Angular Momentum Transport in Astrophysical Accretion Flows

Greg Hammett, Princeton Plasma Physics Lab On behalf of Eliot Quataert, Berkeley Prateek Sharma, Berkeley Jim Stone, Princeton

> CMSO, UNH, June 5, 2007 acknowledgments: most slides by Quataert & Sharma

Accretion

- Inflow of matter onto a central object (generally w/ angular momentum)
- Central to
 - Star & Planet Formation
 - Galaxy Formation
 - Compact Objects: Black Holes, Neutron Stars, & White Dwarfs
- Energy Released:

$$\dot{E} = \frac{GM\dot{M}}{2R} \equiv \epsilon \dot{M}c^2$$

- sun: ε ~ 10⁻⁶
- BH (R ~ 2GM/c²): ε ~ 0.25 (can be << 1; more later)
- Fusion in Stars: $\varepsilon \sim 0.007$
- Accretion onto Black Holes & Neutron Stars is Responsible for the Most Energetic Sources of Radiation in the Universe

The Milky Way: A Thin Disk

Star orbiting black hole & feeding accretion disk

(artist's conception)

NASA/CXC/SAO A.Hobart http://chandra.harvard.edu/resources/illustrations.html

Black Hole Neighborhood. (artist's conception)

NASA/CXC/SAO A.Hobart http://chandra.harvard.edu/resources/illustrations.html

A 3-D Global MHD Simulation

Simulation by Hawley et al. http://astsun.astro.virginia.edu/~jh8h/

MHD simulations of MRI turbulence very successful. Need to study it in collisionless regime applicable to Sgr A*

Outline

- Accretion Disks: Basic Physical Picture
- MHD of Disks: Angular Momentum Transport
- Collisionless Accretion Flows (BHs & NSs)
 - Astrophysical Motivation
 - Disk Dynamics in Kinetic Theory
 - A mechanism for strong electron heating (Sharma et al. astro-ph 07)

Accretion: Physical Picture

- Simple Consequences of Mass, Momentum, & Energy Conservation
- Matter Inspirals on Approximately Circular Orbits
 - $\begin{array}{ll} & V_r << V_{orb} & t_{inflow} >> t_{orb} \\ & t_{inflow} \sim time \ to \ lose \ angular \ momentum \ \sim viscous \ diffusion \ time \\ & t_{orb} = 2\pi/\Omega; & \Omega = (GM/r^3)^{1/2} \ (Keplerian \ orbits; \ like \ planets \ in \ solar \ system) \end{array}$
- Disk Structure Depends on Fate of Released Gravitational Energy
 - t_{cool} ~ time to radiate away thermal energy of plasma
 - Thin Disks: $t_{cool} \ll t_{inflow}$ (plasma collapses to the midplane)
 - Thick Disks: $t_{cool} >> t_{inflow}$ (plasma remains a puffed up torus)

Geometric Configurations

e.g., solar system Milky Way disk

thin disk: energy radiated away (relevant to star & planet formation, galaxies, and luminous BHs/NSs)

e.g., our Galactic Center (more on this soon)

thick disk (torus; ~ spherical): energy stored as heat (relevant to lower luminosity BHs/NSs)

Magneto-Rotational Instability explains how accretion disks accrete (Balbus & Hawley, 1991)

Inner particle orbits faster, Spring stretches out Spring force slows inner particle and accelerates outer particle Causing inner particle to fall in and outer particle to go out Exponentially amplified.

> Magnetic fields Are like springs

spring analogy by Toomre

Side view: magnetic field stretching acts like springs & transfer angular momentum

Angular Momentum Transport by MHD Turbulence

(Balbus & Hawley 1991)

- A differentially rotating plasma with a weak field (β > 1) & dΩ²/dR < 0 is linearly unstable in MHD (magnetorotational instability -- "MRI")
- magnetic tension transports ang. momentum, allowing plasma to accrete
- MRI may also be relevant in stars (e.g., solar interior, tachocline)
- Experiments underway to study the MRI in the lab (e.g., PPPL); may have been detected in liquid dynamo expt at UMD (Sisan et al. 2004)

Implications for Global Disk Dynamics

- Instability saturates as MHD turbulence:
 β ~ 10 in disk with a β << 1 corona
 (global sims for thick disks to date)
- Note: nonlinear saturation does not modify dΩ/dr, source of free energy (instead drives inflow of plasma bec. of Maxwell stress B_rB_o)
- Era of 1st principles numerical simulations (radiation transport, full General Relativity, Hall effects, neutrals + ions, kinetic effects, ...)

