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Abstract

I have enjoyed reading The Six Core Theories of Modern Physics, by Charles
F. Stevens (MIT Press, 1995), and it has helped refresh my memory and fill
in some gaps in my physics knowledge. I think this book can be useful for
beginning physics graduate students studying for qualifying exams, or for older
physicists (like myself) who want to brush up on some topics. I haven’t yet read
the whole book, but the parts I’ve read are clearly written and have concise
summaries of these fundamental theories, with derivations that are detailed
enough for someone with a physics training to follow easily.

In the process of reading it, I have found several typos and minor errors,
which are presented below for the benefit of others who read this book.

This document is available at http://w3.pppl.gov/˜hammett/talks/2001/core-
theories-errata.pdf.

Different books have different goals. Some concise summaries of physics try to be
more encyclopedic, and thus have a large collection of equations but have less room
for the derivations of the equations. This book is more selective and focuses on
some of the core theories of physics. I think it does a good job (at least in the
parts I’ve read so far) of providing the motivation for, and the derivation of, the
key equations. No physics textbook is at the right level for all people, but I’ve
found this to be at a good level for me, concisely rederiving the basics and go-
ing through to advanced results. For my notes on other books in this genre, see
http://w3.pppl.gov/˜hammett/courses/physics-summaries.
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I haven’t read the whole book yet, and this list doesn’t yet include all of the errors
I’ve found. (Are some of these errors fixed in the more recent paperback printing?)
Please let me know if you find errors in the errata.

In the following, “s.b.” stands for “should be”.

1 Chapter 1: Mathematics

p. 4, 2cd displayed equation; there should be a factor of 1/∆Su in front of the integral
on the RHS, so the equation reads

(∇× E)u = lim
∆S→0

1

∆Su

∮

∆Su

E · ds

1.1 Gram-Schmidt orthonormalization procedure

p.9, last two paragraphs describing the Gram-Schmidt orthonormalization procedure,
and continuing to the next page.

“Grahm-Schmidt” should be spelled Gram-Schmidt.

While Stevens defines the Gram-Schmidt procedure in a way that appears in many
linear algebra textbooks (which often deal with only real vector spaces), a small
modification to the definition of the procedure allows it to work for complex vector
spaces as well as for real vector spaces. Essentially all that is required is to interchange
the arguments in all of the inner products. This change in notation also follows more
closely the Dirac bra-ket conventions used in quantum mechanics, and represents the
key step of projection onto previous basis functions as an operator. To incorporate
this change, I would suggest replace the final paragraph on p.9 and the rest of the
description on p.10 (up to the section entitled “linear operators”) with the following:

To carry out the Gram-Schmidt procedure, start with an arbitrary basis {aj} of an
N -dimensional space. The goal is to turn this basis {aj} into an orthonormal basis
{ej}. Start by setting e1 = a1/||a1||, so e1 has a length of 1. Now define a vector
h = a2 − e1(e1, a2). The vector h is just a2 with the part of a2 that points in the e1

direction subtracted away. (We will later find that e1(e1, ·) is equivalent to Dirac’s
bra-ket notation |e1〉〈e1| used in quantum mechanics for the operator that projects
something onto e1.) To see this, look at:

e1 · h = (e1, a2 − e1(e1, a2)
︸ ︷︷ ︸

h

) = (e1, a2) − (e1, e1)
︸ ︷︷ ︸

=1

(e1, a2) = 0
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Thus h, constructed this way, is orthogonal to e1. Put e2 = h/||h||; we now have
two orthonormal vectors e1 and e2. Continue this process and construct, on the kth
step, a new h defined as

h = ak −
k−1∑

j=1

ej(ej, ak)

Now look at (en,h) for any of the en produced in the first k − 1 steps:

(en,h) = (en,

h
︷ ︸︸ ︷

ak −
k−1∑

j=1

ej(ej, ak))

= (en, ak) −
k−1∑

j=1

(en, ej)(ej, ak)

= (en, ak) − (en, ak) = 0

Again, h is orthogonal to each of the k − 1 orthonormal vectors en that have already
been constructed. We put ek = h/||h||, so that its length is 1. When this procedure
has been carried out over N steps, we will have generated N mutually orthogonal
vectors ej, all of length 1. Since these vectors are linearly independent (they are
mutually orthogonal), they form a basis for the space. This is the desired orthonormal
basis. [Note that the notation we have used for the Gram-Schmidt procedure works
equally well for real or complex vector spaces, the differences are handled by the
complex conjugate in the definition of the inner product. Sometimes the Gram-
Schmidt procedure is defined with the order of the inner products reversed, which
works only for real spaces unless the algorithm is complicated by explicit complex
conjugate operations.]

