Recent Results from the Gkeyll Discontinuous Galerkin Kinetic Code

Eric Shi ¹ Ammar Hakim ² Greg Hammett ² Ian Abel ³ Tim Stoltzfus-Dueck ²

¹Princeton University ²PPPL ³Princeton Center for Theoretical Physics

Sherwood 2015, 17 Mar 2015

Gkeyll Overview

- Prototype code to explore advanced algorithms for continuum edge gyrokinetic simulation (e.g. edge plasma turbulence)
- Main code is written in C++ with Lua scripts to drive simulations
- DG algorithm (an extension of the work of Liu and Shu¹) conserves energy exactly for general Hamiltonian systems and is stable in the L_2 norm of the distribution function f
 - Allow distribution function to be discontinuous
 - Hamiltonian must be in the continuous subset of space used for f

Goal

A robust code capable of running very quickly at coarse velocity space resolution while preserving all conservation laws of gyrokinetic/gyrofluid equations and giving fairly good results.

¹J.-G. Liu and C.-W. Shu. "A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows". In: *J. Comp. Phys.* 160.2 (2000), pp. 577–596. ISSN: 0021-9991.

- Studied ELM heat-pulse problem with gyrokinetics in a simplified scrape-off-layer geometry, Demonstrated good agreement with full PIC and Vlasov codes while being many orders of magnitude faster because gyrokinetics doesn't have to resolve the Debye length.
- Discovered and fixed subtle issues with our DG algorithm when including magnetic fluctuations, which had required very small time steps for stability at low $k_{\perp}\rho_s$.
- Extended Gkeyll's Poisson bracket solve capabilities to handle general Hamiltonian systems in 2x + 2v and 3x + 2v and performed initial simulations of 2x + 2v ETG turbulence

Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use discontinuous function spaces (usually made of polynomials) to represent the solution.

Figure: The best L_2 fit of $x^4 + \sin(5x)$ (green) using piecewise constant (left), linear (center), and quadratic (right) polynomials.

Hybrid Discontinuous/Continuous Galerkin Scheme

Introduce a phase-space mesh \mathcal{T} with cells $K_j \in \mathcal{T}$, j = 1, ..., N and introduce the following piecewise polynomial approximation space for the distribution function $f(t, \mathbf{z})$

$$\mathcal{V}_h^p = \{ \mathbf{v} : \mathbf{v} |_{\mathcal{K}} \in \mathbf{P}^p, \forall \mathcal{K} \in \mathcal{T} \}$$

where \mathbf{P}^{p} is (some) space of polynomials. To approximate the Hamiltonian, on the other hand, we introduce the space

$$\mathcal{W}^p_{0,h} = \mathcal{V}^p_h \cap C_0(\mathbf{Z})$$

Essentially, we allow the distribution function to be discontinuous, while requiring that the Hamiltonian is in the continuous subset of the space used for the distribution function

Discretization of the Evolution Equation

 Find f_h in the space of discontinuous piecewise polynomials such that for all basis functions φ_k, we have

$$f_{h}(x, y, v_{\parallel}, \mu, t) = \sum_{k} f_{k}(t)\phi_{k}(x, y, v_{\parallel}, \mu)$$
$$\int_{\mathcal{K}_{j}} \mathcal{J}_{h}\phi_{k}\frac{\partial f_{h}}{\partial t}d\mathbf{z} = \int_{\mathcal{K}_{j}} \mathcal{J}_{h}\nabla\phi_{k}\cdot\boldsymbol{\alpha}_{h}f_{h}d\mathbf{z} - \oint_{\partial\mathcal{K}_{j}} \mathcal{J}_{h}\phi_{k}^{-}\mathbf{n}\cdot\boldsymbol{\alpha}_{h}\widehat{F} dS$$

- Here, $\widehat{F} = \widehat{F}(f_h^+, f_h^-)$ is the consistent numerical flux on surface ∂K_j and \mathcal{J}_h has been taken to be time independent.
- The notation g⁻ (g⁺) indicates that the function is evaluated just inside (outside) on the location on the surface ∂K_i.