John Hawley

An Astrophysical Context: Our Galactic Center

Galactic Center (*Chandra*)

Ambient Gas: $n \approx 100 \text{ cm}^{-3}$ T $\approx 1-2 \text{ keV}$

 Ambient gas should be grav. captured by the BH

Estimates give

$$\dot{M}_{\rm captured} \approx 10^{-5} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$$

rate at which gas is captured at large radii

But then

$$L_{\rm observed} \approx 10^{-5} \dot{M} c^2$$

<< ~ 10% efficiency in luminous BHs

http://chandra.harvard.edu/

Galactic Center BH

Chandra

3.6x10⁶ M_o black hole

Bondi radius ~ 0.07 pc (2^{*}) n~100/cc, T~1-2 keV

 $M \sim 10^{-5} M_{\odot}$ /yr by stellar outflows

 L_{obs} ~10⁻⁵ x (0.1 Mc²) Why low luminosity? low M or low radiative efficiency

Collisionless, magnetized plasma at r $r = Bondi radius; \rho_i << H, \lambda_{mfo} >> H$

Schödel et al., 2002, A.M. Ghez et al. 2003 http://www.astro.ucla.edu/~ghezgroup/gc

Schödel et al., 2002, A.M. Ghez et al. 2003 http://www.astro.ucla.edu/~ghezgroup/gc

Thick Disks: Radiatively Inefficient

- At low densities (accretion rates), cooling is inefficient
- Grav. energy \Rightarrow thermal energy; not radiated $L \ll Mc^2$
- kT ~ GMm_p/R: $T_p \sim 10^{11-12} \text{ K} > T_e \sim 10^{10-11} \text{ K}$ near BH
- Collisionless plasma: e-p collision time >> inflow time

• Initial Models (ADAFs) had

 $\dot{M}_{\rm BH} \sim \dot{M}_{\rm captured}$

Efficiency ~ 10^{-5} in GC

Low efficiency because electron heating is assumed to be very inefficient (electrons radiate, not protons)

• Very little mass supplied at large radii accretes into the black hole (outflows/convection suppress accretion)

(e.g., Igumenschev & Abramowicz 1999; Stone et al. 1999; Blandford & Begelman 1999; Quataert & Gruzinov 2000)

$$\dot{M}_{BH} \ll \dot{M}_{
m captured}$$

Low luminosity because very little gas makes it to the BH

The (In)Applicability of MHD?

Hot Plasma Gravitationally Captured By $BH \Rightarrow$ Accretion Disk **Observed Plasma** (R ~ 10^{17} cm ~ 10^{5} R_{horizon})

T ~ few keV $n \sim 100 \text{ cm}^{-3}$

mfp ~ 10^{16} cm ~ 0.1 R

e-p thermalization time ~ 1000 yrs >> inflow time ~ R/c_s ~ 100 yrs

electron conduction time ~ 10 yrs << inflow time ~ R/c_s ~ 100 yrs

The (In)Applicability of MHD?

Hot Plasma Gravitationally Captured By $BH \Rightarrow$ Accretion Disk Estimated Conditions Near the BH $T_{p} \sim 10^{12} \text{ K}$ $T_{e} \sim 10^{11} \text{ K}$ $n \sim 10^{6} \text{ cm}^{-3}$ $B \sim 30 \text{ G}$ proton mfp ~ 10²² cm >>> R_{horizon} ~ 10^{12} \text{ cm}

need to understand accretion of a magnetized collisionless plasma

Major Science Questions

- Macrophysics: Global Disk Dynamics in Kinetic Theory
 - e.g., how adequate is MHD, influence of heat conduction, ...
- Microphysics: Physics of Plasma Heating
 - MHD turbulence, reconnection, weak shocks, ...
 - electrons produce the radiation we observe
- Analogy: Solar Wind
 - macroscopically collisionless
 - thermally driven outflow w/ T_p & T_e determined by kinetic microphysics