1.2 Other comments on the Mathematics chapter

p. 12: regarding the paragraph above the section labeled “Hermitian operators”: It is
not true that the elements of an arbitrary orthonormal basis are always eigenvectors
for all unitary operators. For example, consider the simple case

U =

[

0 −1
1 0

]

in this case, the eigenvalues are λj = ±i and the corresponding eigenvectors are
(1,±i)/

√
2, so the basis vectors (1, 0) and (0, 1) are not eigenvectors. (This conceptual

error on p.12 was first pointed out publicly by Jonathan Birge, in an amazon.com
review.) It is true that that all of the eigenvalues λj of a unitary operator must satisfy
|λj| = 1 so they can be written in the form eiθ. And it is true that an orthogonal basis
set can be constructed from the eigenvalues of U so that in that basis Uej = λjej.
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(I should say that despite this example of a small conceptual error in the book, I’ve
still found other parts of the book very insightful.)

One could fix this paragraph in the following way: In the first sentence, after “it must
be that”, insert “there exists an orthogonal basis set in which”. Delete the beginning
of 4th sentence, which says “We have just shown that vectors in an orthogonal basis
of our space are eigenvectors for all unitary operators, and the corresponding”, and
replace it with just “The”.

p.15, 3rd-4th line: replace “How much to . . . ” with “How much do . . . ”.

p.15, the sentence around the second displayed equation. To make this equation cor-
rect for complex as well as real vector spaces, similar changes as for the Gram-Schmidt
orthonormalization section can be made. I thus suggest replacing this sentence with:

Any vector x is written
x =

∑

k

ek(ek,x) =
∑

k

xkek,

with components xk = (ek,x).

p. 16, the first displayed equation, etc.: The definition of ajk in the first displayed is
backwards from the usual conventions, and is not consistent with usage in the second
displayed equation on p.18, which does follow the usual conventions. To fix this, one
can either swap ajk to be akj in various places, or one can swap ej and ek in various
places. I will do the latter. Thus replace the 1st through the 3rd displayed equation
and surrounding text on p.16 with:

Aek =
∑

j

ejajk

where the coefficients ajk are those required for the jth basis vector ej in order to
express the vector Aek in components. Specifically, ajk = (ej,Aek), as can be seen
from the inner-product relation

(ej,Aek) = (ej,
∑

i

aikei) = ajk(ej, ej) = ajk

Since we know the effect A has on every basis vector, we automatically know the
effect on any vector at all. Take vector x and look at Ax. The effect of A on x is

Ax = A
N∑

k=1

xkek

︸ ︷︷ ︸

x

=
N∑

k=1

xkAek =
N∑

k=1

xk

∑

j

ejajk

︸ ︷︷ ︸

Aek

=
∑

j

ej

N∑

k=1

ajkxk

︸ ︷︷ ︸

yj
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p.16, 3rd line from the bottom: replace inner product to be (ej,Aek). Replace the
final displayed equation on this page with

(I)jk = (ej, Iek) = (ej, ek) = δjk

p.17, first displayed equation, suggest changing to:

(Ek)jm = (ej,Ekem) = (ej, δkmem) =

{

1 if j = m = k
0 otherwise

p.20, 3rd displayed equation and the line after it: to generalize this from real to
complex operators, replace the two appearances of K(x′, x) with K∗(x′, x).

p.21, In the second sentence after the 4th displayed equation, usually the basis vectors
{ek} are assumed to be orthonormal, so technically one should change this sentence
to read:

The basis {ek} is just the vectors (functions) {eikx/
√

2π}.

[Side note 1: It is interesting to note that basis set {ek} = {eikx/
√

2π} satisfies
somewhat similar properties for both the finite domain x ∈ (0, 2π) (where k takes on
discrete integer values)

(ej, ek) =
1

2π

∫
2π

0

dx e−ijxeikx = δjk

and for the infinite domain (where k is a continuous variable)

(ej, ek) =
1

2π

∫
∞

−∞

dx e−ijxeikx = δ(j − k).

