Kinetic Effects on Small Scale Plasma Turbulence & Magnetorotational Instabilities in Accretion Flows

Greg Hammett Imperial College, London & Princeton Plasma Physics Lab With major contributions from:

> Steve Cowley (Imperial College) Bill Dorland (Imperial College) Eliot Quataert (Berkeley)

LMS Durham Astro Symposium Aug 6, 2002

Idealized Problem: What happens to tail of Alfven wave turbulent cascade: e vs i heating?

Idealized Problem: What happens to tail of Alfven wave turbulent cascade: e vs i heating?

Kulsrud's formulation of kinetic MHD: anisotropic $P_{\perp} \& P_{\parallel}$, determined by solving drift kinetic equation for distribution function. ($\omega/\Omega_{ci} \sim k_{\perp} \rho_i \ll 1$) (Varenna 62, Handbook Plasma Physics 83)

Idealized Problem: What happens to tail of Alfven wave turbulent cascade: e vs i heating?

Answer requires more than MHD: collisionless kinetics, finite gyroradius. This is the regime of nonlinear gyrokinetic equations and codes developed in fusion energy research in 1980's and 1990's.

Overview

MHD Turbulence in Astrophysical Plasmas

- MHD turb. \Rightarrow Gyrokinetic turb. on small scales

Astrophysical Applications

- Turbulence in the Interstellar Medium
- Black Hole Accretion
- Solar Corona & Wind

Gyrokinetic Simulations Needed & In Progress

MHD Turbulence in Astrophysical Plasmas

- Believed to play a central role in star formation, the transport of angular momentum in accretion disks, scintillation of interstellar media ...
- Typically $\beta \sim 1$ rather than $\beta << 1$ (fusion regime)
- Turbulence usually Driven or Generated by MHD Instability
 - ρ_i/L ~ 10⁻¹⁰ << 1 (L ~ system size)
 - dominant ~ ρ_i scale turbulence due to cascade of energy from larger scales, not ITG or other ~ ρ_i scale instability

Turbulence in the Interstellar Medium

Power Spectrum Of Electron Density Fluctuations

Consistent with Kolmogorov

Wavenumber (m⁻¹)

Power law over ~ 12 orders of Magnitude ~5.4 Grand Pianos!

Density fluctuations change the index of refraction of the plasma & thus modify the propagation of radio waves: "Interstellar scintillation/scattering"

Incompressible MHD Turbulence

- View as nonlinear interactions btw. oppositely directed Alfven waves (e.g., Kraichnan 1965) $\omega = |k_{\parallel}| V_A$
- Consider weak turbulence where nonlinear time >> linear time
 (e.g., Shebalin et al. 1983) → → →

Resonance Conditions

$$\vec{k}_1 + \vec{k}_2 = \vec{k}_3$$
$$\omega_1 + \omega_2 = \omega_2$$

 $\Rightarrow k_{||1} + k_{||2} = k_{||3} \quad \& \quad k_{||1} - k_{||2} = k_{||3}$ <u>k_l cannot increase (true for 4-waves as well)</u>

Incompressible MHD Turbulence

- View as nonlinear interactions btw. oppositely directed Alfven waves (e.g., Kraichnan 1965) $\omega = |k_{\parallel}| V_A$
- Consider weak turbulence where nonlinear time >> linear time
 (e.g., Shebalin et al. 1983) → → →

Resonance Conditions

$$\vec{k_1} + \vec{k_2} = \vec{k_3}$$
$$\omega_1 + \omega_2 = \omega_3$$

 $\Rightarrow k_{||1} + k_{||2} = k_{||3} \quad \& \quad k_{||1} - k_{||2} = k_{||3}$ Turbulence is Anisotropic: Energy Cascades Perpendicular to Local Magnetic Field

Strong MHD Turbulence (Goldreich & Sridhar 1995)

- Perpendicular cascade becomes more & more nonlinear
- Hypothesize "critical balance": linear time ~ nonlinear time

$$k_{\parallel}V_{\scriptscriptstyle A} \thicksim k_{\perp}V_{\perp}$$

L = Outer Scale of Turbulence

Anisotropic Kolmogorov Cascade

$$k_{\parallel} \sim k_{\perp}^{2/3} L^{-1/3}$$

more & more anisotropic on small scales

$$P(k_{\perp}) \propto k_{\perp}^{-5/3}$$

What Happens on Small Scales?

