 	������ Matching the asymptotic series 	����� to O	��
� gives conditions on
the coe�cients that yields A� � ��� A� � 
� A� � �� A� � 
� which is just the fourth�
cumulant closure 	������ �Note that the form of Eq� 	����� already matches the
asymptotic series to O	��	� for any choice of coe�cients� so matching to O	��
�
gives four conditions� If one obtains two conditions by matching the response to
O	�
� at � �� and two conditions from matching to O	�� at � � 
� one �nds the
closure approximation

g		�� � 	� � ����g�	�� � 	� � ����g�	���
p

�D�i �g�	��� �g�	�� �
	�����

where D� � �
p
	�	�	 � �� and �� � 	�� � �	��	�	 � ���� which corresponds to

the four�moment Landau��uid closure� This closure has a non�negative approximate
distribution and the time response is almost indistinguishable from the exact response�
	See Fig� ����� The approximate response

ga�	�� �
i

� � �

� � �

� � � � ���

� � i
p

�D�

	�����

is obtained using this closure� and is written here in continued fraction form for
comparison with the expansion 	������ The Hammett
Perkins closures for one� two�
three� and four moments are plotted in Fig� ����

One should note that there are some philosophical di�erences between the Hammett�
Perkins Landau��uid closure approach and the Kraichnan random�coupling approx�
imation� The higher order Landau��uid models �t the exact response somewhat
better� particularly in the long�time decay where the random�coupling model has
only an algebraic decay� In part� the improved �t arises because the derivation of
the Landau��uid approximation uses information known about the exact solution�
The random�coupling model was derived without reference to the exact response�
and is intended for more complicated problems where the distribution is most likely
not Gaussian� While the Landau��uid closure coe�cients were chosen by �tting an
idealized problem where the exact solution is know� it also is intended for use in
more complicated problems where the exact solution is no longer known �such as
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happens when E�B nonlinearities are added to the Vlasov Eq� 	���� � The Landau�
�uid closure is intended to model a subset of the physics known to reside in the
more complicated problems� As we will �nd� the Hammett�Perkins closure works not
only if the underlying distribution function is Gaussian� but it works in more general
cases where the distribution function is su�ciently smooth that it can be written as
a Gaussian times a few low order Hermite polynomials 	no more than the number of
moments being used��

��� Orthogonal Polynomials

The stochastic variable y	t� is a continuous function of the frequency variable b and
cannot therefore be fully characterized by a �nite set of moments� Moment closure
schemes attempt in some sense to estimate the e�ects of the missing or unresolved
information� There are several interesting questions that one might ask� How does one
estimate the PDF� given a �nite set of moments% Is there a sensible de�nition of the
!unresolved scales� for this problem% What is a good estimate for the unresolved scales�
given the observed moments% Note that answers to these questions can provide useful
moment closure schemes� However� as was seen in the previous section� closures can
be produced to �t the response functions without addressing any of these questions�

Expansions in orthogonal polynomials provide a natural translation from mo�
ments to underlying functions expressing those moments� Kraichnan 	���
� noted
that orthogonal polynomial expansions can be used to generate robust convergents
to spectral densities given moments� Several results concerning linear closures for
moment equations are readily expressed in terms of orthogonal polynomials�

����� De�nition

Orthogonal polynomials are de�ned with respect to a positive weight function w	x�
for which the moments�

mn �
Z �

��
xnw	x� dx� 	�����

exist� It will be assumed that m� � � since w	x� has the meaning of a probability
density function� �The weight function w	x� must decay faster than algebraically as
jxj � � for all the moments to exist� 

De�nition �
Orthonormal polynomials with respect to a given weight function w	x� are de�ned
to be the polynomials in x�

Pn	x� � Pn�� � Pn��x � Pn��x
� � � � �� Pn�nx

n� 	�����
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Polynomial De�nition an bn cn

Hermite Hn	x� � 	���n exp	x��
dn

dxn
exp	�x�� � 
 �	n� ��

Chebyshev Un	x� �
sin�	n � �� arccos	x��

sin�arccos	x��
� 
 �

Legendre Pn	x� �
�

�nn#

dn

dxn
	x� � ��n

�n � �

n



n� �

n

Laguerre Ln	x� �
�

n#
exp	x�

dn

dxn
exp	�x� ��

n

�n � �

n

n� �

n

Table ���� De�nitions of commonly used orthogonal polynomials and recursion coe�cients
such that Pn�x
 � �anx� bn
Pn���x
� cnPn���x
� Notation and normalizations are taken
from Gradshteyn and Ryzhik �����
�

that satisfy the orthogonality conditionsZ �

��
Pn	x�Pm	x�w	x� dx � �nm� 	�����

�The Kronecker delta function is de�ned by �nm � � if n � m and �nm � 
 otherwise�	

Orthonormal polynomials can be shown to satisfy a three�term recurrence relation�

Pn	x� � 	anx � bn�Pn��	x�� cnPn��	x�� 	�����

The recurrence coe�cients are related to the leading coe�cients of the polynomials
through

an �
Pn�n

Pn���n��
� bn � an

�
Pn�n��

Pn�n
� Pn���n��

Pn���n��

�
� cn �

an
an��

� 	�����

����� Orthogonal Polynomial Expansion

Orthogonal polynomial moments of an arbitrary function f	x� are de�ned by

fn �
Z �

��
Pn	x�f	x� dx� 	���
�

The inverse transform from moments to the function f	x� is de�ned formally by

f	x� �
�X
j��

fjPj	x�w	x�� 	�����
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weight w	b� polynomial

Gaussian wG	b� �
�p
�	

exp	�b����
�p
n#�n

Hn	b�
p

��

Spring ws	b� �

���
�

	

q
� � 	b���� 	jbj � ���


 	jbj � ��
Un	b���

Water Bag ww	b� �

�
��� 	jbj � ���

 	jbj � ��

p
�n � �Pn	b�

Exponential we	b� �

�
exp	�b� 	b � 
��

 	b � 
�

Ln	b�

Table ���� Orthonormal polynomials for weights corresponding to some PDFs of interest�

The form of these transforms is slightly asymmetric because one is expanding un�
derlying distributions that decay rapidly for jxj � � in terms of moments that are
polynomials� which diverge for large x� The weight function w	x� appears in the
moment expansion 	����� to give the basic form of the modeled distributions�

It is possible to �nd functions whose orthogonal moment expansions do not con�
verge pointwise or have poor pointwise convergence� Discontinuous functions� for
example� will exhibit the ringing phenomenon observed in Fourier series expansions
around discontinuities� The moment expansion does converge in an appropriately
de�ned Hilbert space� however� The inner product

hf� giw �
Z �

��
f	x�g	x�w	x��� dx 	�����

and corresponding norm k � kw de�ne a Hilbert space of distribution functions Hw� If
the set of functions En � Pn	x�w	x� form a complete basis for Hw� then the Fourier
series

f �
�X
j��

hEn� fiw En 	�����

converges for all f � Hw �Theorem ���� of Conway 	���
� � Kraichnan 	���
� demon�
strates completeness for a broad class of w	x�� The moment expansion 	����� can
therefore be viewed as an orthonormal series expansion in Hw� since from Eqs� 	���
�
and 	����� the expansion coe�cients are given by fn � hEn� fiw�
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��� Orthogonal Moments of the Stochastic Oscil�

lator

The closure problem for stochastic oscillator moments is best studied in terms of poly�
nomial moments� where the polynomials are orthogonal with respect to the underlying
PDF� The main advantage to this orthogonal�polynomial expansion is demonstrated
in Result �� where it will be shown that matching in the high�frequency limit is
simply accomplished by setting closure coe�cients to zero� As well� projection onto
orthogonal functions preserves the anti�Hermitian nature of the operator ib� so simple
truncation at least gives solutions that are bounded in time�

Consider now the stochastic oscillator problem with underlying distribution writ�
ten as an orthogonal�polynomial expansion about some positive weight function w	b��

�	b� �
mX
j��

CjPj	b�w	b�� 	�����

�This general form of the problem is useful when the results are carried over to the
�uid moment problem where the initial conditions are of a form � vfM	v�� which is
a polynomial multiplied by a positive density function� The orthogonal�polynomial
moments are de�ned by

�n	t� � hPn	b�y	t�i � 	�����

where Pn	b� are taken to be the orthonormal polynomials with respect to the same
weight function w	b�� The general linear closure for the nth orthogonal�polynomial
moment is then written as

�n	t� �
n��X
j��

Aj�j	t�� 	�����

����� Equivalence to bn Moments

The �rst n polynomial moments f��	t�� � � � � �n��	t�g contain exactly the same infor�
mation as the �rst n moments fg�	t�� � � � � gn��	t�g� so the resulting linear systems
are equivalent� The translation from the problem with bn moments gi	t�� underlying
distribution �	b� �

Pm
j�� C

�
jb

jw	b� and closure gn	t� �
Pn��

j�� A
�
jgj	t� to the prob�

lem with polynomial moments 	������ distribution 	������ and closure 	����� can be
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accomplished through ������
��	t�
��	t�

���
�n��	t�

������ � Dn��

������
g�	t�
g�	t�

���
gn��	t�

������ � 	�����

h
C� C� � � � Cm

i
�
h
C �
� C �

� � � � C �
m

i
D
��
m � 	�����h

A� A� � � � An ��
i

� dnn
h
A�� A�� � � � A�n�� ��

i
D
��
n � 	�����

where the matrix of coe�cients D is de�ned by

Dk �

������
P��� 
 � � � 

P��� P��� � � � 


���
���

� � �
���

Pk�� Pk�� � � � Pk�k

������ � 	���
�

����� Exact Solution

Upon taking orthogonal�polynomial moments of the exact solution 	���� in the limit

 � 
� one obtains the general response

�k	t� �
mX
j��

Rkj	t�Cj� 	�����

Rkj	t� �
Z �

��
e�ibtPk	b�Pj	b�w	b� db� 	�����

The �rst result obtained here shows that the general element of the transformed
response matrix

Rkj	�� �
Z �

�
ei�t

Z �

��
e�ibtPk	b�Pj	b�w	b� db dt 	�����

can be expressed in terms of the basic response element R��	��� the orthogonal poly�
nomials Pn	��� and a set of numerator polynomials Qn	�� de�ned here�

De�nition �
Given an orthonormal set of polynomials Pn	x� satisfying the recurrence relation
�����	� the conjugate or numerator polynomials Qn	x� are de�ned to be the set
of polynomials satisfying the same recurrence relation �����	� with Q�	x� � 
 and
Q�	x� � a��

Note that the polynomial Qn	x� has degree n� �� whereas Pn	x� has degree n� It
is easily shown that

Pn��	x�Qn	x�� Pn	x�Qn��	x� � an� 	�����
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This identity is easily proved using induction� the recurrence relation 	������ and the
fact cnan�� � an� which follows from orthonormality� In general there is no guarantee
that the conjugate polynomials Qn corresponding to common orthogonal polynomials
can be expressed simply� Two exceptions worth mentioning are the Chebyshev poly�
nomials Un	x�� for which Qn	x� � Un��	x���� and the Hermite polynomials� which
can be de�ned along with their conjugates by

	d�d��n Z	�� � Hn	��Z	�� � Qn	��� 	�����

Lemma �
The response function R�j	t� has a Taylor series at t � 
 whose �rst j coe
cients
vanish� In other words�

R�j	t� � 
 � 
t � � � �� 
tj�� � cjt
j � � � � � 	�����

Proof� Upon evaluating the kth derivative of the response 	������ one �nds that���	���t�k R�j	t����t � 

�
����	���t�k Z �

��
e�ibtPj	b�w	b� db

����
t � 


� 	�i�k
Z �

��
bkPj	b�w	b� db�

	�����

By de�nition� Pj	b� is orthogonal to a complete set of polynomials with degree less
than j� so the right�hand side of Eq� 	����� is zero if k � j� �

An immediate corollary to this is that the �rst term in the asymptotic series of
the frequency response R�j	�� is O	��j���� In other words�

R�j	�� � i
ijj#cj
�j��

� i
ij��	j � ��#cj��

�j��
� � � � 	� ���� 	�����

This result follows from application of Watson�s lemma 	Bender and Orszag ����� to
the Laplace transform integral�

Lemma �
The frequency responses of the lowest moment �� are related to R��	�� by

R�j	�� � Pj	��R��	��� iQj	��� 	�����

Proof� From the recurrence relation 	����� it is easy to show that the response
de�ned in Eq� 	����� satis�es the recurrence relation

R��j	t� �

�
aji

�

�t
� bj

�
R��j��	t�� cjR��j��	t�� 	���
�

Taking the Laplace transform 	���� and integrating by parts gives

R��j	�� � 	aj� � bj�R��j��	��� cjR��j��	��� ian jR��j��	t�jt�� �
	�����



���� ORTHOGONAL MOMENTS OF THE STOCHASTIC
OSCILLATOR ��

Now R���	t � 
� � � and R��j	t � 
� � 
 for j � � from the previous lemma� The
recurrence equation 	����� therefore yields

R���	�� � �R���	��� i
�

R���	�� � P�	��R���	��� ia��

R��j	�� � 	aj� � bj�R��j��	��� cjR��j��	�� 	j � ���

	�����

The result follows from the fact that Pn and Qn satisfy the recurrence relation� �
From the asymptotic behavior of R�m	�� in Eq� 	����� one can see that the formula

for R�m	��� Eq� 	������ implies that

R��	��� i
Qj	��

Pj	��
� O



�

��j��

�
	� ���� 	�����

It turns out� therefore� that the ratios iQj	���Pj	�� are Pad�e approximations to the
asymptotic series of the response function�

In fact� this relation between orthogonal polynomials and the Pad�e approxima�
tions for this problem is a classical result of Pad�e theory� There is an intimate con�
nection between orthogonal polynomials� moments� and Pad�e approximations� Upon
exchanging the order of integration in the de�nition of the frequency response 	������
one �nds that

i

z
R��



��

z

�
�
Z �

��

w	b� db

� � zb
� 	�����

which is the de�nition of the Hamburger function for the measure w	b� db �Eq� 	����
of Baker and Graves�Morris 	����� � An elementary result in the theory of the Ham�
burger moment problem is that the denominators of the Pad�e approximations to this
function around z � 
 are just the orthogonal polynomials with respect to the mea�
sure w	b� db� The resulting Pad�e approximations are only guaranteed to converge
for z in regions of the complex plane that are separated from the real axis by some
minimum distance� Convergence for real z generally occurs only when a constant C
exists such that the distribution satis�es w	b� � 
 for jbj � C� and even then is only
guaranteed for jzj larger than some constant�

Result �
The general element Rkj	�� of the transformed response matrix is given by

Rkj	�� � Pmin	k� j�	��
�
Pmax	k� j�	��R��	��� iQmax	k� j�	��



�

	�����

Proof� Assume for the moment that k � j� The time response 	����� may be
rewritten

Rkj	t� � Pk	i���t�
Z �

��
e�ibtPj	b�w	b� db�

� Pk	i���t�R�j	t��
	�����
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Recall that the Laplace transform of 	i���t�n f	t� is just �n bf 	��� i�n��f	
�� � � � �
f �n���	
�� By lemma � the �rst j derivatives of R�j	t� vanish at t � 
� so the assump�
tion k � j implies that

Rkj	�� � Pk	��R�j	��� 	�����

The result then follows from lemma �� �
This expression for the exact response function is useful for deriving and evaluating

the approximate response� The notation

fPQgkj 	�� � Pmin	k� j�	��Qmax	k� j�	�� 	�����

helps to simplify the resulting expressions� The previous result becomes simply

Rkj	�� � Pk	��Pj	��R��	��� i fPQgkj 	��� 	�����

��	 Approximate Response

In matrix form� the closed linear system of orthogonal�polynomial moments becomes

iA

������
��	��
��	��

���
�n��	��

������ �

������������

C�
���
Cm



���



������������
� 	���
�

where

A �

�����������������

�� � b�
a�

�

a�

 � � � 


c�
a�

�� � b�
a�

�

a�
� � � 




c�
a�

�� � b�
a�

� � � 


���
���

���
� � �

���
A�

an

A�

an

A�

an
� � �

An��

an
� � � bn

an

�����������������
� 	�����

The fact that the initial distribution constants fC�� C�� � � � � Cmg enter the problem in
the equations for the �rst m moments only is a property of the orthogonal�polynomial�
moment expansion� The solution to this matrix problem

�k �
mX
j��

R
a
kj	��Cj 	�����



���� APPROXIMATE RESPONSE ��

de�nes the approximate response matrix Ra � �iA���
Several important questions can be considered� Is there a general procedure

for choosing the coe�cients fA�� A�� � � � � An��g for the n�moment system% Does
the approximate response converge% Does Rakj	�� � Rkj	�� as n � �% Does
R
a
kj	t� � Rkj	t� as n��% The approximate response functions Rakj	�� are Pad�e ap�

proximations in � and have poles in the complex plane� Causality requires that these
poles lie in the lower�half complex plane� and closures that give poles in the upper�
half complex plane will generate systems that are exponentially unstable� What is
the behavior of the poles of the approximate response function as a function of the
number of moments% The following sections will attempt to address these questions�

��	�� Form and Asymptotics of the Approximate Response

Result �
The coe
cients of the approximate response matrix Rakj	�� for the closed system of
n orthogonal�polynomial moments� Eq� �����	� are given by

R
a
kj	�� �� i fPQgkj 	�� 	�����

� iPk	��
fPQgnj 	���An�� fPQgn���j 	��� � � � �A� fPQg�j 	��

Pn	���An��Pn��	��� � � � �A�P�	��
�

Proof� Veri�cation that
Pn��

k�� iAmkR
a
kj	�� � �mj involves straightforward alge�

bra� Note that

cj
aj
fPQgj���l �

�
� �

bj
aj

�
fPQgj�l �

�

aj
fPQgj���l � �jl� 	�����

follows from the recurrence relation 	����� and the conjugacy relation 	������ �
As with the exact response� one can attempt to relate the general approximate

response to the basic response Ra��	��� which takes the form

R
a
��	�� � i

Qn	���An��Qn��	��� � � � �A�Q�	��

Pn	�� �An��Pn��	��� � � � �A�P�	��
� 	�����

Using the de�nition of fPQgkj � the general solution can be written as

R
a
kj	�� �Pk	��Pj	��Ra��	��� i fPQgkj 	�� 	�����

� iPk	��

Pj��
r��Ar �Pj	��Qr	��� Pr	��Qj	�� 

Pn	���An��Pn��	��� � � � �A�P�	��
�

From this form of the approximate response� it is easy to obtain the �rst major result
concerning the error in the response function de�ned by

�kj	�� � R
a
kj	��� Rkj	��� 	�����

Subtracting the exact response 	����� from the approximate response 	����� yields
the following result�
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Result �
For the orthogonal�polynomial moment system with closure� setting the �rst p closure
coe
cients to zero �A� � � � � � Ap�� � 
	 enables the errors in the response functions
corresponding to C�� � � � � Cp to be related to each other by the formula

�kj	�� � Pk	��Pj	�����	�� 	j � p�� 	�����

Fitting the basic response R��	�� well therefore ensures a good �t for all the re�
sponse functions Rkj	�� with j � p if the �rst p coe�cients are set to zero� Fitting
those components of the response function ensures that the response to distribu�
tions of the form �	b� � �C�P�	b� � � � � � CpPp	b� w	b� is modeled well� Increasing p
therefore enables one to uniformly approximate a greater variety of initial conditions�
Setting the �rst p coe�cients to zero also ensures a good �t of the basic response in
the � �� limit�

Result �
Setting the �rst p closure coe
cients to zero �A� � � � � � Ap�� � 
	 improves
the asymptotic �t of the approximate response function by a factor of ��p� The
approximate response behaves as

R
a
��	��� R��	�� � O



�

�n���p

�
	� ���� 	�����

Proof� The asymptotic result expressed in Eq� 	����� implies that Pj	��R��	���
iQj	�� � O	���j���� as � ��� The asymptotic behavior of the linear combination

�Pn	���An��Pn��	�� � � � � �ApPp	�� R��	��

� i �Qn	���An��Qn��	��� � � � �ApQp	�� � O



�

�p��

�
	� ���� 	���
�

is given by the worst term ApPp	��R��	�� � iApQp	��� The result follows using the
de�nition of Ra��	�� in Eq� 	����� after dividing Eq� 	���
� by the denominator of
R
a
��	��� �

Thus there are two bene�ts to setting the lowest closure coe�cients to zero� The
asymptotic response is improved and the approximate response models initial con�
ditions with more degrees of freedom� Why not simply take the maximum possible
choice p � n� which corresponds to moment truncation ��n	t� � 
 % The resulting
approximate response

R
a
��	�� � i

Qn	��

Pn	��
	�����

matches the exact response to O	����n���� as � ��� a signi�cant improvement over
truncation in bn moments� which leads to the Taylor�series approximation 	������
which matches the exact response to O	���n���� as � � �� The denominator of
this approximation� Pn	��� is an orthogonal polynomial with respect to a positive
weight function� and therefore has n zeroes on the real axis� This approximation
yields solutions that are oscillatory in time and fail to model the phase�mixing decay�
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��	�� Two�Point Approximation

The question remains how to choose the remaining coe�cients if some are to be
left nonzero 	p � n�� Matching in the � � � limit forces more coe�cients to be
zero� so some other part of the response function must be looked at� One is therefore
naturally led to consider generalized Pad�e approximants involving other limits� Multi�
point Pad�e approximations are sometimes called rational interpolants or Newton

Pad�e approximants� Various de�nitions exist for two�point approximants since one
point may be in�nite and there is a degree of freedom in how to split the total number
of matching conditions between the two points� The particular de�nition chosen here
corresponds to the problem at hand where the approximate response function is a
ratio of polynomials that naturally matches the exact response in the � �� limit�
and one wishes to �x coe�cients by matching at a point elsewhere�

De�nition �
Suppose a function f	z� has an asymptotic series and power series representation

f	z� �
c�
z

�
c�
z�

� � � � 	z ���� 	�����

f	z� � d� � d�	z � z�� � d�	z � z��
� � � � � 	z � z��� 	�����

The �N� q two�point Pad�e approximant to f is de�ned by

f �N� q� z� 	z� �
Q�N�q�z��	z�

P �N�q�z��	z�
� 	�����

where Q�N�q�z��	z� is a polynomial of degree N��� P �N�q�z��	z� is a polynomial of degree

N � f �N� q� z� 	z� � f	z� � O	z���N���q�� as z � �� and f �N� q� z� 	z� � f	z� �
O�	z� z��

q� as z � z�� �There are �N degrees of freedom in the choice of coe
cients
of the polynomials and �N terms have been matched in the two series�	

With the �rst p closure coe�cients set to zero� the approximate response

R
a
��	�� � i

Qn	���An��Qn��	��� � � � �ApQp	��

Pn	���An��Pn��	�� � � � � �ApPp	��
� 	�����

matches the exact response to order O	�n���p�� The approximate response therefore
becomes the �n� q� �� Pad�e approximant to the exact response for q � n� p if the q
remaining coe�cients can be chosen to match the �rst q terms of the Taylor series

R��	�� � r� � r�	� � ��� � r�	� � ���
� � � � � � 	�����

Upon expressing the polynomials in terms of 	� � ����

Pj	�� � Pj�� � Pj��� � � � �� Pj�j�
j

� P ��
j�� � P ��

j�� 	� � ��� � � � � � Pj�j	� � ���
j �

	�����
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one obtains the matrix equation for the remaining coe�cients�

�BBBB�
������
r� 
 � � � 

r� r� � � � 

���

���
� � �

���
rq�� rq�� � � � r�

������
������
P ��
n���� P ��

n���� � � � P ��
p��

P ��
n���� P ��

n���� � � � P ��
p��

���
���

� � �
���

P ��
n���q P ��

n���q � � � P ��
p�q

������

�i

������
Q��

n���� Q��
n���� � � � Q��

p��

Q��
n���� Q��

n���� � � � Q��
p��

���
���

� � �
���

Q��
n���q Q��

n���q � � � Q��
p�q

������
�CCCCA


������
An��

An��
���
Ap

������

�

������
r� 
 � � � 

r� r� � � � 

���

���
� � �

���
rq�� rq�� � � � r�

������
������
P ��
n��

P ��
n��
���

P ��
n�q

������� i

������
Q��

n��

Q��
n��
���

Q��
n�q

������ � 	�����

De�nition �
Coe
cients fAn��� An��� � � � � Apg satisfying the � � �� conditions of Eq� �����	 will
be called the �n� q� �� closure� The approximate response functions obtained using

these closure coe
cients will be denoted by R
�n� q� �� 
kj 	�� and the response function

errors by �
�n� q� �� 
kj 	���

Pad�e convergents often provide excellent approximations even where the asymp�
totic series diverges� There are no general guarantees� however� that this type of
two�point Pad�e approximation converges or even gives reasonable results� There are
several things that can go wrong with the closures generated in this fashion� First�
coe�cients satisfying Eq� 	����� may fail to exist if the matrix is singular� Second� the
approximate response functions may have poles in the upper�half complex plane and
therefore give exponential instabilities in the time solution instead of phase�mixing
decay� Third� even if reasonable response functions are produced� they may fail to
match the exact response at points other than � � 
 and � � �� The convergence
properties of this approximation scheme will be studied numerically in the following
sections for several common distributions�

��
 Convergence of the Two�Point Approximation

Closure

As will be demonstrated in the next chapter� this two�point approximation closure is
a generalization of the Landau��uid closure of Hammett and Perkins 	���
�� Proof of
convergence of the linear theory for increasing numbers of moments does not exist for



��	� CONVERGENCE OF THE TWO�POINT APPROXIMATION
CLOSURE �


Figure ���� The Gaussian distribution and mass�spring distribution� Both distributions
have mean � and variance ��

the �uid closure problem� Here numerical evidence of convergence for these closures
is presented for the two background distributions plotted in Fig� ����

There is no guarantee that these closures give reasonable solutions for arbitrary n�
q� and ��� For the subset of closures with q � �� however� the two�point approxima�
tion closure yields exponentially decaying solutions that correspond to non�negative
approximate distributions�

Result �
For the general orthogonal moment linear system with positive underlying probability
distribution w	b� � 
� the �n� �� �� closure corresponds to a non�negative approximate
distribution and the resulting approximate response functions have poles that all lie
in the lower half plane�

Proof� The coe�cient for the �n� �� �� closure is determined by the equation


 � jR��	��� R
a
��	��j����

� R��	���� i
Qn	����An��Qn��	���

Pn	����An��Pn��	���
� 	�����

From the form of the response 	����� one can show that Re�R��	��� � 	 w	b�jb��� so
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taking the real part of this equation results in

�Ai
n���an � 	w	���

�h
Pn	����Ar

n��Pn��	���
i�

�
h
Ai
n��Pn��	���

i��
�
	���

�

�The conjugacy condition 	����� has been used and the coe�cient has been split into
real and imaginary parts as An�� � Ar

n�� � iAi
n��� The right�hand side of this

equation is positive and nonzero because the zeroes of Pn and Pn�� are interlaced
due to orthogonality� The quantity �Ai

n���an must therefore be positive� Using the
de�nition of the approximate distribution from Eq� 	����� one can show that

�a	b� �
�

	

�Ai
n���an

�Pn	b��Ar
n��Pn��	b� 

� � �Ai
n��Pn��	b� 

� � 	���
��

Hence� the approximate distribution for this system is de�ned and positive for all b�
The evolution of the sum of squares of the moments

d

dt

n��X
j��

j�j	t�j� � �
Ai
n��

an
j�n��	t�j� � 	���
��

can be derived for the closed linear system 	���
� assuming q � �� Any pole of the
response in the upper�half complex plane would imply an exponentially growing solu�
tion� which cannot satisfy Eq� 	���
�� with Ai

n���an negative� The squared absolute

value�
h
Pn	���Ar

n��Pn��	��
i�

�
h
Ai
n��Pn��	��

i�
� of the denominator of the approxi�

mate response Ra��	�� is nonzero because An�� has nonzero imaginary part and zeroes
of Pn cannot coincide with zeroes of Pn��� Therefore� all poles of the approximate
response function must lie o� the real axis in the lower�half complex plane� �

Thus for completely arbitrary background distribution� the closures with q � � are
guaranteed to correspond to non�negative approximate distributions for any number
of moments n� The q � � set of closures may fail to converge or converge slowly�
however� There is no general theorem for closures with q � �� As an example�
consider the pathological bi�Gaussian density

w	b� �
�p
�	

�
�

�
exp	�b���� � � exp	��
�b����



� 	���
��

The behavior of the response at � � 
 is dominated by the narrow Gaussian containing
less than half the total density� The ��� �� 
 closure for this distribution was computed
numerically and found to have a pole at � �
���i and therefore gives non�physical
exponentially growing solutions and violates causality� Note that this distribution
was constructed to behave strangely at the point �� where the matching was done
to obtain closure coe�cients� For the two typical distributions considered in the
following sections� all of the closures had poles con�ned to the lower half of the
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�n� q� �� closure

��� �� 
 hbyi � �i
s

�

	
hyi

��� �� 
 hb�yi � hyi � �i
r
	

�
hbyi

��� �� 
 hb�yi � � hbyi � �i�
s

�

	
	hb�yi � hyi�

��� �� 
 hb�yi � � hbyi � �i
p

�	

�� 	

�D
b�y

E
� hyi

	
�

�	 � �

� � 	
hbyi

��� �� 
 hb	yi � � hb�yi� � hyi � �i�
�

p
�	
�D
b�y

E
� � hbyi

	

��� �� 
 

hb	yi � � hb�yi� � hyi � �ip�	
�

�	 � �

�D
b�y

E
� � hbyi

	
�

�� � �	

�	 � �

�D
b�y

E
� hyi

	
Table ���� Two�point approximation closures assuming a Gaussian weight function for
some small values of n and q expressed in terms of the original bn moments�

complex plane� This example serves as a warning� however� that it is possible to
obtain unphysical results if one is not careful� Alternatively� one could expand this
weight function about a Gaussian by

w	b� 	 exp	�b����
mX
j��

CjHj	b�
p

��� 	���
��

The two�point closure for the Gaussian case can then be applied to this system� By
result � the n moment closure with a given q would correspond to allowing up to
m � n� q Hermite polynomials in the approximation to w	b�� This procedure would
retain the advantages that will be observed for the Gaussian case 	causality and fast
convergence�� In principle� any arbitrary distribution function w	b� could be thus
represented� though the convergence rate with n may be very slow in some cases�

The �tness of a given closure can be measured by how accurately the response
function for the closed system matches the exact response� There are several choices�
however� of how to measure the discrepancy� Clearly a good �rst requirement on the
closed system is that the response function has all its poles in the lower�half complex
plane� This requirement ensures that the time response decays as t � �� As a
second measure of �tness� the maximum error of the frequency response along the
real axis is calculated in the following section� In applications of these closures in
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Figure ���� The maximum absolute error between the approximate response function and
the exact response along the real axis for various two�point closures �n� q� �� in the Gaussian
case is plotted against the number of moments n in the approximate system� The dotted
lines are least�squares �ts through the points corresponding to various choices of q� the
number of times the response function is matched in the � � � limit� The slopes of these �ts
for q from � through � are approximately �������������������������������������������

plasma physics� one is interested in accurately obtaining the growth rates of unstable
modes� If the approximate response has no poles in the upper half complex plane�
then the maximum modulus principle 	Carrier et al� ����� pg� ��� guarantees that
the maximum error in the entire upper half plane is bounded by the maximum error
along the real axis� Therefore if pointwise convergence is demonstrated on the real
axis with increasing numbers of moments� the calculated growth rates for unstable
modes will converge�

����� Gaussian Case

The initial study of Landau��uid closures by Hammett and Perkins 	���
� consisted
essentially of application of this two�point approximation for a Gaussian distribution

wG	b� �
�p
�	

exp	�b����� 	���
��
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Figure ���� The exact response function R����
 for a Gaussian weight function �solid
lines
 and three of the two�point approximation closure response functions �dashed lines

corresponding to �n � �� q � ��� �n � �� q � �� and �n � ��� q � ���

This case is of primary interest in plasma physics where velocities are assumed to
have a Maxwellian distribution� so the frequencies kkv have a Gaussian PDF� The
exact response from Eq� 	����� is just

R��	�� �
�ip

�
Z	��

p
��� 	���
��

For the Vlasov equation the initial conditions 	which act as the distribution of fre�
quencies �	b�� are of the form bwG	b�� The appropriate response function to consider
is

R��	�� � �i
�
� �

�p
�
Z	��

p
��

�
� 	���
��

Provided closures with p � � are considered� however� the approximate response
errors are related by �Ra��	�� � R��	�� � ��Ra��	��� R��	�� �

Since the response function satis�es the symmetry R��	��� � R
�
��	��� it is natural

to consider �� � 
� in other words to match in the � � 
 limit� For reference� some
of the �n� q� 
 closures are listed in Table ��� in terms of the original bn moments�
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Figure ���� The locations in the complex plane of the poles of the approximate response
function are shown for several di�erent moment closures� In the top graph� where q is �xed
at �� the poles move towards the real axis with increasing numbers of moments� For a �xed
number of moments �n � �� in the lower graph
� the poles move away from the real axis as
q is increased�

The closures of Hammett and Perkins 	���
� correspond to the ��� �� 
 and ��� �� 
 
closures here�

The maximum error ���	�� for real � was computed for various closures and
plotted in Fig� ��� against the total number of moments n� The errors seem to
scale � n�C�q�� where C	q� is an increasing function of q� While the q � � closure
have been proven to produce causal response functions� they converge poorly with
increasing numbers of moments� the error scaling roughly as n���	�� A few of the
approximate response functions are plotted in Fig� ��� along with the exact response�
Compare the two responses from the q � � closures plotted with n � � and n � �

to see the nature of the slow convergence for q � �� The response from the n � �

closure oscillate more around the true solution� but is only a slight improvement over
that from the n � � closure� In contrast� the �n � �� q � � closure yields a response
function that is already very close to the exact answer�

The poles of the approximate response function are plotted in the complex plane
in Fig� ���� The upper plot shows poles for �xed q � � and three choices of n� The
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Figure ���� The maximum imaginary part of the poles of the �n� q� �� closure is plotted
against q�

p
n� All closures with � � q � n � �� are included in this plot�

poles move closer to the axis with increasing number of moments and spread out�
The lower plot shows poles for �xed n � �� with four choices of q� The poles move
away from the axis with increasing q� The response function appears to converge
uniformly on the real axis as n�� even though the poles move progressively closer
to the real axis� The distance of the closest pole to the real axis plotted in Fig� ���
was found empirically to scale as q�

p
n�

In summary� the main result obtained here is that there is strong numerical ev�
idence that for the Gaussian case the linear response functions obtained using the
two�point approximation closures converge with increasing numbers of moments� The
convergence rate depends on q� the number of times the response function is matched
in the � � 
 limit� Convergence is faster for larger q� For all the cases considered�
the poles lie in the lower�half complex plane� so the closures obtained in this fashion
all give causal behavior�

����� Spring Response

The semi�in�nite mass
spring system portrayed in Fig� 	���� is an interesting physical
model that can be used to illustrate the behavior of closures� With an in�nite num�
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M0 M1 M2

κ0 κ1 κ2

Figure ���� A simple one�dimensional semi�in�nite mass�spring system consisting of ob�
jects� each with mass Mj � connected by springs with spring constant �j � The displacement
of the jth mass xj�t
 is measured relative to an initial state where the springs exert no
forces�

ber of masses in such a system� there is a continuum of normal modes� so the system
exhibits phase�mixing behavior analogous to that in the stochastic oscillator prob�
lem� The connection between the general mass
spring system and the phase�mixing
problem in �uid moment equations with a Gaussian background was �rst illustrated
by Hammett et al� 	������ Here the case with uniform spring constants �j � � and
masses Mj � M is considered as well�

The displacements of the masses xj	t� and velocities vj	t� evolve according to the
equations

&x�	t� � v�	t��

M� &v�	t� � �� �x�	t�� x�	t� 

&x�	t� � v�	t��

M� &v�	t� � �� �x�	t�� x�	t� � �� �x�	t�� x�	t� � 	���
��

���

where &f	t� represents df�dt� This in�nite set of equations can be written in Hamil�
tonian form and describes a system that is reversible and conserves energy� At low
frequencies� however� this system can act like an irreversibly damped mass�

With the set of suitably normalized variables

��	t� � v�	t�� ��	t� � i

s
��
M�

	x� � x�� �

��	t� � �
s
M�

M�
v�	t�� ��	t� � �i

s
��
M�

	x� � x�� �

���
��� 	���
��

��j	t� � 	���j
s
Mj

M�
vj	t�� ��j��	t� � i	���j

s
�j
M�

	xj�� � xj� �
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M0 M1 M2

κ0 κ1

Figure ���
� The q � � closure from the stochastic oscillator problem corresponds to adding
a damping force proportional to the velocity of the last mass� This picture represents the
��� �� closure by attaching a viscous damper to the last mass�

the Laplace transform of the mass
spring system can be expressed in matrix form
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This system is similar in form to the general linear system of orthogonal�polynomial
moments� Eq� 	���
�� There can be a direct correlation for a choice of spring con�
stants and masses that correspond to the recursion coe�cients of the orthogonal
polynomials� For example� taking �j � 	�j � ��Mj and Mj � 	�j�#��j	j#��� a series
of increasingly sti�er springs and smaller masses 	Mj � ��

p
	j as j � ��� gives a

system of equations corresponding precisely to the Hermite moment case�
The mass
spring system provides a physical picture of the moment coupling prob�

lem� Typically one considers initial distributions that correspond to low�order mo�
ments� In the mass
spring system� such initial conditions correspond to perturbations
in the left�most masses and springs� As time evolves� the distribution of y	t� in the
stochastic oscillator goes to �ner scales in b and is therefore represented by higher�
order orthogonal polynomials� which !wiggle� more� In the mass
spring system� the
initial perturbation travels as a wave to the right to masses that represent higher�
order polynomials� Truncation at an odd term ���n��	t� � 
 in the mass
spring
system corresponds physically to cutting the nth spring and truncation at an even
term ���n	t� � 
 corresponds to stapling the nth mass to a �xed point in space� In
the truncated system� therefore� waves will re�ect o� the rightmost boundary and
return to the low moments� unlike the semi�in�nite system where waves are free to
carry their energy o� to in�nity�
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Figure ����� The maximum absolute error between the approximate response function and
the exact response along the real axis for various two�point closures �n� q� �� for the Mass�
Spring distribution is plotted against the number of moments n in the approximate system�
Dotted lines connect the closures for a given q� the number of times the response function
is matched in the � � � limit� For �xed q the approximation improves with increasing
number of moments n until n � �q� at which point the error increases with increasing n�

The q � � closure for an odd moment ��n��	t� � �iC��n	t� has the physical
interpretation of cutting the nth spring and adding a damping force proportional to
the velocity on the nth mass� The guarantee of Result � that solutions using the q � �
closure are exponentially damped in time has a simple physical interpretation here�
since the system conserves energy except for the damping term� which only removes
energy from the system� Selecting the size of the damping term by matching in the
� � 
 limit is analogous to impedance matching at the end of an electrical cable� The
chain of springs is a reactive system that is coupled to a dissipative element chosen
to minimize the re�ection of energy�

The Uniform Mass�Spring System

Consider now the case with uniform spring constants �j � � and masses Mj � M �
The o��diagonal elements in the matrix system� Eq� 	����
�� are then all �� This form
of the system corresponds to the recurrence relation for the polynomials Un	b��� that
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Figure ����� The exact response function R����
 �solid lines
 for the uniform mass�spring
system and three of the two�point approximation closure response functions �dashed lines

corresponding to �n � �� q � ��� �n � �� q � �� and �n � �� q � ���

are orthogonal with respect to the weight function

ws	b� �

���
�

	

q
�� 	b���� 	jbj � ���


 	jbj � ���
	������

which is plotted against a Gaussian in Fig� ���� This system provides an interesting
test of the two�point approximation closure since the exact response to an initial
velocity perturbation in the �rst mass�

R��	�� � v�	��� jv�	t�jt�� �
q

�� 	����� � i���� 	������

has two square�root singularities� �The square root is taken so that R��	
� � � and by
analytic continuation above the two cuts at �� and � in the complex plane� At large
�� the square�root term is imaginary and cancels the linear term to leading order so
that R��	�� � i��� Toroidal �uid closures must model response functions that have
square�root singularities 	Beer and Hammett ������

Again the exact response is symmetric� so the q low�frequency conditions are
computed by matching in the � � 
 limit� The maximum error along the real axis
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Figure ����� The locations in the complex plane of the poles of the approximate response
functions for the mass�spring system are shown for several closures where the best q has
been chosen� With increasing numbers of moments the poles move away from the real axis�
with the exception of the poles at the end� which move towards the points of square�root
singularity of the exact response function�

for the approximate responses is plotted in Fig� ���� against the number of momentsn�
Note the markedly di�erent behavior in this case� With �xed q� the number of times
the response is matched in the � � 
 limit� the response functions do not converge
with increasing numbers of moments n� For a given q� there appears to be an optimal
number of moments n � �q� beyond which the addition of extra moment equations
degrades the approximation� Another way of interpreting this graph is to say that
for a �xed number of moment equations n� convergence improves with increasing q
until q � n��� at which point matching additional times in the � � 
 limits does not
improve or degrade the convergence� The error does seem to scale as n��� however�
for a sequence of closures such that q � n��� so there can be convergence of the linear
theory�

Three of the approximate responses are plotted in Fig� ���� along with the ex�
act response for this system� The convergence behavior appears to be dominated by
the square�root singularity at � � � 	and � � ���� The case �n � �� q � � illus�
trates what goes wrong for q � n��� The asymptotic behavior of the approximate
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response penetrates past the square�root singularity and gives large errors at lower ��
Matching su�ciently often in the � � 
 limit gives more reasonable results as is
demonstrated by the �n � �� q � � closure� The square�root singularity prevents the
superb convergence obtained in the Gaussian case� however�

The poles of the response function are plotted in Fig� ���� for a sequence of
!optimal� closures where n � �q� With increasing numbers of moments� there are
some poles that move away from the real axis� Some of the additional poles move
towards the two square�root singularities at � � ��� It is reasonable to expect
that convergence to response functions with such singularities will require that the
approximate response function has poles near the singularities to model the non�
analytic behavior there� The series of poles for a given closure can be viewed as an
attempt to model the branch cuts leaving the singularities�

��� Summary

The issue of obtaining closures for equations evolving moments of the stochastic os�
cillator problem was considered here� This problem is easily solved exactly and mo�
ments exhibit phase�mixing decay� Simple truncation of the moment hierarchy leads
to unphysical behavior as t � �� the moments either increasing without bound
	the Taylor�series approximation� or oscillating forever 	for the cumulant�discard ap�
proach�� The random�coupling model is a simple nonlinear closure used in �uid
turbulence theories that yields decaying solutions�

A general linear closure has been introduced here� based on the Landau��uid
approach of Hammett and Perkins 	���
� to obtaining �uid moment closures for col�
lisionless plasmas� The n closure coe�cients for the n�moment system are computed
using conditions obtained by matching the response function for the closed moment
system to the exact response function q times in the � � 
 limit and n� q times in
the � �� limit� Results concerning the form of this closure are easily expressed for
closures written in terms of polynomial moments where the polynomials are orthog�
onal with respect to the underlying distribution� A given closure for n moments is
shown to match the linear response for background distributions that can be written
as a polynomial of order n� q in the frequency b multiplied by the given background
distribution�

There is strong numerical evidence that the linear response of the closed moment
system converges to the exact response for any choice of closure with increasing num�
bers of moments n� as long as there is some dissipation in the closure for the highest
moment and the underlying distribution function is su�ciently smooth 	i�e�� can be
represented as a Gaussian times a few low order Hermite polynomials�� Convergence
can be accelerated with a judicious choice of the closure dissipation� and is faster if
q scales with n� However� if the underlying distribution function contains small scale
features or sharp discontinuities 	so its expansion in terms of Hermite polynomials
requires high order polynomials�� then convergence may be very slow� and a very
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large number of moments would be required� In some examples with sharp features
in the distribution function� there was no convergence with n unless q also increased
proportional to n� The poles of the approximate response functions were found to lie
in the lower�half complex plane for a large number of choices of n and q�

Convergence of the response function of the closed moment system can become
somewhat complicated for some underlying distributions� This approach to comput�
ing closure coe�cients was applied to the semi�in�nite uniform mass
spring system�
which has a response function with two square�root type singularities� The response
functions had well behaved poles for all the cases considered� but it appears that
merely taking n�� does not yield converging response functions unless increasing
values of q are taken as well� 	The choice q � n�� appears to work well�� The conver�
gence properties of the semi�in�nite mass
spring system indicate that care must be
taken in any attempt to generalize toroidal gyro�uid equations to larger numbers of
moments� The linear kinetic response function in toroidal geometry has a square�root
type singularity that must be matched by the response of toroidal gyro�uid equations
	Beer and Hammett ������ In the toroidal case� the square�root branch cut is at � � 

and so the usual method of matching the Taylor series expansion of the response at
� � 
 doesn�t work� Thus� Beer and Hammett 	����� chose closure coe�cients to
minimize the total error over a range of � instead of only at � � 
�

��� Implication for Statistical Closures

The stochastic oscillator problem itself is merely a model problem� In the end� the
choice of closure used for a particular problem will involve many considerations� The
approach presented here is a natural one for application to �uid moment closures in
plasma physics where the underlying distribution is known and numerical implemen�
tation greatly favors the lack of time history in the closure� However� when deriving
closures for statistical moments in turbulence theories� one does not know ahead of
time what the underlying distribution is�

In general� little is known about the convergence properties of statistical moment
hierarchies in the study of turbulence� The linear results presented here are at least
tangentially signi�cant to the more general problem of nonlinear closures� The q � �
closures for example� introduce a damping term in the highest moment only� The
linear response for the q � � closures converges slowly for the Gaussian case and
does not converge at all for the Mass
Spring problem with increasing numbers of
moments even though information about the exact response is used in deriving the
closure coe�cient� For statistical closures in turbulence� where information about the
exact nonlinear response is unavailable� one might expect even weaker convergence
properties for similar closures that introduce only simple damping terms�
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Landau Fluid Equations

The Navier
Stokes equations for neutral �uids are highly e�ective at describing the
�ows of many gases and liquids under typical conditions� The short mean free path
and high collision rate in most cases ensures that� from a macroscopic point of view�
the particle distributions are very nearly Maxwellian� and the departures are well
modeled by simple viscosity terms� The very low collision rate in tokamak plasmas
leads to a breakdown of the standard Chapman
Enskog method for deriving the
plasma �uid equations of Braginskii 	������ Plasma waves� especially those driven
by temperature�gradient instabilities� can experience signi�cant collisionless damping
due to Landau damping� The approach to deriving plasma �uid equation by Hammett
and Perkins 	���
� was to derive the �uid closures by matching the linear kinetic
response of a collisionless �uid� The resulting equations conserve particles� momentum
and energy and at the same time accurately model the dissipation of electrostatic
waves due to Landau damping�

The relation between �uid moment closures and the statistical moment closures
considered in the previous chapter is illustrated by considering the one�dimensional
Vlasov equation� With an appropriate change of variables� the linearized Vlasov
equation is equivalent to the stochastic oscillator problem� The background particle
distribution in the Vlasov theory takes the place of the frequency distribution for
the oscillator problem� The results concerning general linear closures of stochastic
oscillator moments carry over to linear closures of �uid moments�

Orthogonal�polynomial �uid moments can be de�ned analogously to the orthogonal�
polynomial statistical moments� The natural background particle distribution is
Maxwellian� so Hermite �uid moments form the natural basis for studying the Vlasov
equation� The Hermite �uid moments are equivalent� in fact� to the coe�cients of the
Hermite series expansion of the Vlasov equation that has traditionally been used for
one�dimensional plasma simulation 	Armstrong et al� ���
�� The connection between
Hermite moments and cumulants is demonstrated for �uid moments as well�

Several insights can be gained from the transformations among coe�cients in the
series expansion of the Vlasov equation� �uid moments of the Vlasov equation� and

��
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statistical moments of the stochastic oscillator� Observations concerning the limita�
tions of truncated series expansions have implications for �uid moment systems that
evolve a �nite number of moments� On the other hand� the general dissipative closure
derived for �uid moments may be useful in applications to kinetic series solutions of
the Vlasov equation�

Deriving closures from linear theory does not fully determine the nonlinear form
of the closure� Closures with signi�cantly di�erent nonlinear features can be linearly
identical� Two such closures are introduced in this chapter� The optimal nonlinear
form of �uid closures is an interesting question that is only starting to be addressed�

��� Fluid Moments

Consider the one�dimensional kinetic theory of a distribution of particles at location z
with velocity v given by f	z� v� t�� The standard �uid moments� number density n�
mean velocity u� pressure p� heat �ux q� and general higher moments rn are de�ned
by

n	z� �
Z �

��
f	z� v� dv� n	z�u	z� �

Z �

��
vf	z� v� dv�

p	z� � m
Z �

��
�v � u	z� � f	z� v� dv� q	z� � m

Z �

��
�v � u	z� � f	z� v� dv�

r	z� � m
Z �

��
�v � u	z� 	 f	z� v� dv� � � �

rn	z� � m
Z �

��
�v � u	z� 	�n f	z� v� dv� 	����

where m is the particle mass� These moments are nonlinear functions of the particle
distribution as a result of their de�nition with respect to the mean velocity u	z��
To connect plasma kinetic problems with the stochastic oscillator moments� the vn

moments are de�ned by

Mn	z� �
Z �

��
vnf	z� v� dv� 	����

The �rst n moments in either formulation contain exactly the same information�
There is an algebraic transformation from either set of moments to the other given
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by

n	z� � M�	z��

u	z� �
M�	z�

M�	z�
�

p	z� � m

�
M�	z�� M�	z��

M�	z�

�
�
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�
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M�	z�M�	z�
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M�	z��

�
�
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�
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M�	z�
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M�	z�M�	z��

M�	z��
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M�	z��

�
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���

	����

which translates vn moments into �uid moments and by

M�	z� � n	z��

M�	z� � n	z�u	z��

M�	z� �
p	z�

m
� n	z�u	z���

M�	z� �
q	z� � �u	z�p	z�

m
� n	z�u	z���

M		z� �
r	z� � �u	z�q	z� � �u	z��p	z�

m
� n	z�u	z�	�

���

	����

which translates �uid moments into vn moments� These transformations are nonlin�
ear� A closure that is linear in �uid moments can therefore behave di�erently from a
closure that is linear in vn moments even if they are linearly equivalent� This di�culty
is discussed in Section ����

��� Vlasov Equation

The dynamics of particle motion along straight magnetic �eld lines is given by the
one�dimensional kinetic equation��

�

�t
� v

�

�z
� q

m

��	z� t�

�z

�

�v

�
f	z� v� t� � 


�

�v

�
v � vt

� �

�v

�
f	z� v� t��

	����

The model collision operator of Lenard and Bernstein 	����� is included� which models
collisions with a thermalizing background with collision frequency 
 and thermal
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velocity vt� In the limit of small potential perturbations� q� � mvt
�� the collision

term will dominate� so to lowest order the particles have a Maxwellian distribution�

f�	v� �
n�p
�	vt�

exp	�v���vt��� 	����

The potential � is related linearly to the distribution f	z� v� t� through Poisson�s
equation� so the resulting system is quadratically nonlinear�

Taking �uid moments of the Vlasov equation 	���� yields a hierarchy of �uid
moment equations�
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These equations are nonlinear as a result of the moment de�nition with respect to
the mean velocity� The vn moment equations�
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are linear equations and slightly simpler than the �uid moment equations� One very
nice feature of the �uid moment equations� however� is that the potential only appears
in one equation� the one for the velocity u� in contrast to vn moment equations where
it enters in every equation�

In Fourier space� the term v���z f	z� v� t� becomes ikvf	k� v� t�� which is analo�
gous to the iby	t� in the stochastic oscillator� Fluid moments can therefore experience
phase�mixing decay� since the frequencies kv are continuously distributed� Simple
truncation schemes applied to either of these moment hierarchies leads to unphysical
behavior� The truncation Mn	z� t� � 
 leads to a solution for the lower moments
that is essentially a truncation of the Taylor series representing the true solution� and
therefore blows up as t��� The �uid moment truncation q	z� t� � 
� on the other
hand� leads to a set of equations that conserves the total density� momentum and
energy and therefore has a solution that does not diverge at large times� Still� the
system fails to exhibit phase�mixing decay�
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Stochastic Oscillator Vlasov Equation
frequency b jkjv
moments gn	t� � hbny	t�i Mn	k� t� �

R�
�� vnf	k� v� t� dv

orthogonal functions Pn	b�w	b�
�p
�nn#

Hn	v�
p

�vt�
e�v���vt�p

�	vt�

frequency distribution �	b�
ike

m

�

�v
f�	v�

oscillator variable y	t��	b� Y 	k� v� t�

Response R��	�� R	��

Table ���� Equivalent concepts for the stochastic oscillator problem and the linearized
Vlasov equation�

Hammett and Perkins 	���
� obtained a dissipative closure model by matching the
response of the closed moment system with the linear response to a small potential
assuming the near�equilibrium density� f	z� v� t� � f�	v� � 'f 	z� v� t�� The Fourier
transformed� linearized Vlasov equation in the collisionless limit 
 � 
 is just�

�

�t
� ikv

�
'f 	k� v� t� �

q

m
ik�	k� t�

�

�v
f�	v�� 	�����

The response for this linear problem with the background Maxwellian de�ned in
Eq� 	���� can be written simply as

'n	k� �� � � qn�
mvt�

�	k� ��R	��� 	�����

where the Laplace transform t� � has been taken� the response function is given by
R	�� � � � �Z	��� and the normalized frequency

� �
�p

�jkjvt
	�����

is used�
This system is very similar to the stochastic oscillator equation 	����� To connect

the two problems� note that the solution to the linearized Vlasov equation 	����� can
be written as 'f	k� v� t� �

R t
�� Y 	k� v� t � t���	k� t�� dt�� where the Green�s function

Y 	k� v� � � is the solution to�
�

�t
� ikv

�
Y 	k� v� t� � 
� Y 	k� v� 
� �

q

m
ik

�

�v
f�	v�� 	�����
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This initial�value problem is essentially the stochastic oscillator problem 	����� The
frequency for this system is kv instead of b� The Green�s function Y 	k� v� t� corre�
sponds to y	t��	b�� the oscillator variable weighted by the frequency PDF� The driving
term 	q�m� ik� 	���v� f�	v� in the Vlasov equation corresponds to the distribution
of frequencies of the stochastic oscillator� For a Maxwellian� 	���v�f�	v� � vf�	v��
so the response function R	�� corresponds to the R��	�� response of the stochastic
oscillator with a Gaussian distribution of frequencies� The correspondence between
the two problems is summarized in Table ����

Note that for the stochastic oscillator problem the frequency variable b is the
same variable that appears in the distribution and the orthogonal polynomial expan�
sion� whereas the frequency variable kv in the Vlasov equation is di�erent from the
combination v�vt that appears in the distribution and the orthogonal polynomials�
This di�erence could be eliminated by transforming the time variable in the Vlasov
equation by � � kvtt� which results in the now dimensionless frequency v�vt� This
transformation does not quite work� however� since the phase�mixing decay should
occur in the limit t � ��� and negative wave numbers k e�ectively reverse the
direction of time with this transformation� The transformation of variables

� � jkjvtt� b �
k

jkj
v

vt
	�����

preserves the direction of time� The transformed Green�s function equation for the
linearized Vlasov equation with background Maxwellian becomes�

�
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q
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The solution to this equation is precisely the solution of the stochastic oscillator
problem with underlying distribution �	b� � b exp	�b����� 	Strictly speaking this
PDF is not a probability distribution� but the linear response theory developed in the
preceding chapter does not depend on the positivity of the underlying distribution��
The transformation from the stochastic oscillator problem to the linearized Vlasov
equation is summarized in Table ����

With the transformation 	����� it is possible to convert the stochastic oscillator
closures to �uid moment closures� The linear frequency in the Vlasov equation is
given by the combination kv� so an appropriate dissipative closure for �uid moments
should introduce damping on the order of jkjvt� which is a measure of the spread
of frequencies� Landau��uid closures involve operators in wave�number space that
are proportional to the absolute value of the wave number 	Hammett and Perkins
���
�� The jkj operator arises because the quantity k�jkj enters the transformation
of closures from the stochastic oscillator problem to �uid moments� The stochastic
oscillator moments are polynomials in b � kv�jkjvt� whereas the �uid moments involve
polynomials in v�
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��� Hermite Moments

Before relating the stochastic oscillator moment closures to �uid moment closures�
the de�nition of orthogonal�polynomial moments for the Vlasov equation will be
considered� Early studies of the Vlasov equation 	Weissglas ����� Engelmann et al�
����� Armstrong ����� Grant and Feix ����� Armstrong et al� ���
� used a series
expansion about the background Maxwellian in terms of Hermite polynomials in
velocity�

f	z� v� t� �
�p

�	vt�

�X
n��

an	z� t�
�p
�nn#

Hn	v�
p

�vt�e
�v���vt�� 	�����

The thermal velocity vt is taken to be a constant for now� This series expansion
represents the background distribution f�	v� with one nonzero term� a� � n�� and
therefore works well for problems with near�Maxwellian distributions�

Substituting this series expansion into the Vlasov equation 	���� yields evolution
equations for the coe�cients�
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This !kinetic� series solution of the Vlasov equation is in fact equivalent to the moment
approach� Using the orthogonality of the Hermite polynomials� the series coe�cients
in Eq� 	����� can be expressed as Hermite moments�

an	z� t� �
Z �

��

�p
�nn#

Hn	v�
p

�vt�f	z� v� t� dv� 	�����

The �rst n Hermite moments and the �rst n �uid moments contain exactly the same
information� since the polynomials f�� v� 	v � u�� � � � � 	v � u�ng span the same space
as fH�	v��H�	v�� � � � �Hn	v�g� Each Hermite moment can be expressed in terms of
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�uid moments of equal or lower order by
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and each �uid moment can be expressed in terms of Hermite moments of equal or
lower order by
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Thus� there is a nonlinear transformation from �uid moments to vn moments and
from �uid moments to Hermite moments� The transformation from vn moments to
Hermite moments is just the linear transformation to orthogonal�polynomial moments
discussed in Section ������ The theory from the previous chapter gives a systematic
approach to developing linear closures that yield good approximations to the linear
responses� As yet there is no theory to specify the nonlinear form of closures� leav�
ing ambiguity in the choice of closure� Note that a linear closure in �uid moments
translates to a nonlinear closure for Hermite moments and vice versa�

��� Nonlinear Aspect of Moment Closures

To demonstrate some of the nonlinear features of closures� two closures with the same
linear behavior are presented here� Consider the heat��ux closure
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of Hammett and Perkins 	���
�� where the k�jkj operator is understood to represent
the transformation to k space� multiplication by k�jkj� and transformation back to z
space� Direct translation of the third Hermite moment closure

a�	k� t� � �i kjkj
�
p

�p
�	

a�	k� t� 	�����

to �uid moments using Eq� 	���
� yields a signi�cantly more complicated expression�
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Linear equivalence of these closures is demonstrated by splitting the moments into
equilibrium and �uctuating components� for example n	z� � n� � 'n	z� where n� �R�
�� f�	v� dv and 'n	z� �

R�
��

'f	z� v� dv� The odd equilibrium moments are zero
	u� � 
� q� � 
� � � � � and the even equilibrium moments can be expressed in terms of
powers of vt 	p� � mvt

�n�� r� � �mvt
	n�� � � � �� Assuming the �uctuating components

are small� expanding both the Hammett
Perkins closure 	����� and the transformed
Hermite moment closure 	����� give the same result to �rst order�
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vt
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'p	z��mvt
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i
� 	�����

but have di�erent second�order terms� There is clearly great freedom in choosing
closures that have the same linear behavior� For example� the linear combination
p	z��mvt

�n	z�� could be replaced by n��T 	z��T�	z� where the temperature T 	z� �
p	z��n	z� is a nonlinear quantity that gives the same behavior to �rst order� Since
u� � 
� any arbitrary expression multiplied by u	z�� may be added to the closure
without a�ecting the linear behavior�

Note as well that both closures contain equilibrium constants� vt and n�� In simu�
lations that assume a �xed background gradient� these parameters are constants that
are input to the simulation� Extending closures to cases with a background equilib�
rium that vary in space or time may be nontrivial� In turbulence� the average density
and energy along a �eld line vary slowly compared to the �uctuations themselves�

so averaging the density n	z� and the local thermal velocity vt	z� �
q
p	z��mn	z�

provides reasonable estimates for n� and vt� The derivation of closure coe�cients�
however� assumes that these quantities are constant in time�

These questions have yet to be addressed satisfactorily� The following chapter
presents a model nonlinear problem� the plasma echo� that can be accurately modeled
provided enough moments are kept� Additional moments serve to approximate �ner
scales of the distribution function� It may be that the precise nonlinear form of the
closure is irrelevant provided enough moments are kept� 	Accurate simulations require
a good linear closure� however� as is clear from the unphysical results obtained with
the simplest moment discard approaches��
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��� Cumulants

The standard approach to deriving Landau��uid closures expresses the fourth�moment
closure in terms of the combination

�r	z� � r	z�� �
p	z��

mn	z�
� 	�����

The term �p	z���mn	z� is often justi�ed on the grounds that for a Maxwellian dis�
tribution� it is exactly equal to r	z�� For another point of view� one can examine the
linear form of �r	z�� Formally� let us suppose that

f	z� v� t� � f�	v� � � 'f	z� v� t�� 	�����

where f�	v� is the background Maxwellian of Eq� 	���� and � is a formal ordering
parameter assumed to be small� With this expansion we �nd that
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So to �rst order in the expansion parameter �� we �nd that �r	z� is proportional to
the Hermite moment a		z�� In fact the moments that are typically used to express
closures� 'n	z�� 'u	z�� 'T 	z� � �'p	z�� T�'n	z� �n� and 'q	z�� are all proportional to Her�
mite moments� The e�ectiveness of this basis arises from the orthogonality property
of the moments�

Cumulant expansions can be used to systematically generate terms such as �r	z�
that vanish for a Maxwellian and linearly match the Hermite moments� Velocity
averages are de�ned by

hg	v�i �

R�
�� g	v�f	z� v� dvR�
�� f	z� v� dv

� 	�����

and cumulant averages in this case are de�ned by identifying powers of x in the
equation

exp

�
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n��
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n#

�
� hexp	vx�i � 	���
�

The cumulants can be formally expanded as hvnic � hvni�c � � hvni�c � � � � � Upon
substituting this expansion in the cumulant de�nition 	���
� and using the formal
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expansion of the distribution 	����� in the equation for the averages 	������ one �nds
the expression for the �rst�order part of the cumulant average�
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This result uses the Hermite polynomial generating function 	������ The cumulant
averages hvnic are therefore linearly equivalent to multiples of the Hermite moments�

Cumulant averages therefore provide an alternative nonlinear basis of moments
with which to form closures that are linearly equivalent to those formed from Hermite
moments� The �rst few cumulant moments are
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��	 Summary

Transformations have been presented here that enable several problems involving
closures to be identi�ed with one another� The linearized Vlasov equation has been
shown to be equivalent to the stochastic oscillator problem� The �uid moment closure
problem in this case is therefore equivalent to a statistical moment closure problem�
It has also been shown that the �uid moments of the Vlasov equation are equivalent
to Hermite polynomial moments� which in turn are equivalent to coe�cients in the
Hermite series that has traditionally been used in simulations of the Vlasov equa�
tion� Fluid moment cumulants are linearly equivalent to Hermite moments� This
equivalence is responsible for the nice properties of closures expressed in terms of
cumulants�

Note that the transformation from �uid moments to Hermite moments is nonlin�
ear� so linear closures with the same �rst�order behavior can produce di�erent results
at higher order� The correct nonlinear form of �uid moment closures is an issue that
has yet to be addressed� In the following chapter� results are presented that indicate
that higher�order behavior is more sensitive to the number of �uid moments retained
in a model than to the precise form of the closure�
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Chapter �

Nonlinear Tests of

One�Dimensional Closures

The linear theory of Landau��uid equations works very well� and improves with the
number of moments used� A relevant question� however� is whether the �uid equa�
tions can reproduce second�order nonlinear e�ects� such as ion Compton scattering�
Mattor 	����� has questioned the ability of Landau��uid equations to reproduce this
e�ect near marginal stability� The analysis of Compton scattering is inherently �D�
However� the essential nature of the approximation of the second�order propagator
can be illustrated in the simple exactly solvable one�dimensional problem of electron
plasma echoes�

Plasma echoes 	Gould et al� ����� are an e�ect that can occur in highly colli�
sionless plasmas due to the Hamiltonian nature of �ows in phase space� Spatial per�
turbations that appear to have decayed have in reality become convoluted in phase
space and disappeared in an averaged sense only� In some circumstances� additional
perturbations can interact with the existing convoluted perturbations to produce a
second�order perturbation that unfolds in time to produce a response much later�
the echo� The simplest possible derivation of an electron plasma echo is presented
here� There is an exact kinetic solution for this problem� The problem is solved using
a �nite moment system with closure and compared to the exact solution� An esti�
mate for the number of moments required to accurately model second�order e�ects
is therefore obtained� Finally the form of the second�order propagator obtained from
the moment system is computed to illustrate the nature of the approximation being
made�

��� Plasma Echoes

Plasma wave echoes 	Gould et al� ����� O�Neil and Gould ����� are a second�order
e�ect arising in the one�dimensional Vlasov equation� If the plasma is perturbed
at a given wavelength� a density perturbation is excited and will die away due to

��
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Initial perturbation with k � ��
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Advected perturbation at time t � ��

Figure ���� Illustration of the Plasma Echo� An initial density perturbation is shown in
the �rst picture with spatial structure having wave number k � �� After some time� the
perturbation has tilted in phase space� so the perturbation averaged over velocities has
decayed�
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v
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Second perturbation with k � ��
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Echo appears at time t � ��

Figure ���� Continuation of the plasma echo illustration� A second perturbation with
longer wavelength �k � �
 is superimposed on the initial perturbation in the �rst picture�
The second�order perturbation is indicated by the dark grey regions� The second picture
shows a later time� at which both �rst�order perturbations have been stretched out in phase
space� but the second�order perturbation has reconstituted with a spatial structure with
wave number k � �� This reconstituted perturbation at a later time is called the plasma

echo�
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Figure ���� The plasma echo response� The density response to two pulses in the potential
at wave numbers k� and k� is plotted here� �For this graph� 	 � ����� t�k�vt � �� and
k� � ��	k��
 The solid lines denote the exact response for the �rst�order density components
at k� and k� and the second�order �echo� component at k� � k�� The dashed lines indicate
the approximate second�order response obtained when ��� ��� ��� and �� moment equations
are used�

Landau damping� The perturbation has not disappeared� however� it has just become
convoluted in phase space 	phase mixing�� If the plasma is then perturbed at a shorter
wavelength� a density perturbation will be excited at that wavelength and die away as
well� The second perturbation will also interact with the initial perturbation� though�
generating a perturbation at the di�erence wave number that �un�phase�mixes� to
appear as a density perturbation at a later time� the plasma echo�

Figs� ��� and ��� present a rough cartoon of the physics of the plasma echo� In
Fig� ���� an initial perturbation is represented by shaded areas� The streaming of the
plasma leads to the usual phase mixing� so the real�space density decays even though
the perturbation continues to exist� In Fig� ���� a second perturbation is added�
which is assumed to interact with the �rst to produce the second�order contribution
indicated by the dark grey regions� At a later time� the second�order contributions
line up to produce a spatial density variation at a lower wave number equal to the
di�erence of the two original wave numbers� Note that in the second picture of
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Fig� ��� the second�order contributions have remained su�ciently localized to produce
a perturbation at the low wave number� The criterion for an echo to occur is that the
second perturbation occur at a higher wave number than the �rst� The second�order
parts will still line up at a later time if this criterion is not satis�ed� but in that case
they will have become extremely elongated and produce a small response�

This picture should be only be view as an intuitive guide to the plasma echo�
however� In reality� plasmas rarely experience density perturbations of this sort� A
more interesting problem� therefore� is to consider the response of the plasma to
potential perturbations� The model problem to be considered here is the evolution of
a distribution of electrons in one dimension governed by the Vlasov equation 	�����
assuming an externally applied potential of the form

�	z� t� � ���mvt
ek�

sin	k�z��	t� t��� ��
mvt
ek�

sin	k�z��	t� t��� 	����

and given an initially Maxwellian distribution

f	z� v� t � 
� �
n�p
�	vt�

exp	�v���vt��� 	����

Assuming �xed background ions� and considering the unphysical limit where all of the
wavelengths are much shorter than the Debye length� the plasma contribution to the
potential may be ignored� Electron �uid equations in this limit are of little physical
interest� but this problem contains second�order nonlinearities that can be solved for
exactly� and therefore serves as a useful test for the nonlinear performance of �uid
moment closures� 	Including the self�consistent potential leads to wave propagation
that complicates the analysis� The basic second�order e�ect is the phase de�mixing of
second�order perturbations�� O�Neil and Gould 	����� derived the density evolution

n	z� t� �n�
X
l�m

	�i�l�meiklmzJl���klmvt	t� te��


 Jm���klmvt	t� t��� exp��klm�vt
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mk�t� � lk�t�
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� 	����

where Jn is the usual nth Bessel function and the echo time te has been de�ned for
each wave number klm that enters the response�

Upon expanding the Bessel functions in the echo response 	���� for small argu�
ments� one notes that the contribution at each wave number scales as ��

l��
m� As

expected� the contributions at the initially excited wave numbers k� and k� consti�
tute the �rst�order contributions to the response� There is a second�order contribution
at the sum and di�erence wave numbers� At the sum wave number k� � k�� however�
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Figure ���� The mass�spring system view of the plasma echo� From Section ��	��� there is
a correspondence between the orthogonal�polynomial moment system and the semi�in�nite
mass�spring system� Even Hermite moments correspond to the velocities of the masses
and odd Hermite moments correspond to the contractions of the springs between them�
�See the mass�spring variables in Eq� ������
�� The initial potential pulse 
�k�
 couples
the background distribution� which has only one nonzero moment a�� to the wave number
k� component of the moments �the mass�spring system in the middle of the picture
� The
perturbation travels as a wave to higher�order moments� The second pulse 
�k�
 couples the
k� component of the moments to the k� � k� component of the moments �the mass�spring
system at the bottom of the picture
� If the echo criterion is satis�ed� the perturbation can
travel back to lower moments� producing a density echo�

the echo time occurs before the second pulse 	te � t��� so the exponential term in
the response in Eq� 	���� is very small and the response is negligible� The di�erence
wave number k� � k�� on the other hand� has an echo time after the second pulse
	possibly much later�� Higher�order echoes can appear as well� but this second�order
response in the di�erence wave number is what will be called the echo response� and
will calculated for closed �uid moment systems in the following section� A typical
echo response is plotted in Fig� ��� along with the initial density perturbation respon�
sible for the generation of the echo� Note that the echo can occur after both initial
perturbations have completely phase�mixed away�

One can also understand the plasma echo in terms of the mass
spring analogy
from Chapter �� Each wave number k has a set of equations in Hermite moments of



���� THE ECHO IN CLOSED MOMENT SYSTEMS 	�

the form

�aj	k� t�

�t
� ikvt

�q
jaj��	k� t� �

q
j � �aj��	k� t�



� �X

k�

q
p
j

vtm
aj��	k � k�� t�ik��	k�� t�� 	����

which can be mapped to a one�dimensional mass
spring system if the potential in�
teraction is ignored� The zeroth�order distribution only has one nonzero Hermite
moment� a�� so an initial potential pulse excites the �rst mass in the mass
spring
system at wave number k�� The density perturbation a�	k� t� dies away in time as the
original excitation propagates along the mass
spring chain to higher�order moments�
The potential term in the Hermite moment equation 	���� couples the mass
spring
system for wave number k� to that for wave number k through the potential at wave
number k � k�� �The moment aj��	k�� t� enters the equation for aj	k� t�� so the cou�
pling shifts to the next higher�order moment� Thus the second potential pulse at
wave number k� e�ectively copies that propagated wave in the mass
spring system
for wave number k� to the mass
spring system for wave number k� � k�� If the echo
condition is satis�ed� then k� � k� has sign opposite to that of k� and the new mass

spring wave travels in the opposite sense of the original� transferring energy back to
lower moments and eventually to the density a�	k� � k�� t�� The mass
spring wave
then bounces o� the free boundary condition at the �rst mass a�� which is attached
to nothing on the left� and the echo decays as the wave travels back to higher�order
moments� This picture is illustrated in Fig� ����

��� The Echo in Closed Moment Systems

The potential failing of a system that evolves a �nite number of moments is clear
from the picture in Fig� ���� If one attempts to model a pair of pulses such as
those in Eq� 	���� for an interaction time t� � t� that is too long� then the the �rst�
order perturbation wave will have hit the end of the chain of moments and been
dissipated by the closure model� The closed moment system will therefore fail to
produce the predicted second�order response in this case� Studies of series solutions
of the Vlasov equation 	Armstrong et al� ���
� noted that simulations could only
capture the complete nonlinear physics for times t �

p
m�	kvt�� where m is the

number of coe�cients in the series used� After that time� the e�ect of the truncated
coe�cients is no longer negligible� Since the Hermite moment equations are equivalent
to the Hermite series approach� one expects the same limitation for �uid equations�

Solution of the application of the potential pulses in Eq� 	���� to the closed Hermite
moment system discussed in Section ��� is very straightforward� The pulses will
produce nonzero Fourier components for wave numbers 
� k�� k�� and �k� � k� only�
The n�moment system solution for the echo can therefore be found by evolving the
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Figure ���� The plasma echo density response for short interaction time �t�� t�
k�vt � ����
The exact density responses are plotted with solid lines and there are two sets of dotted
lines indicating the responses for the �� Hermite moment system with the q � � closure
and q � � closure� Both choices of closure give the correct �rst�order response� The q � �
closure matches the second�order response almost exactly� however� while the q � � closure
departs slightly from the correct answer�
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along with the closure condition discussed in Section ��� for the unresolved moments
an	k�� t� and an	k��k�� t�� The results can then be compared to the k��k� component
of the exact solution 	�����
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Figure ���� The normalized root�mean�squared error of the second order responseR�
� �na�k� � k�� t
 � n�k� � k�� t
�� dt�

R�
� n�k� � k�� t
� dt is plotted against the normal�

ized interaction time �t� � t�
k�vt�
p
n for closed Hermite moment systems with n � �� ���

��� �� and �� moment equations�

Some results are displayed for a fairly long interaction time �k�vt	t� � t�� � � in
Fig� ���� With �
 Hermite moments the echo is reproduced almost exactly in that case�
but for �
 moments the system produces almost no echo� The �
�moment system fails
for this example because the initial perturbation has become su�ciently convoluted
after this interaction time that it is no longer represented by the �rst �
 Hermite
moments� In Fig� ���� the results for a shorter interaction time 	k�vt�t� � t� � 
���
are displayed for the �
 Hermite moment system� which is successful in this case� Two
choices of q� the number of times the linear response is matched in the � � 
 limit�
are illustrated in this �gure� For q � �� the dotted line for the second�order response
is indistinguishable from the exact response� For q � � there is some error� although
the simulation still gives a reasonable response� Both choices of q give an excellent
�t to the linear theory� so for large numbers of moments it is probably best to take a
small value of q� 	The linear theory converges very slowly for q � �� however� so the
choices q � � or q � � are better��

The mean�squared error in the second�order response was calculated for a number
of closed moment systems with q � � for various interaction times� The results are
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plotted in Fig� ���� For a su�ciently large number of moments� there is almost no
error in modeling the second�order response for interaction times 	t��t��k�vt �

p
n���

and there is a transition of increasing error until 	t� � t��k�vt �
p
n� at which point

the closed moment system gives virtually no second�order response� so the error is ��
These results indicate� however� that a small number of moment equations can model
the second�order response for very short interaction times only�

��� Relation to Perturbation Expansions

It is instructive to derive the response for this model problem perturbatively� Assume
the potential is small� �	z� t� � ��	z� t�� and expand the distribution formally in a
perturbation series

f	z� v� t� � f�	z� v� t� � �f�	z� v� t� � ��f�	z� v� t� � � � � � 	�����

Solving the Vlasov equation 	���� term by term with the potential given by Eq� 	����
yields the hierarchy of equations
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Assuming a Fourier decomposition with periodic boundary conditions� �	z� t� �P
k exp	ikz��k	t� and fi	z� v� t� �

P
k exp	ikz�fi	k� v� t�� these equations are easily

solved to give the evolution of each term in the expansion�
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The density response therefore expands as n	z� t� � n� � �n�	z� t� � ��n�	z� t� � � � � �
and one �nds that the second component is
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where the second�order response function is

R�	��� ��� � ��	�� � ��� exp��	�� � ���
����� 	�����

This second�order response gives the density at time t caused by the potential at
times t� t� and t� t� � t�� The response is typically exponentially small unless the
argument �� � �� vanishes� which will occur if k and k� have opposite signs� 	This is
equivalent to the echo criterion that the wave number k � k� of the second pulse is
larger than that of the �rst pulse� k���

Note that the echo response increases linearly with the delay t� between the two
potential pulses� The exact nonlinear response in Eq� 	����� on the other hand� re�
places ��R�	��� ��� with J�	�����J����	�� � ���� exp��	�� � �������� Thus� the second�
order expansion is only valid for analyzing delay times such that �kvtt� � �� The
second�order perturbation is a function of the velocity derivative of the �rst�order
perturbation� Even when the �rst�order perturbation is rigorously small� the deriva�
tives increase with time as the perturbation becomes convoluted in phase space� One
should be careful� therefore� in interpreting the long�time behavior of any second�order
perturbation theory�

The di�erence between kinetic theory and Landau��uid theory that was demon�
strated by Mattor 	����� can be understood by looking at the Hermite moment
expansion� From the picture in the previous section illustrated in Fig� ���� one can
see that the second�order density response can be decomposed as the linear density
response to initial conditions in higher�order moments that are in turn linear re�
sponses to an initial perturbation in the �rst moment a�	k��� In terms of the general
orthogonal�polynomial responses de�ned in Eq� 	������ the second�order echo response
can be decomposed as

R�	��� ��� �
�X
j��

R��j��	���
q
jRj��	���� 	���
�

The errors introduced in the second�order response for a truncated moment system
with closure are fairly complicated then� since we must consider the errors introduced
in all the linear responses of the form R��j�� and Rj��� The theory from Chapter �
indicates that the Laplace transform of all the components of the linear response
matrix will eventually converge� given enough moments� From Result �� if the �rst p
closure coe�cients are set to zero for p � �� then the errors in R��j�� for j � � � p
and all Rj�� are all related to one another by factors of Hermite polynomials� For the
Maxwellian 	Gaussian� case� the response functions converge with increasing numbers
of moments for any �xed choice of q� the number of times the response is matched in
the � � 
 limit� Thus a set of closures exists for which n�� and p��� so that
all the response functions eventually converge�

For a given closed moment system with a su�ciently large number of moments n�
therefore� the main source of error in the second�order response will come from the
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truncation of the decomposition 	���
� due to the fact that moments with j � n
are not modeled� 	The responses that are modeled are modeled very well with large
numbers of moments�� Assume that the linear time response of each moment could be
modeled exactly� The Hermite moments are expanded in the formal series aj	z� t� �
a�j	z� t� � �a�j	z� t� � ��a�j 	z� t� � � � � � where a�j	z� t� is the jth Hermite moment of
f�	z� v� t� and so on� Expanding the �rst�order response 	����� in terms of the �rst n
Hermite moments yields an approximation to the �rst�order part of the density�
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By inserting this approximation into the equation for the second�order component of
the density equation 	������ one obtains an approximation to the density response�

R
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Using a �nite set of moments e�ectively replaces the term exp	������ in the second�
order response 	����� with a Taylor series in ����� For small �� and small ��� the
Taylor series is a good approximation� For large �� and ��� the exponential terms
in the approximate echo response 	����� dominate to give an exponentially small
response� This result is a good approximation to the true response 	����� except
near the line �� � ��� where the combined exponential terms are O	��� �When
the argument of exp	������ is positive it can balance the other exponential terms� 
Since the n�term Taylor series of exp	x� is a good approximation out to jxj � n�
this approximate second�order response is valid for interaction times j����j � n� The
response is exponentially small except where �� � ���� so this condition corresponds
to 	kvtt��� � n� which is essentially the recurrence�time condition discussed in the
previous section�

This response is very similar to that obtained for second�order perturbations in
weak�turbulence theory 	Mattor ������ The Laplace transform of the second�order
response in Eq� 	����� can be written as
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where the transformed second�order response is given by
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	To simplify the expression� the sign variables s � k�jkj and s� � k��jk�j have been
introduced�� The series expansion from Eq� 	������ on the other hand� gives approxi�
mately the response

bR�	��� ��� 	 s
�

���

�
s�

�

���
� s

�

���

���n��X
j��

�

j#

�
�

�
s
�

���
s�

�

���

�j
�� sZ	���s

�Z	����
	�����

Mattor 	����� pointed out that the Landau��uid approximation to the response re�
mains �nite for all �� and �� and therefore misses the resonant behavior in Eq� 	�����
when ss� � �� and �� � ���� It is worth pointing out� however� that this approxi�
mation converges with increasing numbers of moments� Near the resonance� however�
this expression 	����� converges extremely slowly with increasing n� the number of
moments�

��� Limitations of Moment Equations

The time response for the linear Vlasov equation is modeled extremely well by
Landau��uid equations with as few as four moment 	Hammett et al� ������ The echo
phenomenon� however� reconstructs information from the entire velocity�dependent
part of the distribution function� Hence� although a plasma echo is essentially a linear
response to the perturbation of a linear response� simply getting the linear response
correct is not su�cient to model the echo� The ability of any set of moment equations
to model a plasma echo is limited by the amount of velocity�dependent distribution
information that is contained in the �nite number of moments kept�

Previous studies using truncated Hermite series expansions noted this time limit as
well� For example� Armstrong et al� 	���
� were forced to terminate their simulations
at a time t �

p
N�kvt� Part of this time restriction arose from their choice of closure

�N 	x� t� � 
� which e�ectively re�ects information back to lower moments� causing
recurrence� With the linear closure used here� perturbations will decay correctly
according to the linear theory without recurring� What is missed� however� is the
interaction between waves separated by times larger than � p

n�kvt� In reality�
however� a second interaction cannot occur for arbitrarily large separation times�
Echoes can only occur in an almost collisionless plasma� since they depend on delicate
convolutions in velocity space that are easily destroyed by collisions�
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By considering the simple collision model in equation ���� Su and Oberman 	�����
found that a free�streaming perturbation of wave number k is damped by an expo�
nential term of the form exp	�
k�vt�t����� This decay implies that for separation
times of the order

t� � t� �
�

�


k�
�vt�

����
� 	�����

there will be no second�order response when the e�ect of collisions is taken into
account� The number of moments required to model this separation time scales as
N � 	t�� t��vtk�� so a rough estimate of the number of moments N needed to model
all second�order e�ects that can occur is given by

N �
�
kvt



����
� 	�����

��� Summary

The dissipative Landau��uid closure has a signi�cant impact on the linear physics
of closed moment systems� A model nonlinear problem� the plasma echo� was con�
sidered as a simple nonlinear test of the closure� The plasma echo is essentially the
second�order component of the nonlinear response expanded in the limit of small per�
turbations� The second�order response has an exact solution 	���� in the limit where
the self�consistent potential is dropped� This exact solution was used to gauge the
weakly nonlinear performance of moment systems with closure�

In contrast to the linear picture� the choice of linear closure does not have a
large impact on the second�order response� 	See Fig� ����� The number of moments
simulated� however� is an essential factor in resolving second�order e�ects� The results
summarized in Fig� ��� that modeling the second�order response for interaction time
t� � t� requires n � �	t� � t��k�vt 

� moments� A simple model of the rate of decay of
perturbations due to a �nite collision rate 
 indicates that n � 	kvt�
���� moments
are su�cient to resolve all second�order e�ects�

Clearly this second�order streaming nonlinearity cannot be accurately modeled
with small numbers of moments� This e�ect is second�order� however� so for per�
turbations that are small with respect to the background� the unresolved density
perturbations should be a small correction�



Chapter �

�D Drift�Wave Model

The turbulent cascade of �uctuation energy to small scales is analogous in some
ways to the transfer of �uctuation energy to �ne velocity scales through phase�space
mixing� The transfer of energy in turbulence can be very nonlinear in character in
some situations 	the inverse energy cascade in �D� for example�� There are limits�
however� where the stretching of small�scale eddies by long wavelengths is similar in
character to the passive phase mixing of the Vlasov equation� The basic physical
scaling of damping to transfer of �uctuation energy to small scales that is discussed
in Chapter � will be used in Chapter � to develop nonlinear viscosity models that
model the transfer of �uctuation energy in drift turbulence due to �ow shear�

The chief goal of developing subgrid turbulence models for drift�wave turbulence
is to improve the accuracy of comprehensive �D turbulence simulations� In order to
e�ectively study the physics of �uctuation transfer in a simpli�ed situation� however�
the initial research of this thesis focuses on a �D model problem� The model equation
for this study was chosen to be as simple as possible while retaining the basic physics
relevant to subgrid turbulence processes in �uid simulations of drift wave turbulence�

Saturation in toroidal gyro�uid turbulence simulations 	Beer ����� involves a bal�
ance between the source of �uctuations in linearly unstable modes and the dissipation
in modes that are stabilized by terms that model Landau damping� Fluctuation en�
ergy is transferred from unstable to stable modes through the advection nonlinearity�
A useful �D model will at least contain the E�B drift advection nonlinearity� a linear
instability� and dissipation to model Landau damping� which is primarily a function
of the parallel wavelength and should therefore be present at long perpendicular
wavelengths� The system presented here includes models of these three essential ef�
fects� however� it is a relatively simple one��eld �D equation resulting from major
approximations� For example� it does not model bad curvature and ion temperature
dynamics� which are important instability mechanisms in the core region of many
tokamaks� As a �D model� it is missing a special constraint on the adiabatic electron
response� which enhances the role of the ky � kz � 
 component of the electrostatic
potential 	Dorland ������ leading to turbulence�generated sheared �ows that are im�

��
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portant in toroidal simulations 	Hammett et al� ����� Beer ����� Dimits et al� �����
Waltz et al� ������ Nevertheless� the system used in this study is a useful paradigm
for studying certain e�ects important in plasma turbulence where the E�B nonlin�
earity is important� and some of the lessons learned in this simple model can then be
applied in more complicated �D multi��eld simulations�

��� Model Equation

There is a signi�cant literature on �D models for drift�wave turbulence� The proto�
typical model of Hasegawa and Mima 	����� captures the basic physics of the E�B
nonlinearity in a one��eld �D equation� but contains no linear drive to produce �uc�
tuations� A model of linear drive is introduced in so�called �i�� equations 	Terry and
Horton ����� Liang et al� ����� through a simple model for the non�adiabatic part
of the electron response� The model equation derived here is a simpli�ed i� model�
with an additional term added to model Landau damping at long wavelengths�

There are a number of derivations in the literature of this model starting from
standard �uid equations� Here the derivation is sketched from a gyrokinetic(gyro�uid
perspective� The starting point is just a conservation equation for the ion�guiding�
center density ngc�

�ngc
�t

�r � �ngc	VE�B � ukbz� � 
� 	����

where

VE�B �
c

B
bz�r� 	����

is the E�B drift velocity� � is the potential� and uk is the parallel ion �ow� The ion
FLR e�ects are ignored 	via the assumption Ti � Te� while the ion polarization e�ects
are retained by including the ion polarization density in addition to the guiding�center
density in determining the actual ion density

ni � ngc � n�
��se

Te
r�

��� 	����

where �s � cs�)ci is the gyroradius using the ion gyrofrequency )ci � eB�mic� and

the sound speed is cs �
q
Te�mi� 	This approach is the standard method used in the

gyrokinetic Poisson equation 	Lee ����� Dubin et al� ����� Lee ������� For the ion
parallel �ow velocity� the ���moment� model of Landau damping�

n�
d

dz
uk 	 C�vtjkkj	n � �� 	 C�vtjkkjn� 	����

of Dorland and Hammett 	����� is used� where C� and C� are constants of order unity�
Making use of the standard two�scale approximations to expand ngc in Eq� 	���� via

ngc � n�
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into a long�scale equilibrium part with density gradient scale length� Ln� and a short�
scale �uctuating component eni� leads to
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�

�y
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Te
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Ln
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where the diamagnetic drift velocity� Vd � cs�s�Ln� has been introduced� The den�
sity gradient in the long�scale equilibrium is responsible for the introduction of the
diamagnetic drift term� The viscosity�like term containing � is included to provide a
sink for �uctuation energy at high k� The Landau damping model introduces the dis�
sipative term��cseni�Ln� where � is set to C�vtjkkjLn�cs for a typical small but �nite
kk �� 	qR��� in a tokamak � Three�dimensional simulations of drift�wave turbulence
have found that the bulk of the dissipation comes from Landau damping 	Beer ������
so it is necessary to include a model for this process in �D simulations where kk has
been ignored�

To close the model system� the �uctuation density must be related to the potential�
The real�space ion density �ni is just the sum of the guiding space density eni and the
ion polarization density �s

�r�
�e��Te� As a crude model for the electron response

that will provide linear drive� we set �ne � 	� � ���s���y�e��Te 	Terry and Horton
������ Quasineutrality therefore gives us
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Upon using the normalized variables
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and then dropping the primes� we obtain the evolution equation�
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Expressing the potential as a sum of Fourier modes� � �
P
k exp	ik � x��k� gives the

mode coupling equation �
�

��
� i�k � �k � �d

k

�
�k � Nk� 	���
�

where the nonlinear term is de�ned as
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X
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and the linear frequency and growth rate are given by

�k �
ky	� � jkj��

	� � jkj��� � ��
�ky

� � 	�����

�k �
��ky

�
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An additional growth rate �d
k

has been introduced to contain one of the numerical
dissipation models discussed in the following chapter� The true system that is being
studied has �d

k
� 
� and with su�ciently high resolution the turbulent saturated state

can be numerically simulated� Other dissipation models� to be de�ned later� can be
used to improve the accuracy of simulations with insu�cient resolution� �The dissipa�
tion models that will be considered are regular hyperviscosity 	������ parameterized
hyperviscosity 	������ and the Smagorinsky eddy viscosity 	����� The linear physics
of this model agrees with a model for dissipative trapped�electron drift waves derived
by Liang et al� 	����� to �rst order in �� 	D� in their notation� and second order in
k�s� Setting � � 
� � � 
� and �� � 
 gives the equation of Hasegawa and Mima
	������

The model equation used here was chosen for simplicity and only contains the gross
features of drift�wave turbulence� To be of practical use� in fact� the results concerning
eddy viscosity should not depend on the precise nature of Eq� 	����� since we are
interested in applications to more sophisticated models of drift�wave turbulence� The
toroidal gyro�uid equations 	Beer ����� Waltz et al� ������ which evolve multiple
�elds and contain signi�cantly more complicated 	hence more accurate� linear physics�
share the same basic nonlinear advection term contained in this model� Hence the
eddy viscosity calculated in this study is parameterized as a function of the advecting
velocity without reference to the linear physics�

��� Physics of the Saturated State

Before considering the e�ects of the subgrid scales� we examine the results of simulat�
ing the model� Eq� 	����� for a typical set of parameters� Simulations were performed
with periodic boundary conditions using the standard dealiased pseudospectral ap�
proach� A hyperviscous damping term of the form discussed in the next section was
used for the results considered here� Initially we consider a box of size �
�s
�
�s� us�
ing a ���
��� grid in real space� for parameters �� � 
���� � � 
�
��� and � � 
�


��
with a hyperviscosity de�ned by Eq� 	����� with power p � �� and coe�cient set to
the average rate of shear� 
h � S	t�� �See Eq� 	������ This choice of �� gives growth
rates large enough that the saturated state is in the strong�turbulence regime� �For
this model equation� the wave frequencies are �xed� and the growth rates are propor�
tional to the parameter ��� For low growth rates� the total energy saturates at a level
proportional to ��� For large growth rates� the total energy in the saturated state
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Figure ���� Contours of potential for saturated turbulence at one instant�

scales as ��
�� For the purposes of this study� when the drive �� lies in the transition

between these two scalings the simulations will be said to take place in the moderate�
turbulence regime� The strong� and weak�turbulence regimes are de�ned respectively
for larger and smaller values of the drive ��� �Krommes and Hu 	����� discuss satu�
ration levels for some simple drift�wave models� The instantaneous potential late in
the simulation is shown in Fig� ����

One useful macroscopic parameter that can be expressed in this model is the
volume�averaged particle �ux

" �
�

LxLy

Z Lx

�

Z Ly

�
bx �VE�Beni dy dx

� ��
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	�����

	The Bohm di�usivity� DB � cTe�eB� has been introduced here�� The gyro�Bohm
scaling of the �ux is the natural scaling for this system� since the use of periodic
boundary conditions and a constant background gradient prevents the system scale
from directly entering the analysis� 	The system scale could in principle enter through
the size of the simulation domain Lx 
 Ly� implying a Bohm scaling� The fact that
��ux�tube� simulations saturate 	Beer et al� ����� Dimits et al� ����� and that the
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Figure ���� Particle �ux from simulation of the model equation in a periodic box ����s �
���s
 in the strong�turbulence regime� �� � ����� 
 � ������ � � �������

saturation amplitude is independent of the size of the simulation domain indicates
that a gyro�Bohm scaling regime exists for su�ciently small �s�L�� The time history
of the �ux for a typical set of parameters is shown in Fig� ����

Since observable physical quantities such as the particle �ux and mean�square
density �uctuations can be expressed as quadratic functions of the potential� one is led
to study the evolution and saturation of the squared magnitude of the modes� There
is only one quadratic quantity that is conserved by the nonlinear term of the model
equation 	���� corresponding to the fact that the volume�integrated square density�R eni	x�� dx� is conserved by divergence�free advection� This conserved quantity is
denoted by )� A normalized modal contribution to the conserved quantity is de�ned
by

)k �
�

�

h
	� � jkj��� � ��

�ky
�
i
j�kj�� 	�����

Fig� ��� displays the saturated spectrum for the initial set of parameters� where the
standard �D spectral density is de�ned by )	k� � �	kh)ki� where the average is
taken over the band of k�s at radius k� 	The growth rates for this simulation are
displayed in Fig� ����� An attempt to infer an inertial�range power law scaling from
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Figure ���� Time averaged spectrum of density �uctuations for the simulation of Fig� ����

this spectrum would give )	k� � kp with �� � p � ��� which is very di�erent from
the �D Navier
Stokes high�k inertial range where enstrophy scales as k�� 	Kraichnan
����� Batchelor ������ In fact� simulations of �D Navier
Stokes turbulence have
typically observed inertial ranges signi�cantly steeper than theoretically predicted�
The k�� enstrophy range is an asymptotic limit that can only be observed when
the dissipation scales are separated from the forcing scales by at least two orders of
magnitude 	Borue ������ The separation of scales required to observe inertial�range
scaling is particularly large in �D turbulence� where the enstrophy transfer is very
nonlocal� Such a scenario is highly unlikely for plasma�turbulence problems where
signi�cantly damped modes exist at wave numbers very close to the unstable modes
driving the turbulence� Therefore� one should not expect to �nd universal exponents
in drift�wave simulations�

The evolution equation for this quadratic invariant is�
�

��
� ��k

�
)k � Tk� 	�����

where the nonlinear transfer Tk is given by

Tk �
h
	� � jkj��� � ��

�ky
�
i

�Re	��
k
Nk�� 	�����
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Maximum growth rate