Nonlinear Evolution Simulated Using Kinetic-MHD

- Large-scale Dynamics of collisionless plasmas: expand Vlasov equation retaining "slow timescale" (compared to cyclotron period) & "large lengthscale" (compared to gyroradius) assumptions of MHD (e.g., Kulsrud 1983)
- Particles efficiently transport heat and momentum along field-lines

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0, \\ &\rho \frac{\partial \mathbf{V}}{\partial t} + \rho \left(\mathbf{V} \cdot \nabla \right) \mathbf{V} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi} - \nabla \cdot \mathbf{P} + \mathbf{F_g}, \\ &\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{V} \times \mathbf{B} \right), \\ &\mathbf{P} = p_{\perp} \mathbf{I} + \left(p_{\parallel} - p_{\perp} \right) \mathbf{\hat{b}}\mathbf{\hat{b}}, \end{split}$$

Evolution of the Pressure Tensor

$$\rho B \frac{d}{dt} \left(\frac{p_{\perp}}{\rho B} \right) = -\nabla \cdot (\hat{\mathbf{b}} q_{\perp}) - q_{\perp} \nabla \cdot \hat{\mathbf{b}}$$

adiabatic invariance of $\mu \sim mv^2 / B \sim T / B$

$$\frac{\rho^3}{B^2} \frac{d}{dt} \left(\frac{p_{||} B^2}{\rho^3} \right) = -\nabla \cdot (\hat{\mathbf{b}} q_{||}) + 2q_{\perp} \nabla \cdot \hat{\mathbf{b}},$$

q = 0 CGL or Double Adiabatic Theory

$$q_{\perp,\parallel} \approx \frac{n v_{th}}{|k_{\parallel}|} \nabla_{\parallel} T_{\perp,\parallel}$$

Closure Models for Heat Flux (temp gradients wiped out on ~ a crossing time)

Pressure Anisotropy

$\mu \propto T_{\perp} / B = \text{constant} \implies T_{\perp} > T_{\parallel} \text{ as B}$

- $T_{\perp} \neq T_{\parallel}$ unstable to small-scale (~ gyroradius) modes that act to isotropize the pressure tensor (velocity space anisotropy)
 - e.g., mirror, firehose, ion cyclotron, electron whistler instabilities
- waves w/ frequencies ~ Ω_{cvc} violate μ invariance & pitch-angle scatter
 - provide effective collisions & set mean free path of particles in the disk
 - impt in other macroscopically collisionless astro plasmas (solar wind, clusters, ...)
- Use "subgrid" scattering model in disk simulations

$$\begin{aligned} \frac{\partial p_{\perp}}{\partial t} &= \dots - \nu(p_{\perp}, p_{\parallel}, \beta) \big[p_{\perp} - p_{\parallel} \big] \\ \frac{\partial p_{\parallel}}{\partial t} &= \dots - \nu(p_{\perp}, p_{\parallel}, \beta) \big[p_{\parallel} - p_{\perp} \big] \end{aligned}$$

Limits on Pressure Anisotropy

mirror: S=7, α =1 (to break adiabatic invariance)

ion-cyclotron: S=0.35, α =0.45 for γ/Ω_i =10⁻⁴

mirror dominates IC for β ~10-100

firehose:S>2, α =1

Pressure anisotropy reduced by pitch-angle scattering if anisotropy exceeds threshold.

For electrons with $p_{\perp} > p_{\parallel}$ electron whistler instability will isotropize: S=0.13, α = 0.55 (γ/Ω =5x10⁻⁸) [using WHAMP code]

[Kasper et al. 2003, Gary & coworkers]

Examples from Space Physics

- Solar wind at 1 AU statistically at firehose instability threshold [Kasper et al., Wind]
- Magnetic Holes in SW & magnetopause, a signature of mirror modes [Winterhalter et al., Ulysses]
- Mirror mode signatures at Heliopause, [Liu et al., Voyager1]
- Above can be interpreted from μ conservation in expanding/compressing plasmas
- Small-scale instabilities driven by pressure anisotropy mediate shock transition in collisionless plasmas
- SW an excellent laboratory for collisionless plasma physics
- Since much of astrophysical plasma (except in stars) is collisionless, a lot of applications in astrophysics; e.g., X-ray clusters, accretion disks, collisionless shocks.