• At $k_{\perp}\rho_i \sim 1$, MHD cascade has

 $\overline{\omega/\Omega_{i}} \sim k_{\parallel}/|\mathbf{k}_{\perp} \sim (\rho_{i}/L)^{1/3} \sim 10^{-3} << 1$

 $\delta B_{\perp}/B \sim \delta B_{\parallel}/B \sim (\rho_i/L)^{1/3} \sim 10^{-3} << 1$

What Happens on Small Scales?

• At $k_{\perp}\rho_i \sim 1$, MHD cascade has

 $\omega/\Omega_{\rm i}$ ~ k_{\parallel}/k_{\perp} ~ $(\rho_{\rm i}/L)^{1/3}$ ~ 10^{-3} << 1

 $\delta B_{\perp}/B \sim \delta B_{\parallel}/B \sim (\rho_i/L)^{1/3} \sim 10^{-3} \leq 10^{-3}$

MHD Turbulence has become Gyrokinetic Turbulence

MHD \Rightarrow Gyrokinetics

What are gyrokinetic equations?

• Average of full Vlasov Eq. over fast particle gyromotion

- Big advantage: eliminates fast ω_{pe} and gyrofrequencies.
- Gyrokinetic ordering:

 $\omega/\Omega_{i} \sim k_{\parallel}/k_{\perp} \sim (\rho_{i}/L) \sim \delta f/F_{0} \sim V_{ExB}/v_{t} \sim \delta B/B_{0} << 1$

(small gyrofrequency, parallel wavenumber, gyroradius, and perturbed particle distribution function, ExB drift, and perturbed magnetic field)

• No assumption on $k_{\perp}\rho_i$, β , v_{ii}/ω , $(V_{ExB}\bullet\nabla)/\omega$ (wave numbers relative to gyroradius, plasma/magnetic pressure, collisionality, nonlinear frequency shifts)

What are gyrokinetic equations?

Average full Vlasov Eq. over fast particle gyromotion

- Big advantage: eliminates fast ω_{pe} and gyrofrequencies.
- Gyrokinetic ordering:

 $\omega/\Omega_{i} \sim k_{\parallel}/ \text{ k}_{\perp} \sim (\rho_{i}/L) \sim \delta f/F_{0} \sim V_{ExB}/v_{t} \sim \delta B/B_{0} << 1$

- No assumption on $k_{\perp}\rho_i$, β , ν_{ii}/ω , $(V_{ExB} \bullet \nabla)/\omega$
- Caveat: Fast wave (sound wave at $\beta >>1$) ordered out:

$$ω$$
 / Ω_{i} ~ k $_{\perp}$ C $_{s}$ / Ω_{i} ~ k $_{\perp}$ ρ $_{i}$ ~ 1

(but see Hong Qin, circa late 1990's).

What are gyrokinetic equations?

Average full Vlasov Eq. over fast particle gyromotion

- Big advantage: eliminates fast ω_{pe} and gyrofrequencies.
- Gyrokinetic ordering:

 $\omega/\Omega_i \sim k_{\parallel}/k_{\perp} \sim (\rho_i/L) \sim \delta f/F_0 \sim V_{ExB}/v_t \sim \delta B/B_0 << 1$ (small gyrofrequency, parallel wavenumber, gyroradius, and perturbed particle

distribution function, ExB drift, and perturbed magnetic field)

- No assumption on k_⊥ρ_i, β, ν_{ii}/Ω_i, (V_{ExB}•∇)/ω (wave numbers relative to gyroradius, plasma/magnetic pressure, collisionality, nonlinear frequency shifts)
- But how is it nonlinear?

How can gyrokinetics be nonlinear?