Minimum growth rate

Figure ���� Growth rates for the simulation of Fig� ���� A k�
 hyperviscosity damping term
has been used to improve the resolution of the inertial range�

In steady state� the nonlinear transfer balances the production and dissipation of
�uctuations due to linear growth or damping� 	See Fig� ��� for a typical example of the
linear production�� For �D equations of this form� with only one quadratic invariant�
it has been noted that arguments from statistical mechanics imply transfer to small
scales 	Diamond and Biglari ���
�� in contrast to the dual cascade picture from
�D Navier
Stokes turbulence� With moderate dissipation due to Landau damping
at all scales� there is no clearly de�ned inertial range or cascade� The production
of the conserved quantity for a typical run is plotted in Fig� ���� Note that the
dominant source and the major sink for �uctuation energy both lie near the peak of the
spectrum� The major transfer in k space of �uctuation energy is in fact not a cascade�
and takes energy from unstable modes near the kx � 
 axis to Landau�damped
modes of nearly the same magnitude near the ky � 
 axis� 	Realistic simulations
of transport therefore require accurate models of Landau damping�� The dissipation
near the cuto� indicates a small cascade of �uctuation energy to high k� This picture
of energy production in k space is qualitatively similar to that observed in toroidal
gyro�uid simulations� �See Fig� ��� of Beer 	������ The small amount of transfer
to high k is dynamically insigni�cant� leading to the conclusion that the level of
turbulence is set primarily by eddy turnover at long wavelengths� Simulations of just
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Figure ���� Time averaged production and dissipation of density �uctuations for the sim�
ulation of Fig� ��� �contours of h�k�ki
� Each point is a resolved mode� Solid lines are
contours of the production region at �� �� �� �� ��� and �� �dimensionless units
� Dashed
lines are contours of the dissipation region at ������������� and ���� The dotted lines
are contours at ����� and �����

the long wavelengths are therefore theoretically feasible� Simply eliminating modes
that lie beyond the bulk of the spectrum can give catastrophic results� however� as
the small transfer of �uctuation energy !piles up� secularly at the cuto��
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Chapter �

Eddy Viscosity and Hyperviscosity

Models for the subgrid�scale dissipation in numerical simulations of turbulence have
long been necessary in the study of atmospheric and oceanographic turbulence� for
which the direct numerical simulation of the full range of scales is infeasible� !Large
Eddy Simulations� 	LES� 	Galperin and Orszag ����� evolve the largest scales of a
problem and model the average interaction with the unresolved small scales through
dissipative terms called eddy viscosity� Our goal is to apply these techniques to sim�
ulations of drift�wave turbulence in tokamaks� This preliminary study tests some
basic dissipative terms in a simple �D drift�wave model� By restricting the problem
to two dimensions� a large number of simulations can be performed with su�cient
time histories for the statistics necessary to compute the eddy viscosity� In Chap�
ter � extensions to three dimensions are discussed and applied to gyro�uid turbulence
simulations�

When it is computationally impossible to resolve the dissipation scales in ho�
mogeneous isotropic turbulence� the standard tool used in numerical simulations is
hyperviscosity� a damping rate of the form M jkjp where the power p is larger than
�� p � � gives ordinary viscosity� Hyperviscosity introduces an arti�cial dissipation
range into the problem that is narrower than the usual dissipation range and therefore
requires less resolution� The choice of power and magnitude is somewhat arbitrary�
Numerical studies of �D Navier
Stokes turbulence have found that a moderately high
power 	p � � or p � ��� allows the hyperviscosity to e�ectively remove energy from
small scales with a minimum of unphysical dissipation at the large scales 	Basdevant
and Sadourny ������ While the dissipation range introduced by hyperviscosity acts
as a model for the true dissipation range� the damping provided by hyperviscosity
has not been systematically compared with the nonlinear transfer rates to unresolved
scales�

Eddy viscosities attempt to model the sink of energy at small scales by introducing
dissipation into the resolved scales� The nonlinear viscosity of Smagorinsky 	������
for example� is a simple model with a long history of applications in �uid turbulence�
The damping given by the Smagorinsky viscosity is proportional to jkj�� which is

��
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rigorously correct only in the limit where the separation of scales between resolved
and unresolved modes is asymptotically large� When there is signi�cant transfer of
energy that is local in k space� as in Navier
Stokes turbulence� the contribution to
the eddy viscosity from local transfer to unresolved modes near the cuto� is poorly
represented by a k� damping rate 	Kraichnan ������ This theoretical eddy viscosity
has been tested for the inverse cascade range in large eddy simulations of �D Navier

Stokes turbulence 	Chekhlov ������

The ideas of hyperviscosity and eddy viscosity are combined here to create a non�
linear �lter for use in simulations of drift�wave turbulence� Theoretical predictions
of the nonlinear transfer do not yet exist for comprehensive models of drift�wave
turbulence� For simple drift�wave models� predictions of the nonlinear transfer from
closure theories have only been made very recently 	Hu et al� ������ Therefore� the
approach taken here is to choose the form of the hyperviscosity model by comparison
with direct numerical simulations� The eddy viscosity is calculated for a given set
of parameters and resolution from a higher�resolution simulation by calculating the
transfer from modes that are contained in the low�resolution simulation to all other
modes� The eddy viscosity was calculated in this fashion for a wide range of param�
eters and various resolutions� The hyperviscosity was �t to the calculated damping
rate by adjusting the power and magnitude� The power p and magnitude M were then
parameterized as functions of the resolved modes based on insights from Kraichnan�s
eddy viscosity for the �D enstrophy range�

The resulting parameterized hyperviscosity has several advantages over traditional
approaches� The choice of power and magnitude are calculated from functions of
the resolved scales� eliminating what are arguably free parameters in the standard
application of hyperviscosity� The damping rate comes closer to modeling the actual
eddy damping rate than do eddy viscosities like Smagorinsky�s that have damping
rates proportional to k�� For problems of interest� the actual eddy damping rate
has not been predicted theoretically and can only be calculated from high resolution
simulations� This method is straightforward to implement in spectral simulations of
homogeneous turbulence� where k�dependent damping rates are trivial to incorporate�

The parameterization is based on the general physical processes of nonlinear ad�
vection and �D enstrophy cascade� This model should therefore be useful for more
general drift�wave calculations that resolve the main energy injection scales and are
using this hyperviscosity only to reduce the resolution needed for modes at scales
smaller than the injection scales� This model may also be useful for passive�scalar
advection problems� Situations with inverse cascade and signi�cant energy produc�
tion at unresolved scales� such as may be found in magneto�hydrodynamic turbulence
or �D Navier
Stokes turbulence� result in negative eddy viscosities and are therefore
clearly beyond the scope of this model� but have been studied with other models
	Chekhlov ������
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	�� Large Eddy Simulation

The model equation 	���� can be written symbolically as

�

��
� � N	�� � L�� 	����

where L is a linear operator and N is the quadratic nonlinearity de�ned by Eq� 	������
Numerical simulations cannot follow the detailed behavior of the continuous �eld ��
Pseudospectral simulations on a periodic box of size l 
 l with a �nite number of
modes are considered� The resolved modes 	those that are evolved in a simulation�
can be de�ned through a �lter function� f � f � such that in Fourier space

f
k

� Gkfk� 	����

where Gk � � for jkxj � kcx and jkyj � kcy� and Gk � 
 otherwise� 	The boundary
wave numbers kcx and kcy are called the cuto� wave numbers� For theoretical studies of
isotropic turbulence� a spherical region in k space� jkj � kc� is typically used�� Fields
such as the potential � can then be decomposed into a resolved part � and a subgrid
contribution �s � � � �� The �ltered evolution equation can be written as

�

��
� � N	�� � N s � L�� 	����

where the subgrid contribution to the nonlinear term is de�ned by

N s � N	���N	��� 	����

Given the resolved �eld �� pseudospectral evaluation of the nonlinear term gives

precisely N	��� so the only term in the evolution equation 	���� that is not calculated
in a simulation of the resolved �eld is the subgrid contribution N s�

The �eld of Large Eddy Simulation is concerned with deriving approximate models
for the e�ect of the subgrid term N s that can expressed in terms of the resolved �eld
�� Traditionally it is argued that the average contribution of the subgrid term N s

can be viewed as an eddy viscosity� draining energy from the resolved scales�
If there were a true separation of scales and the subgrid �eld �s had asymptotically

short wavelengths and short time scales compared to the resolved �eld �� then the
subgrid term would truly act like a viscosity 	Kraichnan ������ Upon averaging over
a time that is short for the resolved modes but long compared to the turnover time
for the subgrid modes� we would �nd that hN si � 
eddyr

��� where the eddy viscosity

eddy is a function of the statistics of the small scales� In reality� however� the length
and time scales of the subgrid modes are nearly identical to those of barely resolved
modes�

Various approaches to estimating the subgrid contribution have been proposed�
We will examine two simple estimates� a k�space�dependent eddy viscosity� and the
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eddy viscosity of Smagorinsky 	������ In numerical simulations� application of these
approaches corresponds to introducing a simple dissipative term �N s

k
	 
kk

��k or
N s 	 r � 
	x�r� respectively where the damping �
k or 
	x� is predicted either
theoretically or empirically as a function of the resolved scales� Several authors have
pointed out that in a turbulent state subgrid scales do not act in a purely dissipative
fashion and that a more complete model would contain terms to simulate noise and
backscatter of energy from the subgrid scales 	Rose ������ Simple damping terms�
however� are extremely e�cient to calculate� It is not clear which approach� adding
higher�order terms to the subgrid model or increasing grid resolution with a simple
subgrid model� is more e�cient at improving the statistics of the long�wavelength
modes for a given increase in computational complexity� For the current study� simple
dissipative terms are considered�

	���� Smagorinsky Eddy Viscosity

A traditional view of eddy viscosity is that the short�wavelength modes act in some
sense like a thermal noise on the resolved scales and hence serve to enhance the regular
viscosity� Estimating the subgrid contribution by a spatially varying eddy viscosity
yields

N s 	r � 
eddy	x�r�	x�� 	����

Smagorinsky 	����� gave heuristic arguments for the scaling of this eddy viscosity in
the context of simulations of quasi�geostrophic turbulence� he concluded that


eddy	x� � 	Csd��S	x� t�� 	����

where Cs is a non�dimensional constant� d is an estimate of the subgrid length scale�
and S	x� t� is the local strain rate of the velocity �eld de�ned by

S	x� t� �

vuut��Vx
�x

��
�

�
�Vy
�y

��

�
�

�

�
�Vx
�y

�
�Vy
�x

��

� 	����

Note that S � 
 for rigid rotation as well as for uniform �ows�

The Smagorinsky model has been applied in computations of �ows far outside the
realm of its original derivation� with success in many cases� This model was used
in simulations in this study for the purpose of comparison� to illustrate the behavior
of the standard eddy viscosity with k� damping� Di�erent choices of length scale
and constant have been found to give optimal results in di�erent situations in �uid
turbulence� We therefore arbitrarily set d to the physical�space grid spacing� and used
Cs � 
�� based on initial tests for one choice of parameters with moderate resolution�
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	���� Kraichnan
s Eddy Viscosity

One approach to de�ning a damping term originating from the subgrid modes is by
comparing the nonlinear transfer term with the viscous term in a two�point closure
theory 	Kraichnan ������ By splitting the modes into resolved modes and subgrid
modes� the quadratic invariant evolution equation 	����� can be written as�

�

��
� ��k

�
)k � T r

k
� T s

k
� 	����

where the transfer de�ned in Eq� 	����� has been decomposed into a resolved piece T r
k

and the subgrid piece T s
k
� In the context of this equation� the analog to Kraichnan�s

e�ective eddy viscosity would be de�ned as


eddy	k� �
�hT s

k
i

�k�h)ki � 	����

for some appropriately de�ned ensemble average� The motivation for this de�nition of
an eddy viscosity comes from introducing a damping term of the form �
eddy	k�k��k
on the right�hand side of the primitive equation 	���
�� This damping term would
introduce the term �hT s

k
i)k�h)ki to the right�hand side of Eq� 	���� above� which�

on average� will balance the subgrid transfer term T s
k
�

Kraichnan derives predictions of this eddy viscosity 	Kraichnan ����� in �D and
�D Navier�Stokes inertial ranges using the Test Field Model 	Kraichnan ������ While
plasma turbulence is not expected to exhibit inertial�range behavior� there are sev�
eral generic conclusions about eddy viscosity worth noting� The primary discovery
was that the eddy viscosity does not give a damping rate proportional to k� that is
traditionally associated with an eddy viscosity� The eddy viscosity does asymptote
to a constant value at long wavelengths� This constant� however� is negative for �D
turbulence� The major contribution to the subgrid energy transfer comes from coher�
ent straining of the short�wavelength modes by long�wavelength velocity shear� which
causes the eddy viscosity to become large and positive near the high�wave�number
cuto� kc� The simulations considered here correspond most closely to the �D case
where the cuto� kc lies in the enstrophy range� For this case� the signi�cant positive
contribution to the eddy viscosity lies in a region near the cuto� wave number kc
of width k�� where the straining �eld is dominated by wave numbers of size k� and
smaller� The shape of the eddy�viscosity function in this region depends on the nature
of the spectrum at long wavelengths� For an arti�cial spectrum that allowed for a
simpler calculation� the eddy viscosity in the near�cuto� region was found to be


eddy	k� 	 	�kck��
��f

�
kc � k

k�

�
�	kc � k� � kc � 	���
�

where � is the eddy circulation time of the long wavelengths� See Eq� 	���� of Kraich�
nan 	������
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	���� Numerical Eddy Viscosity

In the original work on this eddy viscosity 	Kraichnan ������ the subgrid transfer hT si
was viewed as a theoretically derived quantity containing contributions from all three�
mode couplings that cross the cuto� in k space� The standard approach to calculating
eddy viscosity in numerical simulations 	Maltrud and Vallis ����� Chekhlov et al�
����� de�nes the subgrid transfer based on the subgrid contribution to the nonlinear
term as de�ned in Eq� 	����� For our model the subgrid transfer is de�ned by

T s
k

�
h
	� � jkj��� � ��

�ky
�
i

�Re	��
k
N s
k
�� 	�����

Substituting this de�nition for T s into the de�nition of eddy viscosity in Eq� 	����
yields


eddy	k� � �
Re
�
h��
k
N s
k
i
	

k�
D
j�kj�

E � 	�����

With this de�nition� the eddy�viscosity approximation for the subgrid term�

N s
k
	 �
eddy	k�k��k� 	�����

can be viewed as the linear 	in �k� approximation that minimizes the mean�squared
residual error�

To calculate the eddy viscosity for a given low�resolution simulation with cuto�
wave number kc� a simulation is performed at much higher resolution containing a
large number of higher�k modes 	jkj � kc� along with all the modes resolved by
the low�resolution simulation� The !unresolved� component of the nonlinear term
N s de�ned in Eq� 	����� is calculated for the low�resolution simulation from modes
resolved in the higher�resolution simulation� Calculating the eddy viscosity from high�
resolution simulations to apply to low�resolution simulations cannot by itself reduce
the computational cost of a particular problem since presumably the high�resolution
simulations yield accurate results already� It is hoped that by parameterizing the
eddy viscosity calculated for a number of runs� a model for the eddy viscosity can be
obtained that extrapolates to drift�wave problems for a larger range of parameters�

The sample simulation mentioned in Sec� ��� was used to calculate the eddy vis�
cosity for a simulation with half of its resolution� The resulting eddy viscosity 
eddy	k�
is plotted in Fig� ��� with the linear drive and damping for lines of modes out to the
cuto� wave number in two directions in k space� As noted in Sec� ���� inertial�range
behavior should not be expected in simulations of this kind of plasma turbulence� and
there is no inverse cascade of energy from very short wavelengths� While there is a
small negative eddy viscosity at long wavelengths for this simulation� it is dynamically
insigni�cant compared to the linear drive and dissipation at long wavelengths� The
dominant e�ect of the eddy viscosity lies in a narrow region near the cuto� where
it becomes positive and large compared to the linear drive� The mechanism for this
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Figure ���� Eddy viscosity calculated for the simulation of Fig� ���� The transfer was calcu�
lated for a box of �	� �� modes �representing a simulation with half the actual resolution

to modes outside the box� but resolved by the simulation� The dotted line is the linear
growth rate� expressed as a viscosity by dividing by k�� The eddy viscosity has a small
negative component as k � �� but it is negligible compared to the linear driving term� The
eddy viscosity becomes important in a small region near the cuto�� The dashed line is the
parameterized hyperviscosity derived in Sec� �
��
� For these parameters and cuto� wave
number� the parameterization provides a good �t to the actual eddy viscosity�
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damping near the cuto� is the loss of �uctuation energy from resolved modes by the
coherent straining due to long�wavelength modes 	Kraichnan ������ This damping
mechanism is probably the dominant physical e�ect of subgrid modes in drift�wave
turbulence simulations� so the focus of this study is to e�ectively model the positive
eddy viscosity in the region near the cuto��

	���� Heuristic Scaling of the Eddy Damping Rate

Consider a �ctitious wave packet of short�wavelength �uctuations� localized in k space
and real space so that the long�wavelength advecting velocity �eld looks locally like
a shear �ow� Without loss of generality� consider the action of the local shear �ow�
VE�B	x� y� � ����ybx� where the shearing time is denoted by �� The advection part
of the continuity equation then has the form of a shear �ow in Fourier space as well�

�

�t
eni	k� � ���

�

�ky
kxeni	k�� 	�����

Fig� ��� illustrates this process� The wave packet will be advected in k space in a
particular direction depending on the local shear� The random variations of the local
shear will thus lead to a random�walk di�usion of this wave packet in k space� with
a net transfer of �uctuation energy to high k 	Leith ������

In the numerical simulation� however� the absence of the nonlinear interactions
with unresolved modes and the conservative nature of the nonlinearity cause the
cuto� in k space to act as a re�ecting boundary� Thus� in Fig� ��� the wave packet�
represented by the dark circle� would be re�ected back to long wavelengths instead of
leaving the system� A reasonable estimate of the amount of eddy damping required by
an eddy viscosity� therefore� would be given by the inverse of the time that a wave�
packet spends in the near�cuto� region of width �keddy where the eddy viscosity
operates� 	In reality a wave packet may enter and leave this region of k space several
times as it random walks to the dissipation range� so the eddy viscosity may be
reduced from this estimate�� For this example� the velocity of the packet in k space
is ���kx so the time it spends in the edge region is �kx

���keddy� An eddy�damping
rate of the form

�eddy	k� � ����kc�keddy
��f

�
kc � k

�keddy

�
	�����

would therefore e�ectively damp �uctuations being sheared to high wave number�
The maximum damping rate given by the theoretical enstrophy�range eddy viscos�
ity de�ned in Eq� 	���
� scales as 
eddy	kc�kc

� 	 ���kck�
�� while ��eddy	kc�kc� �

���kc�keddy
��� so the same basic scaling is obtained if k� is identi�ed with �keddy�
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Figure ���� Heuristic picture of a �uctuation wave packet undergoing shear� As discussed
in Sec� �
����
� the region of signi�cant eddy viscosity near the cuto� �the grey region
� acts
as an absorbing bu�er for �uctuation energy that would leave the system unaided if the
system were truly unbounded�

	���� Hyperviscosity

Hyperviscosity is de�ned as a damping term of the form

�d
k

� �
h	jkj�kc�p� 	�����

where p is larger than two� Hyperviscosity has been used as a numerical tool for
simulating high�Reynolds�number turbulence in order to provide an arti�cially narrow
dissipation range in the resolved modes� e�ectively increasing the extent of the inertial
range simulated for a given resolution 	Borue and Orszag ������ Hyperviscosity has
been regarded as an arti�cial damping term that does not attempt to estimate the
subgrid interaction� Authors have� however� viewed hyperviscosity as a kind of subgrid
model in the way that it serves as a sink for small�scale �uctuation energy 	Basdevant
and Sadourny ������

The choice of power p and size of the hyperviscosity 
h is rarely discussed in the
literature� Typically the size of the damping is set experimentally so that a dissipation
range appears within the resolved modes� Studies of �D Navier
Stokes turbulence
	Basdevant and Sadourny ����� have found that large powers 	p � ��� work well�
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but that the optimal choice depends on the resolution of the simulation� With insu��
cient damping at the cuto�� �uctuation energy will tend towards equipartition in the
Fourier modes leading to a spectrum )	k� � k towards the cuto�� which disagrees
with the converged dissipative result� If the power used is too small� then damping
that is su�cient to prevent unphysical behavior at the cuto� will introduce signi�cant
damping at long wavelengths and strongly a�ect the results� On the other hand� there
must clearly be an upper limit to the power used� For a very high power there would
be virtually no damping for almost all the modes except for a few modes near the
cuto� that would be extremely damped� The results would be similar to performing
a simulation with those modes removed and no damping on the remaining modes�
This behavior may be considered analogous to impedance matching at the end of
an electrical cable� where strong re�ections occur if the load impedance is either too
small or too large�

The constant 
h is typically chosen so that modes near the cuto� experience
damping that is large compared to the eddy turnover rate� An arti�cial dissipation
region is introduced into the resolved modes that is much narrower in k space than
the dissipation region given by the usual k� damping term� If the precise form of
the dissipation does not a�ect the large�scale dynamics� then the use of arti�cial
damping terms like hyperviscosity can yield signi�cant savings in computation by
greatly reducing the required resolution�

	�� Hyperviscosity as a Model for Eddy Viscosity

The exact form of the eddy damping depends on the detailed nature of the saturated
spectrum and the mode�mode coupling to unresolved modes� If one could accurately
predict the eddy viscosity from theory� then there would be no point in performing
numerical simulations� There are a large number of models for drift�wave turbulence�
each of which will saturate with a di�erent spectrum� so in general one should expect
a di�erent eddy viscosity from that predicted for Navier
Stokes turbulence by Kraich�
nan 	Kraichnan ������ Hence we are motivated to parameterize the basic features of
the eddy viscosity in terms of the large�scale �ow�

Hyperviscosity provides signi�cant damping in a narrow region near the cuto�
wave number� just as the calculated eddy damping for this model does 	Fig� �����
An obvious method of �xing the two hyperviscosity parameters� the power p and
magnitude M in Eq� 	������ is to match the width and overall damping rate with
the calculated eddy�damping term� The width and the damping are functions of the
large�scale �ow� so to apply the results to simulations� quantities corresponding to the
long�wavelength scale k� and eddy circulation time � must be de�ned� A surrogate
for the long�wavelength eddy turnover time is the volume�averaged shearing rate

S	t� �

�
�

LxLy

Z Lx

�

Z Ly

�
S	x� y� t�� dy dx

����
� 	�����
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Figure ���� Hyperviscosity power predicted from direct numerical simulations�

An average wave number of the large scales is given by dividing the rate of shear by
the root mean square of the velocity �eld�

kav � S

�
�

LxLy

Z Lx

�

Z Ly

�
Vx

� � Vy
� dy dx

�����
� 	�����

We will use the average wave number kav as an estimate for the long�wavelength
scale k� and the inverse rate of shear S	t��� as an estimate for the eddy circulation
time ��

The hyperviscosity used for the simulations considered here introduces a damping
term of the form

�h � �M
��

kx
kxc

�p

�

�
ky
kyc

�p�
	�����

into the model� Eq� 	���
�� by setting �d
k

� �h� This hyperviscous damping term �h can
be compared to the damping rate 
eddy	k�k� given by the theoretical eddy viscosity of
Eq� 	���
�� and to the heuristic eddy damping rate de�ned in Eq� 	������ The width
of the theoretical eddy viscosity scales with the long�wavelength scale k� while the
width of this hyperviscosity scales as kc�p� so the power should scale as p � kc�kav�
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Strong Turbulence

Medium Turbulence

Weak Turbulence

Figure ���� Hyperviscosity magnitude predicted from direct numerical simulation�

Comparing the magnitude of the three damping rates at the cuto� wave number kc
gives the scaling for the magnitude� M � Skc�kav�

An estimate for the power p and magnitude M was obtained from the numerically
calculated eddy viscosity by setting two moments in k space to zero by


 �
X
k

h
�
eddy	k�k� � �h

i
�


 �
X
k

h
�
eddy	k�k� � �h

i
min	kxc � jkxj� kyc � jkyj��

	���
�

This estimate matches the width and magnitude of the damping region given by the
hyperviscosity to that of the eddy viscosity� The estimates for the power and magni�
tude from simulations with a range of parameters and resolutions are summarized in
Figures ��� and ���� The scaling of the power 	and hence the width of the damping
region�� seems very robust� The estimate from these simulations gives

p � ���kc�kav � ����

M � 
��Skc�kav�
	�����

The scaling of the magnitude 	Fig� ���� is less robust than the scaling of the power
	Fig� ����� There may be other macroscopic quantities that can be used to re�ne the
estimate for the size of the damping�
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Figure ���� Convergence of simulations using hyperviscosity at moderate turbulence levels�
�The parameters �� � ����� 
 � ������ and � � ������ were used with periodic box size
���s� ���s�
 A hyperviscosity with an a priori �xed power p � �
 was used as is typically
done in simulations of isotropic turbulence� The damping was set to the rate of shear
��h � S
 to insure that resolved high�k modes were su�ciently damped� The large�scale
average wave number kav calculated from the highest�resolution simulation is included for
reference�

Note in Fig� ��� that the largest variation in estimates for the magnitude of the
hyperviscosity 	hence the overall eddy damping rate� occurs for low mean shear�
In the weak�turbulence regime� the e�ects of wave dispersion are comparable to or
larger than those from the nonlinear mode coupling� The magnitude scaling proposed
here is based on the nature of �D neutral��uid turbulence where there is no wave
physics� Some measure of the wave dispersion could prove useful in improving the
parameterization� 	On the other hand� it will be shown in the next section that
the dissipation model has less impact on the accuracy of simulations in the weak�
turbulence regime��

	�� Tests of Damping Models

Simulations were performed for a range of parameters� and grid sizes ranging from
��
 �� to ���
 ��� to test the performance of three dissipation models against each
other and against the use of no dissipation model� An ordinary hyperviscosity was
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Figure ���� Convergence of simulations using no added dissipative terms for the same
choice of parameters used in Fig� 
��� The lower�resolution results failed to give reasonable
results in this case�

tested with power p � �� and coe�cient set based on the rate of shear� 
h � S� The
Smagorinsky eddy viscosity was tested with the constant Cs � 
�� chosen arbitrarily�
Based on the results from the previous section� the parameterized hyperviscosity was
tested with power p � ���kc�kav � ��� and magnitude M � 
��S	t�kc�kav�

Typically simulations of isotropic turbulence will use an a priori �xed�power hy�
perviscosity to provide the necessary damping� Resulting spectra for simulations
using the �xed�power hyperviscosity are shown in Fig� ��� for the parameter choice
that gave moderate levels of turbulence� The rate of transfer of �uctuations to short
wavelengths scales with the rate of shear S� so the choice of a hyperviscous damp�
ing of the form S	k�kc�p corresponds to setting the dissipation wave number to a
�xed fraction of the cuto� wave number kc� 	The dissipation wave number is the
scale at which the damping of the conserved quantity becomes dynamically signif�
icant�� The spectrum at long wavelengths observed in simulations 	Borue ����� is
a slowly changing function of Reynolds number for the �D Navier
Stokes enstrophy
cascade where hyperviscosity is the primary source of dissipation� Since the physics
of this drift�wave model is dominated by production and dissipation of �uctuations
at long wavelengths 	see Fig� ����� there should be an even weaker dependence of the
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Figure ���� Convergence of simulations using the Smagorinsky eddy viscosity with Cs � ����
for the same choice of parameters used in Fig� 
���

long�wavelength saturation on the precise details of the dissipation range� Moving
the hyperviscous dissipation scale with the cuto� allows us to resolve more of the
small�scale dynamics with increased resolution� The spectra are almost identical at
long wavelengths for grid sizes ���
 ��� and ���
 ���� so we are con�dent that the
��� 
 ��� case well represents the converged solution�

The results of simulations using no eddy viscosity or hyperviscosity term are shown
in Fig� ��� for comparison� It is well known that lack of an eddy viscosity leads to
unphysical results in Navier
Stokes turbulence when the small�scale dissipation wave
number exceeds the cuto�� One might think that since dissipation from terms that
model Landau damping at long wavelengths is the dominant drain of energy� then
the transfer to small spatial scales can be completely ignored� From the results� this
hypothesis is clearly only partially true� Given su�cient resolution� the spectrum
converges to the reference spectrum obtained from the highest�resolution hypervis�
cosity run� The lower resolution runs� however� give wildly inaccurate results despite
the fact that the lowest resolution considered here 	�� 
 ��� resolves the primary
production and dissipation wave numbers in Fig� ���� Drift�wave turbulence will typ�
ically exhibit only a moderate separation of scales between the spectral peak and the
dissipative range� so it is practical to perform �D simulations with su�cient resolution
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Figure ���� Convergence of simulations using the parameterized hyperviscosity �p �
��	kc�kav � ���� M � ���Skc�kav
 for the same choice of parameters used in Fig� 
���

that an eddy viscosity or hyperviscosity term is unnecessary� On the other hand� for
�D simulations of drift�wave turbulence� the reduction in required resolution can be
signi�cant�

Performance of the Smagorinsky eddy viscosity with constant Cs � 
�� for the
same parameter choice is shown in Fig� ���� Again� given su�cient resolution� the
spectrum converges to the reference spectrum� Results at long wavelengths 	k�s �

��� for lower�resolution runs are better than those obtained using no additional dis�
sipation terms but not as good as those obtained using a hyperviscosity� Choosing a
larger value of the constant Cs will improve the results somewhat at lower resolution
but degrades the results for the ���
 ��� case� The constant Cs is probably not uni�
versal for the kind of turbulence studied here� in contrast to the case of the inertial
range in Navier
Stokes turbulence� A fundamental problem with applying any eddy
viscosity that gives damping scaling as k�� however� is that providing su�cient damp�
ing for modes near the cuto� forces one to introduce a signi�cant arti�cial damping
into the long�wavelength modes that dominate the nonlinear physics�

Simulation results using the parameterized hyperviscosity are shown in Fig� ����
In this case� results at low resolution are obtained that are superior to those from all
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Figure ���� Convergence of the measured �ux as a function of resolution for the case of
weakly driven turbulence� �The parameters �� � ����� 
 � ����� and � � ������ were
used with periodic box size ���s � ���s�
 The �ux is normalized to the �ux measured by
a reference simulation where kc�kav � ��� In this case the nonlinear transfer to shorter
wavelengths is a small e�ect� so the use of a subgrid damping term is unnecessary�

other approaches considered in this study� The performance of the parameterized hy�
perviscosity indicates that it provides a reasonable model of the actual eddy�damping
process� Note that in the lowest�resolution run here a signi�cant portion of driven
modes lies beyond the cuto� wave number� so the spectrum falls below the reference
spectrum� It is possible that even better results may be obtained for low�resolution
simulations by modeling the transfer of energy from unresolved small scales to re�
solved long wavelengths by adding a negative term to the eddy viscosity to model
this backscatter�

To summarize the convergence properties with various dissipation models� we need
to de�ne a measure of the resolution� The cuto� wavenumber kc is a natural measure
of the simulation resolution� but there are several choices of wavenumbers that the
cuto� can be normalized to� The long�wavelength scale kav de�ned in this study is a
natural choice� which gives kc�kav as a measure of resolution� This de�nition seems
unnatural to those used to dealing with �uid turbulence simulations� One could argue
that the cuto� wavenumber should be normalized to some dissipation wavenumber�
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Figure ���
� Convergence of the measured �ux as a function of resolution for the cases of
moderately driven turbulence� �See Fig� 
�� for the parameters�
 The �ux is normalized to
the �ux measured by a reference simulation where kc�kav � ��� In this case the nonlinear
transfer is su�ciently strong that the simulations will blow up with no damping term for
lower�resolution runs� A hyperviscosity with large exponent outperforms the Smagorinsky
viscosity�

For these simulations� the bulk of the dissipation occurs at long wavelengths� so
a dissipation wavenumber de�ned for the Landau damping term would be � kav�
One could de�ne a dissipation wavenumber in terms of the hyperviscous dissipation
only� With the parameterized hyperviscosity� however� this dissipation wavenumber is
forced to lie near the cuto� wavenumber� For lack of a better de�nition of resolution�
we therefore use the quantity kc�kav� which can be viewed as a kind of !Reynolds�
number for the inertial range part of the simulation� The true solution can be viewed
as the in�nite !Reynolds� number limit� Since the dynamics of the turbulence in
these simulations seems to be dominated by the long wavelength production and
dissipation� we expect the results to be insensitive to any measure of the scale range
of the short�wavelength !inertial range��

Convergence of the measured �ux is summarized for simulations of weakly driven�
moderately driven� and strongly driven turbulence 	Figures ���� ���
� and ���� respec�
tively�� In each case� the measured �ux is normalized to a reference value obtained
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Figure ����� Convergence of the measured �ux as a function of resolution for the cases of
strongly driven turbulence� �See Fig� ��� for the parameters�
 The �ux is normalized to the
�ux measured by a reference simulation where kc�kav � ��� The results are similar to those
obtained for the case of moderately driven turbulence �Fig� 
���
�

from a high�resolution 	grid size ��� 
 ���� simulation using hyperviscosity� In all
cases� the most reasonable results obtained at lower resolution were obtained using
the parameterized hyperviscosity or the k�
 hyperviscosity� For the moderate� and
strong�turbulence cases� one obtains reasonable results at resolutions at least a fac�
tor of � smaller than those necessary for simulations with no added dissipation� For
the case of weakly driven turbulence� however� the nonlinear coupling to unresolved
modes is less important and there is little di�erence between any of the models used�
In summary� a hyperviscous damping term works e�ectively in drift�wave simulations
at low resolutions 	working down to kc�kav � �� and moderate to strong levels of
turbulence�

	�� Resolution Requirements

The simulations performed in this study indicate that if the cuto� wave number is
at least a factor of � or so greater than the long�wavelength scale kav 	or roughly a
factor of � larger than the spectral�peak wave number�� then reasonable results can
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Figure ����� Eddy viscosity calculated for a low�resolution simulation at moderate turbu�
lence levels of turbulence� �See Fig� 
�� for the parameters�
 In this case� the parameterized
hyperviscosity grossly overestimates the damping� Note that the calculated eddy viscosity
is anisotropic in this case and has a signi�cant negative component at long wavelengths�
Simulations at this resolution estimated kc�kav � ��

be obtained with the use of a hyperviscosity� There are several sources of error in
calculating macroscopic quantities such as the �ux from lower�resolution simulations�
Contributions to the �ux from unresolved modes may be signi�cant or the resolved
modes may fail to saturate at the correct level� Incorrect saturation levels may be
due to the failure of our parameterization to model the eddy viscosity or from the
failure of eddy viscosity to model the physics of unresolved modes�

For the lowest resolution simulations considered in this study� the contribution to
the �ux from unresolved modes is too small 	�* or less� to explain the discrepancy
between the calculated �ux at low and high resolution� As is clear from the spec�
tra in Figures ��� and ���� the error in the calculated �ux at the lowest resolution
comes from the failure of resolved modes to saturate at the correct level� The eddy
viscosity calculated for grid size �� 
 �� for moderate levels of turbulence is plotted
in Fig� ����� The parameterization overestimates the eddy viscosity signi�cantly in
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Figure ����� Comparison of simulations at low resolution using hyperviscosity and the
calculated eddy viscosity in Fig� 
���� �At this resolution� the Smagorinsky eddy viscosity
gives very poor results� and simulations with no added dissipative term blow up�


this case� As well� the calculated eddy viscosity is signi�cantly anisotropic and the
negative viscosity at long wavelengths is of size comparable to the positive portion
that the parameterization models� For comparison� the calculated eddy viscosity
was used in a simulation at this resolution� The resulting spectrum is shown com�
pared to the hyperviscosity simulations and the high�resolution reference spectrum in
Fig� ����� Using the calculated eddy viscosity gives very accurate results in this case�
The �ux calculated from this simulation is within �* of the �ux calculated from the
highest�resolution run�

The current limits of the parameterized hyperviscosity are therefore clearly due
to its failure to model accurately the eddy viscosity at low resolution� Future work
will attempt to improve the parameterization of the magnitude of the hyperviscos�
ity� generalize the parameterization to provide anisotropic damping� and possibly to
incorporate a model for the negative viscosity at long wavelengths� Also� it may be
useful to examine the e�ects of wave dispersion on the eddy viscosity� It is not clear
from this work which of these improvements will have the greatest e�ect on improving
the accuracy of low�resolution simulations�
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	�� Summary

A new parameterized hyperviscosity� Eqs� 	����� and 	������ was derived by analyzing
the eddy viscosity calculated from simulations with a range of parameters and resolu�
tions� Simulations using the parameterized hyperviscosity perform somewhat better
than those using hyperviscosity with �xed power� and signi�cantly better than those
using no extra damping term or a Smagorinsky�type eddy viscosity� Accurate results
are obtained provided the cuto� wave number� kc� is approximately four or more
times greater than the characteristic wave number kav of the advecting velocity� At
lower resolutions� the parameterization fails to accurately model the eddy viscosity�

Because this hyperviscosity is based on physics generic to most drift�wave turbu�
lence� application to more complete models is straightforward� This hyperviscosity is
very useful computationally� since reducing resolution requirements by even a factor
of � reduces the computational requirements by a factor of � in two dimensions� or
�� in three dimensions�



Chapter 	

Extensions to Three Dimensions

The �D drift�wave model introduced in Chapter � gave insight into the basic physics
of energy transfer to subgrid�scale modes due to the shearing action of the E�B
velocity� That model does not even attempt to capture the linear physics of ITG�
driven instabilities� however� and is therefore of no use for predicting experimental
results� A generalization to three dimensions of the parameterized hyperviscosity
described in Section ��� is proposed here� The hyperviscosity model was inserted into
the toroidal gyro�uid code developed by Beer� Dorland and Hammett 	Beer et al�
����� Hammett et al� ����� Beer ������ a comprehensive �uid moment code in �ux�
tube coordinates 	Beer et al� ������ which accurately models the linear physics of
ITG�driven instabilities for a wide range of parameters�

The generalized �D hyperviscosity proposed here correctly accounts for the mod�
i�cation of the e�ective eddy turnover time due to the fact that eddies in ITG tur�
bulence tend to be highly elongated along the �eld line� Due to the computational
cost of �D turbulence simulations� a comprehensive study of the performance of this
hyperviscosity has yet to be performed� Several simulations are presented here using
Numerical Tokamak Project 	NTP� test�case parameters that demonstrate that use
of this hyperviscosity is capable in this one case of reducing the required resolution
for a given accuracy by a factor of ��

Finally� simulations of a particular high�gradient regime are presented with a sat�
urated spectrum that peaks at an unusually long wavelength 	k��i � 
�
��� This
simulation could not be performed on the system currently being used for gyro�uid
simulations 	a Cray YMP� without the hyperviscosity model� Dorland discovered
a shift in the linear ITG physics to longer�wavelength instabilities for high�gradient
regimes 	private communication�� and suggests that this shift may be useful in ex�
plaining the experimental results concerning longer�wavelength modes in the near�
edge region of the tokamak 	Durst et al� ������

���
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Figure ���� The shearing of an eddy in �D ITG turbulence is illustrated� The dotted lines
represent an initial perturbation lined up in the direction of the magnetic �eld� A small
parallel gradient in the E�B velocity quickly results in an eddy with a large parallel wave
number�


�� �D Hyperviscosity

In �D ITG turbulence� eddies tend to be highly elongated along the magnetic �eld
lines� so the perpendicular wave number k� is much larger than the parallel wave
number kk� As the picture in Fig� ��� demonstrates� a small de�ection due to di�er�
ences in the E�B velocity at di�erent points along the �eld line can quickly lead to
large parallel wave number� 	In the discussion to follow� the variables x and y will be
used to represent coordinates perpendicular to the magnetic �eld and z will be used
to represent the coordinate along the �eld line�� Since the E�B velocity only has
perpendicular components� the velocity shear tensor takes the form

rVE�B �

�BBBB�
rkVE�Bx

r�VE�B

rkVE�By


 
 


�CCCCA � 	����

Note that some of the components of this tensor are zero� and the parallel gradients
are much smaller than the perpendicular ones� One can see from the picture in
Fig� ���� however� that the elongation of the modes enhances the e�ect of the parallel
shear in the advecting velocity�

A strain rate de�ned analogously to the one in Eq� 	���� would e�ectively ignore
any contribution from the parallel gradient terms in taking the mean square of the
components of the shear tensor displayed in Eq� 	����� Splitting the problem into
perpendicular and parallel components yields a simple approach for estimating the
appropriate damping term for this situation� The perpendicular strain rate S� is
given by applying the strain�rate de�nition 	���� to the perpendicular component
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Figure ���� Convergence in the number of parallel grid points for the NTP test case with
and without the parallel hyperviscosity term�

of the strain tensor r�V�� The average perpendicular wave number is de�ned by
k�av � S��VRMS as in two dimensions �Eq� 	����� � A parallel strain rate is de�ned
analogously by

Sk	x� y� z� t� �

r�
rkVx

	�
�
�
rkVy

	�
� 	����

and so therefore is the average parallel wavenumber kkav � Sk�VRMS� The shearing
velocity in k space of a typical eddy due to the parallel gradients scales roughly as
jk�jhSki� so the heuristic arguments of Section ����� suggest that the damping near
the cuto� in parallel wave�number space should be of the order jk�jhSki�kkav� Hence�
the form of the subgrid dissipation term for �D used here is

k�
eddy	k� � Ck
hSkijk�j
kkav

�
kk
kkc

�pz

� C�
hS�ik�c
k�av

��
kx
kxc

�px

�

�
ky
kyc

�py�
�

	����

As in the �D case� the powers should scale with the cuto� wave numbers� px �
kxc�k�av� py � kyc�k�av� and pz � kkc�kkav� 	For simplicity� the initial study in �D
takes the constant Ck � C� � 
�� based on the �D results and �xes all the powers
px � py � pz � � for convenient implementation� Allowing the power to vary may
improve the results� but the simulations were performed at fairly low resolutions
where the power predicted from the �D study should be close to � anyway� so �xing
the powers is a reasonable approximation��
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Figure ���� Convergence in the number of poloidal modes for the NTP test case with and
without the perpendicular hyperviscosity term�


�� Numerical Tokamak Project Test Case

The hyperviscosity model was �rst benchmarked in the toroidal gyro�uid code Gri�n
on the Numerical Tokamak Project 	NTP� Test Case set of parameters taken from
TFTR L�mode shot +���
�� bs � ���� q � ���� Ln�R � 
��� �i � �� and Ti � Te�
Convergence with respect to the physical box size was considered by Beer 	������
Convergence with the number of modes for a �xed box size is examined here�

To test the parallel damping term Ck� the code was run with �� poloidal mode
numbers� for �� ��� and �� points along the �eld line� with 	Ck � 
��� and without
	Ck � 
� the parallel damping term� The parallel wave�number spectra for these
simulations are shown in Fig� ���� Neither of the low�resolution runs with � points
along the �eld line have spectra that match the highest�resolution simulation� When
the parallel damping term Ck is included� the parallel spectrum with �� grid points
is virtually identical to that obtained with �� points� whereas there are errors at this
resolution with no parallel damping� These results indicate that it is possible to save
a factor of � in resolution in this case while maintaining the same accuracy 	provided
the largest simulation represents the converged solution��

The code was also run with �
� ��� and �� poloidal mode numbers� with ��
points along the �eld line� with and without the perpendicular damping term C��
The perpendicular spectra for these simulations are shown in Fig� ���� The longest
wavelengths in the lowest�resolution simulations show large deviations from the high�
resolution simulation� both with and without the damping term� In the medium�
resolution simulations� the spectra match the high�resolution spectrum very well both
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Figure ���� Critical temperature gradient of the ITG mode as a function of wave number for
a regime with large density gradient� There is a sudden transition at temperature gradients
around R�LT � �� at which point signi�cantly longer wavelengths are driven unstable�

with and without the damping term� The perpendicular damping term appears to
improve the behavior at short wavelengths� but if one is only interested in accu�
rately modeling the long�wavelength modes responsible for transport� then the new
perpendicular hyperviscosity term does not seem to provide any bene�t in this case�


�� Long�Wavelength Instability

Near the edge of a tokamak� trapped ion e�ects and large temperature gradients
may be a source of drive for long�wavelength instabilities� Calculating the nonlinear
evolution of such modes becomes di�cult if simulations are required to resolve the
peak of the linear growth rate 	typically around jk�j�i � ����� To obtain convergence
of simulations without added dissipation� it is often necessary to resolve modes with
wavenumbers out to jk�j�i � � due to unstable modes in this range� This situation
is precisely where the hyperviscosity model has the greatest potential for use� It
is necessary to eliminate small�scale modes to perform the simulations� but in this
case there may not be a su�cient number of resolved damped modes to allow the
simulation to saturate�
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Figure ���� Plot of the saturated poloidal spectrum for the simulation discussed in this
section� The dotted line indicates the spectrum obtained in a simulation with no subgrid
model�

In Fig� ���� the critical temperature gradient of the ITG mode is plotted as a
function of the poloidal wave number for the parameters bs � �� q � �� Ln�R � 
���
and r�R � 
��� As the temperature gradient is increased� there is a sudden transition
around R�LT � �� at which point signi�cantly longer wavelengths are driven unstable�
For most typical parameters 	such as the NTP test case in the previous section�� the
saturated poloidal wave�number spectrum peaks for ky�i � 
��� In the near�edge
region of a tokamak� gradients as large as those considered here are typical� and
there is experimental evidence that �uctuations at signi�cantly longer wavelengths
ky�i � 
�
� are present 	Durst et al� ������

The edge�like parameters bs � �� q � �� Ln�R � 
��� r�R � 
� �i � �� and
Ti�Te � � were chosen to test hyperviscosity in this regard� The simulation box had
�� grid points along the �eld line by �� points toroidally by �� points in the radial
direction and the � � � moment gyro�uid equations were used� Although the fastest
growing linear modes are not resolved� the turbulence saturates and is dominated
by long�wavelength modes� The saturated spectrum is shown in Fig� ���� Without
using any subgrid model in this case� the spectrum tends towards a non�physical
equipartition results 	the dotted line in the �gure�� This result can be contrasted
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Figure ���� Calculated thermal di�usivity for the long�wavelength ITG simulation consid�
ered in this section� The dotted line indicates the heat �ux predicted by the IFS�PPPL
model �Kotschenreuther et al� ����
 for these parameters�

to the NTP test case discussed in the previous section� where a comparable number
of modes is capable of resolving enough unstable modes that a subgrid model is
unnecessary�

The thermal di�usivity calculated from this simulation is plotted in Fig� ���� The
dotted line gives a reference di�usivity predicted by the IFS
PPPL model� a mixing�
length�based parameterization of the thermal di�usivity that has had signi�cant suc�
cess in explaining the transport near the core of tokamak discharges� �The value of
�IFS��PPPL displayed here is calculated from the formula of Dorland et al� 	������
which di�ers slightly in the treatment of trapped electron physics from the �nal �IFS

PPPL� model as reported by Kotschenreuther et al� 	������ While this simulation
has saturated at signi�cantly longer wavelengths than is typical� the predicted heat
�ux is not signi�cantly higher� 	Experimentally measured heat �uxes in the near�
edge region are typically much larger than the parameterization� This simulation
indicates that the shift to longer�wavelength turbulence may not be responsible for
the increased heat �ux� More work is necessary to answer this question conclusively�
however��

The actual damping rate produced by the perpendicular part of the hyperviscosity
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Figure ���� Plot of the damping from the hyperviscosity for a given poloidal wave number
�with kx � �
 compared with the fastest linear growth rate�

is plotted in Fig� ��� against the linear growth rate of the most unstable mode at a
given poloidal wave number� The subgrid damping rate is insigni�cant in comparison
to the linear growth rate for most of the resolved modes� including those that form
the peak of the saturated spectrum� The damping rate becomes signi�cant only for
modes near the cuto�� This comparison serves as a useful check on the consistency
of the model� One could question the use of a damping term that has a signi�cant
e�ect on the dominant modes in the saturated spectrum�


�� Summary

Heuristic arguments concerning the e�ect of velocity shear on elongated eddies were
used to extend the �D parameterized hyperviscosity of Eqs� 	����� and 	����� to ap�
plications in three dimensions where eddies are highly elongated along the additional
dimension� This new �D hyperviscosity �Eq� 	���� is essentially the �D hyperviscosity
with the addition of a parallel damping term that scales with parallel velocity shear
enhanced by a factor of jk�j�kk�

The �D hyperviscosity was tested in a comprehensive toroidal gyro�uid turbulence



	��� SUMMARY ��


code 	Beer ������ Simulations of the Numerical Tokamak Project Test Case set of
parameters indicates that the new heuristically derived parallel damping term can
reduce the required parallel resolution by a factor of � in some cases� A set of high
gradient edge�like parameters were simulated to demonstrate that there are conditions
under which the saturated spectrum shifts to signi�cantly longer wavelengths 	k��i �

�
��� These nonlinear simulations could not be performed without the use of the
subgrid damping term proposed here�

To rigorously test the hyperviscosity� one must of course go to higher�resolution
simulations� Where higher�resolution simulations are possible� the results considered
so far indicate that use of hyperviscosity improves the accuracy of the predicted
saturation levels� This model is computationally useful in three ways� it can provide
plausible results in situations where a fully resolved simulation is impossible due to
time or memory constraints� it can improve the accuracy of resolved simulations� and
it can enable one to perform larger numbers of low�resolution simulations for the
purpose of parameterizing the heat �ux as a function of parameters�
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Chapter 


Conclusions

��� Moment Closures in One Dimension

A general linear closure for the hierarchy of moment equations of the stochastic os�
cillator problem is introduced here� based on the Landau��uid approach to obtaining
�uid moment closures for collisionless plasmas 	Hammett and Perkins ���
�� The n
closure coe�cients for the n�moment system are computed using conditions obtained
by matching the response function for the closed moment system to the exact re�
sponse function q times in the � � 
 limit and n � q times in the � � � limit�
Results concerning the form of this closure are easily expressed for closures written
in terms of polynomial moments where the polynomials are orthogonal with respect
to the underlying distribution�

There is strong numerical evidence that the linear response of the closed moment
system converges to the exact response for any choice of closure with increasing num�
bers of moments n� as long as there is some dissipation in the closure for the highest
moment and the underlying distribution function is su�ciently smooth 	i�e�� can be
represented as a Gaussian times a few low order Hermite polynomials�� Convergence
can be accelerated with a judicious choice of the closure dissipation� and is faster if
q scales with n� However� if the underlying distribution function contains small scale
features or sharp discontinuities 	so its expansion in terms of Hermite polynomials
requires high order polynomials�� then convergence may be very slow� and a very
large number of moments would be required� In some examples with sharp features
in the distribution function� there was no convergence with n unless q also increased
proportional to n� The poles of the approximate response functions were found to lie
in the lower�half complex plane for a large number of choices of n and q�

The linear response to a potential perturbation given by the one�dimensional
Vlasov equation has been shown to be equivalent to the stochastic oscillator problem�
The �uid moment closure problem in this case is therefore equivalent to a statistical
moment closure problem� It has also been shown that the �uid moments of the Vlasov
equation are equivalent to Hermite polynomial moments� which in turn are equivalent

���
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to coe�cients in the Hermite series that has traditionally been used in simulations of
the Vlasov equation 	Armstrong et al� ���
��

A model nonlinear problem� the plasma echo� was considered as a simple nonlinear
test of the closure� The plasma echo is essentially the second�order component of
the nonlinear response expanded in the limit of small perturbations� The second�
order response has a simple exact solution 	���� in the limit where the self�consistent
potential is dropped� This exact solution was used to gauge the weakly nonlinear
performance of moment systems with closure�

An essential factor in resolving the echo is having a large enough number of mo�
ments� 	See Figs� ��� and ����� The results� summarized in Fig� ���� show that mod�
eling the second�order response for interaction time t��t� requires n � �	t��t��k�vt �

moments� A very large number of moments would therefore be required to model a
large time separation t� � t�� Physically the large number of moments are required
because the echo involves nonlinear interactions that un�phase�mix very �ne scales
in velocity space� which require many moments or Hermite polynomials to be fully
represented� In the plasma echo problem� a simple model of the rate of decay of
perturbations due to a �nite collision rate 
 indicates that n � 	kvt�
���� moments
are su�cient to resolve all second�order e�ects�

This physics of the echo problem appears to be related to the problem pointed
out by Mattor 	����� that the Landau��uid equations miss certain nonlinear e�ects
in some weak�turbulence regimes 	or at least would require a very large number of
moments to accurately represent them�� However� we believe it reasonable that the
Landau��uid approximations will usually be adequate in strong turbulence regimes
where the decorrelation times �c are relatively short� i�e�� if the e�ective t� � t� � �c
is relatively small or the e�ective 
 � ���c is relatively large� �Hammett et al� 	�����
and Dorland 	����� discuss these issues in greater detail� This picture is supported by
comparisons between Landau��uid simulations and particle simulations of nonlinear
slab �D ITG turbulence 	Parker et al� ������ which found fairly good agreement in the
turbulent heat di�usivity �i� though there were � �
* di�erences in the �uctuation
level of j�j� More work on this would be useful� and detailed Landau��uid(particle
comparisons in toroidal geometry have recently begun but the results are not yet
clear�

In summary� the picture which emerges from our work is that� while the Landau�
�uid closure approximations might be expected to work well in strong�turbulence
regimes where decorrelation rates are short and the dominant saturation mechanisms
are E�B transfers from unstable modes to Landau�damped modes at high k� one
should be aware that the approximations break down 	or require a large number of
moments to converge� in cases such as the plasma echo or certain weak�turbulence
regimes 	Mattor ������ where �ne�scale structures in velocity space are important in
the nonlinear physics�
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��� Subgrid�Scale Closures

A new parameterized hyperviscosity� Eqs� 	����� and 	������ was derived by analyzing
the eddy viscosity calculated from simulations with a range of parameters and resolu�
tions� Simulations using the parameterized hyperviscosity perform somewhat better
than those using hyperviscosity with �xed power� and signi�cantly better than those
using no extra damping term or a Smagorinsky�type eddy viscosity� Accurate results
are obtained provided the cuto� wave number kc is approximately four or more times
greater than the characteristic wave number kav of the advecting velocity� At lower
resolutions� the parameterization fails to accurately model the eddy viscosity�

Because this hyperviscosity is based on physics generic to most drift�wave turbu�
lence� application to more complete models is straightforward� This hyperviscosity is
very useful computationally� since reducing resolution requirements by even a factor
of � reduces the computational requirements by a factor of � in two dimensions� or
�� in three dimensions�

Heuristic arguments concerning the e�ect of velocity shear on elongated eddies
were used to extend the �D parameterized hyperviscosity of Eqs� 	����� and 	�����
to applications in three dimensions where eddies are highly elongated along the addi�
tional dimension� The �D hyperviscosity was tested in a comprehensive toroidal gy�
ro�uid turbulence code 	Beer ������ Simulations of the Numerical Tokamak Project
Test Case set of parameters indicates that the new heuristically derived parallel damp�
ing term can reduced the required parallel resolution by a factor of � in some cases�
A set of high�gradient edge�like parameters were simulated to demonstrate that there
are conditions under which the saturated spectrum shifts to signi�cantly longer wave�
lengths 	k��i � 
�
��� These nonlinear simulations could not have been performed
without the use of the subgrid damping term proposed here�

��� Future Directions

The results in three dimensions are still somewhat preliminary in nature� Ideally one
would like to compute the transfer rates in the �D simulation to see if the magnitude
of the transfer in parallel wave�number space compared to the perpendicular transfer
corresponds to the heuristic predictions made in Section ���� The NTP test case
results seem to indicate that the transfer of �uctuation energy to high parallel wave
number may be more important physically than the transfers in perpendicular wave�
number space� Measurements of the eddy damping due to transfer in both directions
could provide useful insights into the nature of drift�wave turbulence saturation�

It would be interesting to apply the techniques of Chapter � to the more general
problem of toroidal�drift phase mixing that has been successfully modeled with �
�uid moment equations 	Beer and Hammett ������ One could imagine writing down
the general toroidal Landau��uid equations for the arbitrary vk

nv�
m moment 	or in

the appropriate orthogonal polynomials in vk and v�� and modifying a code to solve
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these equations for general n and m� Such a direct nonlinear turbulent test of the
convergence with the number of moments evolved would add to the justi�cation of the
Landau��uid approach to simulating drift�wave turbulence� This could compliment
related work of ongoing comparisons of particle and Landau��uid simulations 	Parker
et al� ������

Our approximations for both Landau damping �uid closures and sub�grid turbu�
lence closures focus on the net transfer from resolved scales 	in velocity or space� to
unresolved scales� There are cases however where inverse�transfers can occur from
unresolved scales to resolved scales� One might wonder if the closure approximations
could be extended in some way to to represent such inverse�transfers� perhaps as noise
source terms in resolved scales�

A fairly simple parameterization of the subgrid dissipation was constructed in this
thesis� As it stands� the parameterized hyperviscosity yields signi�cant improvements
for numerical simulations of drift�wave turbulence� Recently� renormalization�group
techniques have been successfully used to predict the subgrid transfer in the inverse
cascade range of �D turbulence 	Chekhlov et al� ����� and improved closure models
have successfully predicted the nonlinear transfer rates for anisotropic �D drift�wave
turbulence 	Bowman and Krommes ����� Hu et al� ������ It is possible that use of
one of these theories may lead to more accurate estimates of the subgrid dissipation�
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