Evolution Equation

The Poisson bracket operator is defined as

$$\{f,g\} = \frac{\partial f}{\partial z^i} \Pi^{ij} \frac{\partial g}{\partial z^j}.$$

We are interested in solving conservative equations of the form

$$rac{\partial (\mathcal{J}f)}{\partial t} +
abla \cdot (\mathcal{J} oldsymbol{lpha} f) = 0,$$

where ∇ is the phase-space gradient operator and $\pmb{\alpha}$ is the phase space velocity vector whose components are defined as

$$\alpha_i = \dot{z}^i = \{z^i, H\} = \Pi^{ij} \frac{\partial H}{\partial z^j}.$$

ETG Test Problem Description

- Model problem involves curvature-driven ETG instabilities and turbulence in a local 2D (2x+2v) limit
- Simulation domain is a small box of size $\Delta R \times \Delta R$ on the outer midplane of a tokamak
- Axisymmetry in toroidal direction
- Parallel gradients of f are ignored
- Use set of coordinates (*x*, *y*, v_{\parallel} , μ), where
 - x is the radial coordinate
 - y is the vertical coordinate
- Goals are to reproduce linear growth rate of instability and produce 2D turbulent nonlinear saturation

Physical Parameters Based on Cyclone Base Case²

Symbol	Expression	Value
ΔR	32 <i>p</i> s	$1.819 imes 10^{-3} \text{ m}$
$ ho_s$	c_s/Ω_{ci}	$5.683 imes 10^{-5} m$
B_0		1.91 T
а		0.4701 m
R_0		1.313 m
R	$R_0 + 0.5a$	1.548 m
LT	R/10	0.1548 m
<i>n</i> ₀		$4.992 imes 10^{19} \text{ m}^{-3}$
$T_{i0} = T_{e0}$		2.072 keV

 $^2A.~M.$ Dimits et al. "Comparisons and physics basis of tokamak transport models and turbulence simulations". In: Phys. Plasmas 7.3 (2000), pp. 969–983.

Eric Shi

Test Problem Equations

.

$$\begin{split} H_{s} &= \frac{1}{2}m_{s}v_{\parallel}^{2} + \mu B + q_{s}\phi & \mathbf{b} = \hat{z} \\ \mu &= \frac{mv_{\perp}^{2}}{2B} & \mathbf{B}^{*} = \mathbf{B} + \frac{Bv_{\parallel}}{\Omega_{s}} \nabla \times \mathbf{b} \Rightarrow \mathbf{B} - \frac{m_{s}v_{\parallel}}{q_{s}x}\hat{y} \\ \Omega_{s} &= \frac{q_{s}B}{m_{s}} & B_{\parallel}^{*} = \mathbf{b} \cdot \mathbf{B}^{*} \Rightarrow B \\ \mathbf{\Pi} &= \begin{pmatrix} 0 & -\frac{1}{q_{s}B_{\parallel}^{*}} & 0 & 0 \\ \frac{1}{q_{s}B_{\parallel}^{*}} & 0 & \frac{B_{y}^{*}}{m_{s}B_{\parallel}^{*}} & 0 \\ 0 & -\frac{B_{y}^{*}}{m_{s}B_{\parallel}^{*}} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} & \mathcal{J} = m_{s}B_{\parallel}^{*} \Rightarrow m_{s}B \end{split}$$

Potential solved for by assuming adiabatic ions and using quasineutraility:

$$-n_{i0}(x_0)\frac{q_i}{T_{i0}}\phi(x,y,t) = n_e(x,y,t) - n_{i0}(x),$$

where $n_{i0}(x_0)$ is the value of the ion density in the center of the simulation

Grid Resolution and Boundary Conditions

- Initial simulations represent solution using piecewise linear basis functions
 - Plan to investigate use of higher-order polynomials, Maxwellian-weighted basis functions in future
- Boundary conditions:
 - Zero flux BCs in v_{\parallel} and μ on f
 - Periodic BCs in x and y on fluctuating components of ϕ and f

