High-Order, Conservative Discontinuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Edge Plasma

A. H. Hakim G. W. Hammett

Princeton Plasma Physics Laboratory, Princeton, NJ ammar@princeton.edu http://www.ammar-hakim.org

American Physical Society, Division of Plasma Physics, 29th October- 2nd November 2012

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

< ロト (周) (三) (三)

Long term goal: Accurate and stable continuum schemes for full-F edge gyrokinetics in 3D geometries

Question: Can one develop accurate and stable schemes that conserve invariants, maintain positivity and use as few grid points as possible?

Proposed Answer

Explore high-order hybrid discontinuous/continuous Galerkin finite-element schemes, enhanced with flux-reconstruction and a proper choice of velocity space basis functions.

< ロト < 同ト < ヨト < ヨト

Several fluid and kinetic problems are described by a Hamiltonian

$$\frac{\partial f}{\partial t} = \{H, f\}$$

where $H(z^1, z^2)$ is the Hamiltonian and canonical Poisson bracket is

$$\{g,h\} \equiv \frac{\partial g}{\partial z^1} \frac{\partial h}{\partial z^2} - \frac{\partial g}{\partial z^2} \frac{\partial h}{\partial z^1}$$

Defining phase-space velocity vector $\alpha = (\dot{z}^1, \dot{z}^2)$, with $\dot{z}^i = \{z^i, H\}$ leads to *phase-space conservation form*

$$\frac{\partial f}{\partial t} + \nabla \cdot (\alpha f) = 0.$$

Additionally $\nabla \cdot \boldsymbol{\alpha} = 0$ (Liouville theorem).

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

◆□ > ◆□ > ◆臣 > ◆臣 >

Example: Incompressible Euler equations in two dimensions serves as a model for $E \times B$ nonlinearities in gyrokinetics

A basic model problem is the *incompressible* 2D Euler equations written in the stream-function (ϕ) vorticity (f) formulation. Here the Hamiltonian is simply $H(x, y) = \phi(x, y)$.

$$\frac{\partial f}{\partial t} + \nabla \cdot (\mathbf{u}f) = 0$$

where $u_x = \{x, H\} = \partial \phi / \partial y$ and $u_y = \{y, H\} = -\partial \phi / \partial x$. The potential is determined from

$$\nabla^2 \phi = -f.$$

イロト イヨト イヨト イヨト

Example: Vlasov equation for electrostatic plasmas

The Vlasov-Poisson system has the Hamiltonian

$$H(x,p) = \frac{1}{2m}p^2 + q\phi(x)$$

where q is species charge and m is species mass and p = mv is momentum. With this $\dot{x} = v$ and $\dot{v} = -q\partial\phi/\partial x$ leading to

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{q}{m} \frac{\partial \phi}{\partial x} \frac{\partial f}{\partial v} = 0$$

< ロト (周) (三) (三)

For Vlasov equation potential can be determined in two different ways

For electron plasma waves use full Poisson equation

$$\frac{\partial^2 \phi}{\partial x^2} = -\frac{\rho_c}{\epsilon_0}$$

where $\rho_c = |e|(n_{io}(x) - n(x, t))$ is total charge density. For ion-acoustic waves use quasi-neutrality

$$n_i(x) = n_{eo}\left(1 + \frac{|e|\phi}{T_e}\right)$$

where n_{eo} is the constant electron initial density and T_e is the fixed electron temperature. This determines potential without the need to solve a Poisson equation and is a model of parallel dynamics in gyrokinetics.

Gyrokinetic equation can also be derived from gyro-center Hamiltonian

In the Hamiltonian gyrokinetic theory¹ the gyrokinetic equation is derived from the gyrocentre Hamiltonian in gyro-center coordinates $(\mathbf{R}, \mathbf{v}_{\parallel}, \mu, \alpha)$

$$H = \frac{1}{2}m_i v_{\parallel}^2 + \mu B + e_i \langle \phi \rangle_{\alpha}$$

where v_{\parallel} is the parallel velocity, μ is the magnetic moment, α is gyro-angle and ϕ is the electrostatic potential. Poisson bracket is no longer canonical, but gyrokinetic Vlasov equation can still be written as a conservation equation in phase-space.