If all of these quantities are small: ω/Ω_i ~ k_{||}/ k_⊥ ~ (ρ_i/L) ~ δf/F₀ ~ V_{ExB}/v_t ~ δB/B₀ << 1
No assumption on k_⊥ρ_i, β, v_{ii}/Ω_i, (V_{ExB}•∇)/ω

Although $\delta f \ll F_0$ Nonlinear since:

 $\begin{array}{l} \nabla \delta f ~\sim \nabla \ \mathsf{F}_{0} \\ \mathsf{k}_{\perp} \ \delta f \sim \ \mathsf{F}_{0}/\mathsf{L} \end{array}$ $(\mathsf{k}_{\perp} \ \rho_{i}) \ \delta f \ / \ \mathsf{F}_{0} \sim (\rho_{i} \ / \ \mathsf{L}) \end{array}$

Gyrokinetic Equations Summary

Gyro-averaged, non-adiabatic part of the perturbed distribution function, h=h_s(x,ε,μ,t) determined by gyrokinetic Eq. (in deceptively compact form):

$$\frac{\partial h}{\partial t} + \left(\mathbf{v}_{\parallel}\hat{b} + \vec{\mathbf{v}}_{d}\right) \bullet \nabla h + \hat{b} \times \nabla \chi \bullet \nabla \left(h + F_{0}\right) + q \frac{\partial F_{0}}{\partial \varepsilon} \frac{\partial \chi}{\partial t} = C(h)$$

Generalization of Nonlinear ExB Drift incl. Magnetic fluctuations...

Plus gyroaveraged Maxwell's Eqs. to get fields:

 $\chi = J_0 \left(k_{\perp} \rho \right) \left(\Phi - \frac{\mathbf{v}_{\parallel}}{c} A_{\parallel} \right) + \frac{J_1 \left(k_{\perp} \rho \right)}{k_{\perp} \rho} \frac{m \mathbf{v}_{\perp}^2}{\sigma} \frac{\delta B}{R}$

Bessel Functions represent averaging around particle gyro-orbit

Easy to evaluate in pseudo-spectra code. Fast multipoint Padé approx. in other codes.

$$\chi = J_0(k_\perp \rho) \Phi$$

 $J_0(k_\perp\rho) = \oint d\theta \, e^{k_\perp\rho\cos(\theta)}$

Example of Gyrokinetic Calculation of Turbulence in Fusion Device

Gyrokinetic Numerical Methods

- Some gyrokinetic codes: explicit particle-in-cell algorithms
- GS2 code (linear: Kotschenreuther, nonlinear: Dorland):
 - pseudo-spectral in x,y (perp to B₀)
 - implicit finite-difference parallel to B₀ useful for fast parallel electron and wave dynamics
 - grid in Energy and pitch angle (V_{\parallel}/V) , Gaussian integration
- Moderate resolution run:
 - $x^*y^*z = 50^*50^*100$, Energy*($V_{||}/V$) = 12*20, 5 eddy times
 - => ~3.5 hours on 340 proc. IBM SP2
- High resolution runs for Alfven cascade soon...

Status of gyrokinetic theory & codes

- Nonlinear gyrokinetics invented by Ed Frieman & Liu Chen (1982), studied & refined by W.W. Lee, Dubin, Krommes, Hahm, Brizard, Qin (1980's-1990's), ...
- 3D nonlinear gyrokinetic codes 1990's. DOE Fusion grand challenge project, DOE SciDAC project.
- Early codes with fixed magnetic field ($\beta << 1$ in early fusion devices), turbulence and transport from ExB with E = $\nabla \Phi$
- Dorland & Kotschenreuther GS2 code: first code to handle full magnetic fluctuations at arbitrary β, important for more efficient fusion devices (and astrophysics!)
 (Some algorithms have problems with β > m_e/m_i, v_{te} > V_{Alfven})

Physics on Gyrokinetic Scales is Astrophysically Relevant When ...