Coordinate	Number of Cells	Minimum	Maximum			
X	N _x	R	$R + \Delta R$			
У	N_y	$-\Delta R/2$	$\Delta R/2$			
$ u_{ }$	$N_{v_{\parallel}}$	$-\min\left(4, 2.5\sqrt{\frac{N_{v_{\parallel}}}{4}}\right)v_{Te}$	$\min\left(4, 2.5\sqrt{\frac{N_{v_{\parallel}}}{4}}\right) v_{Te}$			
μ	$N_{\mu}=N_{v_{\parallel}}/2$	0	$\min\left(16, 4\sqrt{\frac{N_{\mu}}{2}}\right) \frac{mv_{Te}^2}{2B_0}$			

Initial Conditions

$$f_{e}(x, y, v_{\parallel}, \mu) = \frac{n_{e}(x, y)}{[2\pi T_{e0}(x)/m]^{3/2}} \exp\left[-\frac{mv_{\parallel}^{2}}{2T_{e0}(x)}\right] \exp\left[-\frac{\mu B(x)}{T_{e0}(x)}\right]$$
$$T_{e0}(x, y) = T_{e0}\left(1 - \frac{x - R}{L_{T}}\right)$$
$$n_{i0}(x) = n_{0}$$
$$T_{i0}(x) = T_{i0}$$

For linear simulations, we initialize a perturbation with a single k_v mode:

$$n_e(x, y) = n_0 \left[1 + 10^{-3} \frac{\rho_e}{L_T} \cos(k_{y, min} y) \right].$$

For nonlinear simulations, a spectrum of k_x modes are included:

$$n_e(x, y) = n_0 \left\{ 1 + 10^{-2} \frac{\rho_e}{L_T} \cos(k_{y, \min} y) \exp\left[\frac{(x - x_0)^2}{2\sigma^2}\right] \right\}, \quad \sigma = \Delta R/4.$$

Linear Dispersion Relation for ITG/ETG in Local $(k_{\parallel} = 0)$ Toroidal Limit

The dispersion relation for the system can be derived as³

$$-n_{0a}\frac{q_{a}\phi}{T_{a}} = -n_{0s}\frac{q_{s}\phi}{T_{s}}\int d^{3}v F_{0}\frac{\omega-\omega_{*}^{T}}{\omega-\omega_{dv}}$$
$$= -n_{0s}\frac{q_{s}\phi}{T_{s}}\left[R_{0}\left(\frac{\omega}{\omega_{d}}\right) + \frac{R}{L_{n}}R_{1}\left(\frac{\omega}{\omega_{d}}\right) + \frac{R}{L_{T}}R_{2}\left(\frac{\omega}{\omega_{d}}\right)\right],$$
where $\omega_{*}^{T} = \omega_{*}[1 + (L_{n}/L_{T})(v_{\parallel}^{2}/2v_{t}^{2} + \mu B/v_{t}^{2} - 3/2)], \ \omega_{dv} = \omega_{d}(v_{\parallel}^{2} + \mu B)/v_{t}^{2},$
$$\omega_{d} = k_{v}\rho_{e}v_{t}/R.$$

Here, the subscript a refers to the adiabatic species and the subscript s refers to the kinetic species.

³M. A. Beer and G. W. Hammett. "Toroidal gyrofluid equations for simulations of tokamak turbulence". In: *Phys. Plasmas* 3.11 (1996), pp. 4046–4064.

Linear Dispersion Relation for ITG/ETG in Local $(k_{\parallel} = 0)$ Toroidal Limit

Neglecting FLR effects, the three parts of the ion response function can be written in terms of the plasma dispersion function⁴:

$$R_0(x) = 1 - \frac{x}{2}Z^2\left(\sqrt{\frac{x}{2}}\right)$$

$$R_1(x) = \frac{1}{2}Z^2\left(\sqrt{\frac{x}{2}}\right)$$

$$R_2(x) = \left(\frac{x}{2} - \frac{1}{2}\right)Z^2\left(\sqrt{\frac{x}{2}}\right) + \sqrt{\frac{x}{2}}Z\left(\sqrt{\frac{x}{2}}\right)$$

Using $n_{0a} = n_{0s}$, and $q_a/q_s = -1$, the dispersion relation is

$$0 = D(\omega) = R_0\left(\frac{\omega}{\omega_d}\right) + \frac{R}{L_n}R_1\left(\frac{\omega}{\omega_d}\right) + \frac{R}{L_T}R_2\left(\frac{\omega}{\omega_d}\right) + \frac{T_s}{T_a}.$$

⁴H. Biglari, P. H. Diamond, and M. N. Rosenbluth. "Toroidal ion pressure gradient driven drift instabilities and transport revisited". In: *Phys. Fluids B* 1.1 (1989), pp. 109–118.