¹A Brizard and T Hahm. "Foundations of nonlinear gyrokinetic theory". In: *Reviews of Modern Physics* 79.2 (Apr. 2007), pp. 421–468.

Invariants for Hamiltonian systems can be derived by looking at *weak-form* of equations

Multiplying conservation law form by a smooth test function w(x, v) and integrating over an arbitrary volume element K gives the weak-form

$$\int_{K} w \frac{\partial f}{\partial t} d\Omega + \int_{\partial K} w^{-} \boldsymbol{\alpha} \cdot \mathbf{n} f dS - \int_{K} \nabla w \cdot \boldsymbol{\alpha} f d\Omega = 0.$$

Picking w = 1 leads to (with periodic boundary conditions) *particle conservation*

$$\frac{d}{dt}\int_{K}fd\Omega=0.$$

< ロト < 同ト < ヨト < ヨト

Energy conservation is derived using Hamiltonian itself as test function

Substituting the Hamiltonian for the test function and using the identity $\nabla H \cdot \alpha = 0$ leads to

$$\int_{K} H \frac{\partial f}{\partial t} d\Omega = 0.$$

For the incompressible Euler equation this becomes

$$\frac{\partial}{\partial t}\int_{\mathcal{K}}\frac{1}{2}|\nabla\phi|^2d\Omega=0.$$

For the Vlasov-Poisson system this becomes

$$\frac{\partial}{\partial t}\int \mathcal{E} + \frac{\epsilon_0}{2}\left(\frac{\partial\phi}{\partial x}\right)^2 dx = 0$$

where $\mathcal{E}(x,t)\equiv rac{1}{2}\int_{-\infty}^{\infty}mv^{2}fdv$ is the fluid energy.

http://www.ammar-hakim.org/sj

Generalized entropy (enstrophy) conservation can be derived using the solution as test function

The solution itself can be used as a test function. This gives

$$\int_{K} f \frac{\partial f}{\partial t} d\Omega + \int_{\partial K} f^{-} \boldsymbol{\alpha} \cdot \mathbf{n} f dS - \int_{K} \nabla f \cdot \boldsymbol{\alpha} f d\Omega = 0.$$

As $\nabla f \cdot \alpha f = \nabla \cdot (\alpha f^2/2)$ the last term reduces to a surface integral, leading to

$$\frac{\partial}{\partial t}\int_{K}\frac{1}{2}f^{2}d\Omega=0.$$

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

< ロト (周) (三) (三)

Valsov-Poisson system also admits momentum conservation

For the Vlasov-Poisson system we can select the coordinate v as the test function. This leads to

$$\int_{K} v \frac{\partial f}{\partial t} d\Omega + \int_{\partial K} v \alpha \cdot \mathbf{n} f dS - \int_{K} \nabla v \cdot \alpha f d\Omega = 0$$

As $\nabla v \cdot \boldsymbol{\alpha} = \{v, H\} = \dot{v}f$ the last term becomes

$$\int_{\mathcal{K}} \dot{v} f d\Omega = \int \frac{|e|}{m} \frac{\partial \phi}{\partial x} n \, dx.$$

Using the Poisson equation to eliminate n(x, t), integrating by parts and applying boundary condition leads to the momentum conservation law

$$\frac{d}{dt}\int_{\mathcal{K}} v f d\Omega = 0.$$

http://www.ammar-hakim.org/sj

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

A discontinuous finite element scheme is used to discretize Hamiltonian equation

To discretize the equations introduce a triangulation K_{ν} of the domain K. Pick a finite-dimensional function space

$$\mathcal{V}_m^k(\mathcal{K}) \equiv \{w: w|_{\mathcal{K}_\nu} \in \mathcal{P}^k(\mathcal{K}_\nu)\} \cap \mathcal{C}^m$$