Fluctuations on scales ~ ρ_i are observable

• e.g., interstellar medium, solar wind

System is Collisionless on its Dynamical Timescale

- electron & ion energetics depend on heating by turbulence
- e.g., solar wind, solar flares, plasmas around compact objects such as black holes and neutron stars

Black Hole Accretion

Center of Milky Way in X-rays (Chandra)

3x10⁶ solar mass black hole
L ~ 10³⁶ ergs s⁻¹

 Leading model for accretion onto the BH posits a two-temperature collisionless plasma

 $T_p \sim 100 \text{ MeV} >> T_e \sim 1 \text{ MeV}$ n ~ 10⁹ cm⁻³ B ~ 10³ Gauss

All observables (luminosity & spectrum) determined by amount of electron heating

Collisionless Damping on ~ p_i scales

Strong damping requires $\gamma \sim \text{nonlinear freq.} \sim \omega$

Damping sets inner scale & ⇒ Heating of Plasma

Analytic Estimates of Electron Heating Are Indeterminate

$$C \approx \frac{T_{nonlinear}}{T_{linear}}$$

uncertain because damping occurs at $k_{\perp}\rho_p > 1$ outside MHD regime \Rightarrow need Gyrokinetic simulations

Low electron heating reqd for ADAF models to explain low luminosity of some black holes

Quataert & Gruzinov 1999

Program: Simulate Gyrokinetic Turbulence in Astrophysics Context

Very Difft. From Fusion Applications

Turbulence driven by cascade from large scales not by ~ ρ_i instabilities \Rightarrow "stir" box at outer scale

Simple geometry (triply periodic slab) no background plasma gradients

 $\beta << 1$ & >> 1, $T_p/T_e \sim 1$ & >> 1

Diagnostics: electron vs. proton heating density/vel/B-field power spectra

Using **GS2** code developed by Dorland, Kotschenreuther, & Liu, & utilized extensively in the fusion program

Linear Tests

Compare GS2 damping of linear Alfven wave with linear kinetic code

Excellent agreement over entire parameter space

 $\begin{array}{l} \beta << 1 \ \& \ \beta >> 1 \\ T_p/T_e \sim 1 \ \& \ T_p/T_e >> 1 \\ k_\perp \rho_p << 1 \ \& \ k_\perp \rho_p >> 1 \end{array}$

Important test of δB_{\parallel} physics (transit-time damping)

 $\beta = 100; k_{\perp}\rho_{p} = 0.4$

First Nonlinear Alfven Tests

- Simulate turbulence in a box >> ρ_i , negligible gyro effects.
- Reproduces MHD results (Goldreich-Sridhar)
- Kolmogorov power spectrum and anisotropy

β = 8 (800%). x*y*z*Energy*(Vpar/V) = 50*50*100*12*20

First Nonlinear Alfven Tests

- Simulate turbulence in a box >> ρ_i , negligible gyro effects.
- Reproduces MHD results (Goldreich-Sridhar)
- Kolmogorov power spectrum and anisotropy
- β = 8 (800%). x*y*z*Energy*(Vpar/V) = 50*50*100*12*20

Kinetic effects on Magneto-Rotational Instability

Get feet wet by looking at linear kinetic effects on MRI:

Looking at classic limit done by Balbus & Hawley: Axisymmetric $(k_{\phi}=0)$ $B_r=0$

?? Put in figure showing geometry, defining R,z, coordinates

Kinetic effects on Magneto-Rotational Instability

Using Kulrud's version Kinetic MHD

Qualitatively similar Trends to Balbus-Hawley Results.

Kinetic effects can be destabilizing or stabilizing.

More info: Quataert, Dorland, Hammett, Astro-ph/0205492 (Ap.J. 2002)

Kinetic MHD -> regular MHD at lower β (for linearly unstable modes)

At high β , fastest growing mode shifts to lower k_z

What happens nonlinearly?

Regular MHD: Viscous damping only at high |k|

Kinetic MHD: collisionless damping of sound & slow magnetosonic waves occurs at any scale (depends on direction of k)

Alters nonlinear state? \uparrow ion & \Downarrow e heating?

Quataert, Dorland, Hammett, Astro-ph/0205492 (Ap.J. 2002)

Summary

- MHD turb. \Rightarrow Gyrokinetic turb. on small scales
- Astrophysical applications abound, including
- 1. Predicting density/velocity/B-field power spectra
 - Compare with observations of ISM & solar wind turb.
- 2. Predicting plasma heating by gyrokinetic turb.
 - Applications to black hole physics, solar physics, ...
- 3. Possible modifications of Magnetorotational Instability