Linear Growth Rate Tests

Figure: A linear growth rate for the ETG instability can be extracted from the ϕ_{rms} vs. t plot and compared with the exact value.

For	R/L_n	= 0	using	N_{x}	= 4,	N_V :	= 8,	$N_{V_{\parallel}}$	=	16,	and	N_{μ}	= 8	8:
-----	---------	-----	-------	---------	------	---------	------	---------------------	---	-----	-----	-----------	-----	----

R/L_T	$\gamma_{sim}/\gamma_{exact}$
20	1.045
10	1.095
5	1.435

Linear Growth Rate: Convergence

Figure: Convergence of numerical linear growth rate for $R/L_T = 20$ as the number of cells in v_{\parallel} and μ is increased. $N_{\mu} = N_{v_{\parallel}}/2$. Convergence is expected to improve greatly when Maxwellian-weighted basis functions are implemented.

Recent Results from the Gkeyll DG Code

Nonlinear Turbulent Saturation

Figure: Plot of ϕ_{rms} vs *t* for simulations performed at various R/L_T values using $N_X = 8$, $N_Y = 8$, $N_{y_{\parallel}} = 4$, $N_{\mu} = 2$.

Nonlinear Turbulent Saturation $(R/L_T = 8)$

Figure: Plot of $n_e - n_{e0}$ at various times. $N_X = 8$, $N_Y = 8$, $N_{y_{\parallel}} = 4$, $N_{\mu} = 2$.

Simplest Alfvén Wave in Gyrokinetics

Electromagnetic fluctuations have been challenging for some formulations of gyrokinetics

$$\frac{\partial f_e}{\partial t} + v_{\parallel} \frac{\partial f_e}{\partial z} + \frac{q_e}{m_e} \left(-\frac{\partial \phi}{\partial z} - \frac{\partial A_{\parallel}}{\partial t} \right) \frac{\partial f_e}{\partial v_{\parallel}} = 0$$

$$-n_i k_\perp^2 \rho_s^2 \frac{e\phi}{T_{e0}} = \int f_e \, dv_{\parallel} - n_i$$
$$k_\perp^2 A_{\parallel} = \mu_0 q_e \int dv_{\parallel} f_e v_{\parallel}$$

After linearization and taking the limit $\omega \gg k_{\parallel}v_{te}$, we have

$$\omega^2 = \frac{k_\parallel^2 v_A^2}{1 + k_\perp^2 \rho_s^2 / \hat{\beta}_e}$$

where $\hat{\beta}_e = (\beta_e/2)(m_i/m_e)$. The electrostatic case $A_{\parallel} = 0$ corresponds to the $\beta_e \to 0$ limit, in which there is a Ω_H mode that is even faster than electrons, for $k_{\perp} \ll 1$:

$$\omega^2 = \frac{k_{\parallel}^2 v_{te}^2 / \hat{\beta}_e}{1 + k_{\perp}^2 \rho_s^2 / \hat{\beta}_e} \rightarrow \frac{k_{\parallel}^2 v_{te}^2}{k_{\perp}^2 \rho_s^2}$$

It would seem that including a finite beta term should be numerically easier, as at low k_{\perp} the fastest wave would be no faster than the Alfvén wave.