where $P^k(K_{\nu})$ is the space of polynomials of order at most k on the element K_{ν} . Then the discrete problem is stated as: find $f_h \in \mathcal{V}_{-1}^k$ such that for all smooth w we have

$$\int_{\mathcal{K}_{\nu}} w \frac{\partial f_h}{\partial t} \, d\Omega + \int_{\partial \mathcal{K}_{\nu}} w^- \mathbf{n} \cdot \boldsymbol{\alpha}_h \hat{f}_h \, dS - \int_{\mathcal{K}_{\nu}} \nabla w \cdot \boldsymbol{\alpha}_h f_h \, d\Omega = 0.$$

Here $\hat{f}_h = \hat{f}(f_h^+, f_h^-)$ is the consistent *numerical* flux on ∂K_{ν} .

A continuous finite element scheme is used to discretize Poisson equation

To discretize the Poisson equation the problem is stated as: find $\phi_h \in \mathcal{V}_0^r$ such that for all smooth ψ we have

$$\int_{\mathcal{K}} \psi \nabla^2 \phi_h d\Omega = \int_{\mathcal{K}} \psi s d\Omega$$

where s represents the sources. For ion-acoustic waves the number density and potential are related by a *projection* operator: find $\phi_h \in \mathcal{V}_0^k$ given a $n_{ih} \in \mathcal{V}_{-1}^k$ such that for all smooth w

$$\int w n_{ih} \, dx = n_{eo} \int w \left(1 + \frac{|e|\phi_h}{T_e} \right) \, dx$$

This leads to a *global* solve for the potential. For the case in which potential is allowed to be *discontinuous* leading hence a local determination of the potential, see poster by G. Hammett.

Only recently conditions for conservation of discrete energy and enstrophy were discovered

Liu and Shu^2 have shown that discrete energy is conserved for 2D incompressible flow if

$$\phi_h \in \mathcal{V}_0^k \subseteq f_h \in \mathcal{V}_{-1}^k$$

Enstrophy (generalized entropy) is conserved if *central fluxes* are used in the DG scheme. With upwind fluxes, enstrophy decays and hence the scheme is *stable* in the L_2 norm.

²J-G Liu and C-W Shu. "A High Order Discontinuous Galerkin Method for 2D Incompressible Flows". In: *Journal of Computational Physics* (2000).

Momentum conservation is not exact but is independent of velocity resolution

For electrostatic problems the condition for conservation of discrete momentum reduces to a vanishing average force, i.e. we must have

$$\int n_h E_h dx = 0$$

However, one can show that as E_h is discontinuous, the present scheme *does not* satisfy this condition, and hence momentum is not conserved.

One can imagine that projecting $E_h \in \mathcal{V}_{-1}^{k-1}$ to a smoother space \mathcal{V}_0^{k-1} to make it continuous would help. However, even with a projection momentum is not conserved. Solving the Poisson equation with higher order continuity $(\phi_h \in \mathcal{V}_1^r)$ also does not help as then the energy conservation condition is violated.

Prototype code named Gkeyll has been developed

- Gkeyll is written in C++ and is inspired by framework efforts like Facets, VORPAL (Tech-X Corporation) and WarpX (U. Washington). Uses structured grids with arbitrary dimension/order nodal basis functions.
- Linear solvers from Petsc³ are used for inverting stiffness matrices.
- Games programming language Lua⁴, used in games like World of Warcraft (10 million users), is used as an embedded scripting language to drive simulations.
- MPI is used for parallelization via the txbase library developed at Tech-X Corporation.
- Package management and builds are automated via scimake and bilder, both developed at Tech-X Corporation.

³http://www.mcs.anl.gov/petsc/

⁴http://www.lua.org

・ロト ・ 同ト ・ ヨト ・ ヨ

A simulation journal with results is maintained at http://www.ammar-hakim.org/sj

- Each algorithm is carefully tested against analytical or numerical results.
- Results are extensively documented and Lua programs are put online.
- Journal allows sharing of results as well as enables reproducibility as scripts, figures and notes are available via the internet.