The MRI in a Collisionless Plasma

angular momentum transport via anisotropic pressure (viscosity!) in addition to magnetic stresses

$$F_{\varphi} \propto \left(\frac{B_z B_{\varphi}}{B^2}\right) \left(\delta p_{\parallel} - \delta p_{\perp}\right)$$

Quataert, Dorland, Hammett 2002; also Sharma et al. 2003; Balbus 2004

Shearing Box Simulations

Pressure Anisotropy

Anisotropic stress ~ Maxwell stress (can dominate at β >>1) Anisotropic pressure => 'viscous' heating at large scales (heating associated with anisotropic stress) Ion pressure anisotropy limited by IC instability threshold (with γ/Ω ~10⁻⁴) Will electrons also be anisotropic? Yes, collision freq. is really tiny Electron pressure anisotropy reduced by electron whistler instability

Local Simulations of the MRI in a Collisionless Plasma

volume-averaged pressure anisotropy

Rate of Angular Momentum Transport Enhanced Relative to MHD (by factor ~ unity)

Net Anisotropic Stress (i.e, viscosity) ~ Maxwell Stress

anisotropic stress is a significant source of plasma heating

Sharma et al. 2006

Heating by Anisotropic Stress

$$\frac{3}{2} \frac{dp}{dt} = -(\nabla \cdot \mathbf{P}): \nabla \vec{v} \qquad \text{Pressure tensor heating}$$
$$= -\frac{p_{\parallel} - p_{\perp}}{B^2} \vec{B} \vec{B} : \nabla \vec{v}$$
$$\propto \frac{\sqrt{p}}{B} \vec{B} \vec{B} : \nabla \vec{v} \qquad \text{Anisotropy limit set by}$$
$$\text{Velocity-space instabilities}$$

 $\frac{dT_e}{dt} \propto \sqrt{T_e}$

Even if electrons start cold, they will be rapidly heated to a temperature independent of initial conditions, becoming comparable to ion temperature

Heating by Anisotropic Stress

 $d\Omega$ $q_s \propto P_{r\phi}$ $\propto \Delta p_s$ $d \ln r$

ion cycl. & e- whistler instability thresholds

$$\frac{\Delta p_s}{p_s} \sim \beta_s^{-1/2}$$

$$\rightarrow \Delta p_s \propto T_s^{1/2}$$

Sharma et al. 2007

Astrophysical Implications

'viscous' heating mediated by high freq. instabilities crucial source of electron heating in hot accretion flows

⇒ low accretion rate required to explain the low luminosity of most accreting BHs

> consistent w/ inferences from global MHD sims

Sharma et al. 2007

Summary

- Disk Dynamics Determined by Angular Momentum & Energy Transport
- Angular momentum transport via MHD turbulence initiated by the MRI
- Thick disks; radiatively inefficient; gravitational energy stored as heat
 - T ~ GeV; macroscopically collisionless; relevant to low-luminosity BHs/NSs
- Kinetic Theory of Accretion Flows (Thick Disks)
 - Anisotropic stress ~ Maxwell Stress
 - Pitch angle scattering by velocity-space instabilities crucial to limit anisotropy
 - Significant electron heating via anisotropic stress ('viscosity')
 - ⇒ large radiative efficiency; low accretion rates (<< captured at large radii) required to explain the low luminosities of many accreting BHs

LAST SLIDE

Angular Momentum Transport in Disks

- Accretion requires angular momentum transport
 - accretion proceeds on $t_{inflow} \sim t_{vis} \sim r^2/v$ (viscous diffusion time)
- In thin disks, inter-particle collisions are insufficient
 - mfp << H \Rightarrow t_{vis} >> observed accretion times (v ~ mfp*v_{th})
- Enhanced Transport due to "Turbulence" invoked for ~ 30 years
- Disks appear hydrodynamically stable
 - Stable by Rayleigh criterion: $\Omega \propto r^{-3/2} \& I \propto r^{1/2}$
 - 3D nonlinear simulations suggest disks are nonlinearly stable; see also Ji's talk on experiments

 $k_z v_A / \Omega$ (Alfven Freq/Disk Freq)