Side note 2: There are many different Fourier transform conventions used in physics,
and Steven’s choice (in the last two displayed equations on p.20) is one of those
commonly used. However, another possibility would be to change the conventions for
the Fourier transform and its inverse in the two displayed equations on p.20 to be
more symmetric:

f(x) =
1√
2π

∞∑

k=−∞

Fke
ikx =

∑

k

Fkek

Fk =
1√
2π

∫
2π

0

dxe−ikxf(x) =
1√
2π

(eikx, f(x)) = (ek, f)

which would also have the advantage of more closely paralleling the discrete form
of a basis expansion, such as in the second displayed equation on p.15. We could
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then automatically define the matrix representation of an operator (the 2cd displayed
equation on p. 21) in an identical way as in the discrete case:

mjk = (ej,Mek) =
1

2π
(eijx,Meikx) =

1

2π

∫
2π

0

dx e−ijxMeikx.

With this convention, the first displayed equation on p.21 would become

Meikx =
∑

j

mjke
ijx

Likewise, the symmetric convention for Fourier transforms on an infinite domain
would replace the 3rd and 4th displayed equations on p. 21 with

f(x) =
1√
2π

∫
∞

−∞

dk f̂(k)eikx =
∫

∞

−∞

dkf̂(k)ek

f̂(k) =
1√
2π

∫
∞

−∞

dx f(x)e−ikx =
∫

∞

−∞

dx f(x)e∗

k = (ek, f)

However, the choice of Fourier convention is ultimately somewhat subjective and
Steven’s choice is widely used as well. But even for Steven’s Fourier convention, his
definition of mjk needs to be flipped to be consistent with the discrete case, and with
the sentence at the end of p.20. Thus the following change needs to be made.]

p.21, first two displayed equations: Some of the j and k indices need to be swapped
so that these two equations become:

Meikx =
1

2π

∞∑

j=−∞

mjke
ijx,

where

mjk =
∫

2π

0

dx e−ijxMeikx = (eijx,Meikx).

The above transcribes all of the errata and comments I have up through p.24 of the
Mathematics chapter. Looking over the rest of the chapter, the one topic I would
suggest adding are key results from complex analysis, including how to integrate
around poles in the complex plane, as this is a very powerful tool of theoretical
physics.

2 Chapter 2: Classical Mechanics

p. 65, lines 3, 4, and 7: ∂V/∂q s.b. −∂V/∂q, for the usual sign convention to relate
forces and potentials.

6



p. 65, line 5: likewise, dV s.b. −dV .

p. 69: 4th displayed equation from the bottom has a sign error, s.b.

ṗ = {p, H}

p.70: 2cd displayed equation, between the first and second “=” sign, qj s.b. pj.

3 Chapter 3: Electricity and Magnetism

p. 100: second displayed equation should read

force =
d

dt

(

∂U

∂q̇i

)

− ∂U

∂qi

(i.e., a dot was missing over the first appearance of qi).

p. 100-101: Starting with the second to last displayed equation, there are errors in
the intermediate equations and in some of the explanation (though the final result,
that the Lorentz force in the first Eq. on p. 100 can indeed be derived from the
potential U given in the 3rd equation, is still true). To clarify, I suggest replacing
everything from “Use the vector relationship ...” on p. 100 to the end of the chapter
on p. 101 with the following:

Use the “bac cab” vector relationship a×(b×c) = b(a·c)−c(a·b) = b(c·a)−(a·b)c
for the last term to get

v ×∇× A = (∇A) · v − v · ∇A = ∇(A · v) − v · ∇A,

where the gradient ∇ = ∂/∂x is evaluated at fixed ẋ = v. This means that, in terms
of the potentials,

f = q
(

−∇V − 1

c
∂tA +

1

c
∇(v · A) − 1

c
v · ∇A

)

.

We now have to show that we get the same result with the Euler-Lagrange prescription
starting from U . The gradient of U at once gives

∇U = q
(

∇V − 1

c
∇(v · A)

)

,
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and the d(∂U/∂q̇)/dt term, in three dimensions, gives (with nonstandard but obvious
notation)

d

dt

(

∂U

∂v

)

= −q

c

dA

dt
= −q

c
(∂tA + v · ∇A)

(As noted on p. 29, it is the total time derivative d/dt that appears in the Euler-
Lagrange equation, not just the partial derivative ∂/∂t.) Together, then, these two
components give the Lorentz force on a moving charged particle.

4 Index

p. 230 : Index entry for “Tenor” s.b. “Tensor”.
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