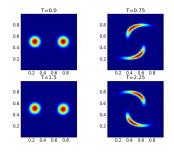


Figure: Swirling flow problem. The initial Gaussian pulses distort strongly but regain their shapes after a period of 1.5 seconds.

A (1) > A (2) > A

Accuracy and convergence of schemes was tested with Vlasov equation with specified potential: cos(x) potential well

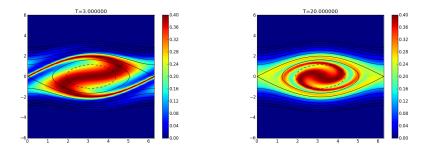


Figure: Distribution function at t = 3 (left) and t = 20 (right) for flow in a cos(x) potential well. A separatrix forms along the trapped-passing boundary. Simulation run with a DG2 scheme on a 64×128 grid.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

With quadratic potential $\phi(x) = x^2$ a rigid-body motion of trapped particles in phase-space is seen

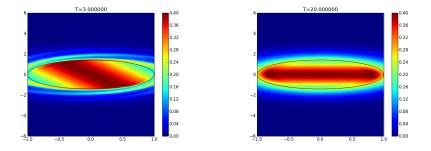


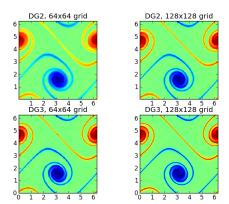
Figure: Distribution function at t = 3 (left) and t = 20 (right) for flow in a x^2 potential well. Bounce period of all trapped particles is the same, leading to a rigid-body motion inside trapped region.

http://www.ammar-hakim.org/sj

・ロト ・ 同ト ・ ヨト ・ ヨ

Double shear problem is a good test for resolution of vortex shearing in $E \times B$ driven flows

Vorticity at t = 8with different grid resolutions and schemes. Third order DG scheme runs faster and produces better results than DG2 scheme.



A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

• • • • • • •

Vortex waltz problem tests resolution of small-scale vortex features and energy and enstrophy conservation

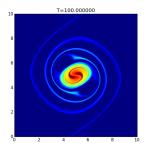


Figure: Vorticity for the vortex waltz problem with the third-order scheme on a 128×128 . Upwind fluxes were used for this calculation.

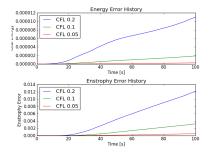
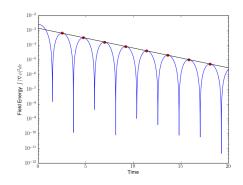


Figure: Energy and enstrophy error for vortex waltz problem. *Central fluxes* were used and show $O(\Delta t)^3$ convergence on a fixed 64 × 64 grid.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

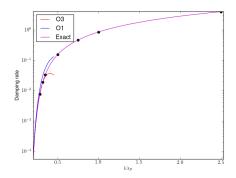
Linear Landau damping simulations were compared with exact solutions of dispersion relations

Field energy (blue) as a function of time for linear Landau damping problem with k = 0.5 and Te = 1.0. The red dots represent the maxima in the field energy which are used to compute a linear least-square fit. The slope of the black line gives the damping rate.



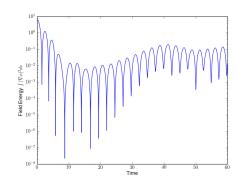
Numerically computed damping rates compare accurately with exact results

Damping rate from Landau damping for electron plasma oscillations as a function of normalized Debye length. The damping rates are within 3% of the exact values, and for large values of $k\lambda_D$ within 1%.