Handling the $\partial A_{\parallel}/\partial t$ term

$$\frac{\partial f_e}{\partial t} + v_{\parallel} \frac{\partial f_e}{\partial z} + \frac{q_e}{m_e} \left(-\frac{\partial \phi}{\partial z} - \frac{\partial A_{\parallel}}{\partial t} \right) \frac{\partial f_e}{\partial v_{\parallel}} = 0$$

Codes usually eliminate the $\partial A_{\parallel}/\partial t$ term with the substitute $\delta f_e = g + (q_e/m_e)A_{\parallel}\partial F_{e0}/\partial v_{\parallel}$ (or by going to $p_{\parallel} = mv_{\parallel} + q_eA_{\parallel}$ coordinates, which is linearly equivalent). Ampere's law becomes:

$$\left(k_{\perp}^{2}+C_{n}\frac{\mu_{0}q_{e}^{2}}{m_{e}}\int dp_{\parallel}f_{e}\right)A_{\parallel}=C_{j}\mu_{0}\frac{q_{e}}{m_{e}^{2}}\int dp_{\parallel}f_{e}p_{\parallel}$$

"Ampere Cancellation Problem": the ratio of the first to the second term is very small, $k_{\perp}^{2}\rho_{s}^{2}/\hat{\beta}_{e} \approx 10^{-5}$, for $k_{\perp}\rho_{s} = 0.01$ and $\hat{\beta}_{e} = 10$ (1% plasma beta). C_{n} and C_{j} represent small errors (for the exact system both should be exactly 1.0). After linearizing and taking $\omega \gg k_{\parallel}v_{te}$, we get

$$\omega^{2} = \frac{k_{\parallel}^{2} v_{A}^{2}}{C_{n} + k_{\perp}^{2} \rho_{s}^{2} / \hat{\beta}_{e}} \left[1 + (C_{n} - C_{j}) \frac{\hat{\beta}_{e}}{k_{\perp}^{2} \rho_{s}^{2}} \right]$$

Note that if $C_n = C_j = 1$, this reduces to the Alfvén wave dispersion relation on the previous slide. However, if $C_n - C_j \neq 0$, then there will be large errors for modes with $k_\perp^2 \rho_s^2 \ll 1$.

Gkeyll can reproduce the Alfvén wave dispersion relation

Figure: Frequency for shear Alfvén waves with $\beta_e = 1\%$. The simulation results from Gkeyll agree with the exact result to at least two significant figures. The purple curve is the result if there are just 0.1% errors in the C_n term in the modified Ampere's law.

Magnetic Fluctuations in DG

In the MHD limit, we need

$$E_{\parallel} = -rac{\partial \phi}{\partial z} - rac{\partial A_{\parallel}}{\partial t} pprox 0,$$

but there is no way for a *continuous* $A_{\parallel}(z)$ to offset the discontinuous $\partial \phi / \partial z$. To achieve energy conservation, our DG algorithm requires H (and thus ϕ and A_{\parallel}) to be in a continuous subspace of f.

This results in $A_{\parallel} = 0$ (as if $\beta = 0$) and a very small time step is required to resolve this grid-scale mode ($\Delta t < k_{\parallel,\max}v_{te}/(k_{\perp,\min}\rho_s)$).

Eric Shi

Recent Results from the Gkeyll DG Code

- We resolve this issue by projecting $\phi(z)$ onto a C_1 subspace so ϕ and $\partial \phi / \partial z$ are continuous (ϕ must be at least piecewise parabolic in this case). This allows a continuous $A_{\parallel}(z, t)$ to better approximate the ideal MHD condition $E_{\parallel} \approx 0 = -\partial \phi / \partial z \partial A_{\parallel} / \partial t$.
- In order to conserve energy, the projection operator must be self-adjoint.
- We have found a local self-adjoint smoothing operator that allows Gkeyll to reproduce the correct frequency of the Alfvén wave even at very low $k_{\perp}\rho_s$ with a normal time step

- Demonstrated ability to handle magnetic fluctuations in an efficient way
- For initial ETG simulations, we are able to observe linear growth rates that converge to the correct values
 - Nonlinear runs look qualitatively reasonable and reach turbulent saturated states
- Future plans:
 - Implement Maxwellian-weighted basis functions in μ and v_{\parallel}
 - Solve Poisson equation for potential in 2x + 2v and 3x + 2v simulations
 - Add support for more complicated geometries e.g. non-rectangular and non-uniform meshes
 - Run tests with a third spatial dimension (3x + 2v)