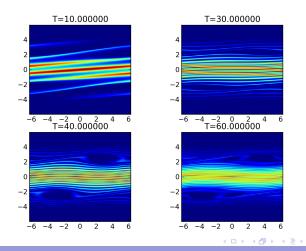


Nonlinear Landau damping simulations show particle trapping and phase-space hole formation

Field energy as a function of time for nonlinear Landau damping problem with k=0.5. Te = 1.0 and $\alpha = 0.5$. The initial perturbation decays at a rate of $\gamma = 0.2916$, after which the damping is halted from particle trapping. The growth rate of this phase is $\gamma = 0.0879.$



DG scheme can efficiently capture fine-scale features in phase-space



A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

< E http://www.ammar-hakim.org/sj

æ

Energy is conserved to same order as temporal discretization error of $O(\Delta t)^3$ independent of phase-space discretization

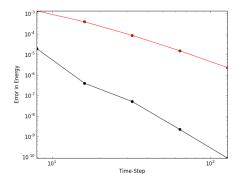


Figure: Convergence of energy error with time-step. The red curve shows errors from second order scheme, black from third order scheme.

A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

To test momentum conservation an asymmetric initial density profile needs to be used

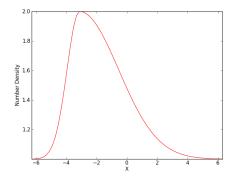


Figure: Initial density profile to drive momentum. Using a symmetric density (net zero initial momentum) profile can lead to misleading conservation results.

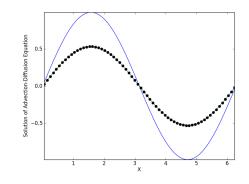
Momentum is *not conserved* but is independent of velocity space resolution and converges rapidly with spatial resolution and polynomial order

N_{x}	Error DG2	Order
8	$1.3332 imes 10^{-3}$	
16	$3.9308 imes 10^{-4}$	1.76
32	$8.5969 imes 10^{-5}$	2.19
64	$1.5254 imes 10^{-5}$	2.49
128	$2.3105 imes 10^{-6}$	2.72

N _x	Error DG3	Order
8	$1.9399 imes10^{-5}$	
16	$4.0001 imes 10^{-7}$	5.60
32	$5.1175 imes10^{-8}$	2.97
64	$2.2289 imes 10^{-9}$	4.52
128	$8.9154 imes 10^{-11}$	4.64

A local-DG scheme is used to discretize diffusion terms for use in collision operators

Advection-diffusion problem with local DG scheme. The initial condition is sin(x) for which the exact solution at time t is $e^{-\alpha t} sin(x - \lambda t)$ where α is the diffusion coefficient and λ is advection velocity. Black dots are exact solutions and solid lines numerical results.

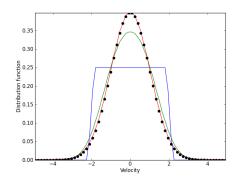


A. H. Hakim, G. W. Hammett: Continuum Discontinuous Galerkin Algorithms

http://www.ammar-hakim.org/sj

A particle, momentum and energy conserving Lenard-Bernstein collision operator is implemented using local DG diffusion solver

Relaxation of a step-function distribution function to Maxwellian due to collisions. The solid lines show distribution function at different times and the dots the exact Maxwellian distribution with specified temperature and density.



Conclusions: An efficient and accurate discontinuous Galerkin scheme for general Hamiltonian field equations is presented

- A discontinuous Galerkin scheme to solve a general class of Hamiltonian field equations is presented.
- The Poisson equation is discretized using continuous basis functions.
- With proper choice of basis functions energy is conserved.
- With central fluxes enstrophy (generalize entropy) is conserved. With upwind fluxes the scheme is L₂ stable.
- Momentum is not conserved but is independent of velocity space resolution and converges rapidly with spatial resolution and polynomial order of the scheme.

< ロト (周) (三) (三)

Future work: extend scheme to higher dimensions and general geometries and collision terms

- Higher-order basis functions have been implemented and are being tested.
- The schemes will be extended to take into account complicated edge geometries using a multi-block structured grid.
- Special basis functions for velocity space discretization will be developed to allow coarse resolution simulations with the option of fine scale resolution when needed.
- A collision model has been implemented. It will be extended to higher dimensions.

< ロト (周) (三) (三)