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THEORY-BASED MODELS OF TURBULENCE
AND ANOMALOUS TRANSPORT IN FUSION PLASMAS

I. Simple picture of plasma microinstabilities

Inverted pendulum → Rayleigh-Taylor → Magnetic curvature in-
stability.

Difference between MHD and micro-instabilities/drift-waves.

II. Complexity and challenge of plasma turbulence

nonlinear, chaotic, wide-range of space and time scales

theoretical and computational advances made in tackling these
problems.

III. Comparisons with experiments, remaining challenges.



Stable Pendulum

L

M

F=Mg ω=(g/L)1/2

Unstable Inverted Pendulum

ω= (-g/|L|)1/2 = i(g/|L|)1/2 = iγ

gL

(rigid rod)

Density-stratified Fluid
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“Bad Curvature” instability in plasmas
≈ Inverted Pendulum / Rayleigh-Taylor Instability

Top view of toroidal plasma:

plasma = heavy fluid

B = “light fluid”

geff =      centrifugal force
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Similar instability mechanism
in MHD & drift/microinstabilities

1/L = ∇p/p in MHD,                      
 ∝ combination of ∇n & ∇T

in microinstabilities.



The Secret for Stabilizing Bad-Curvature Instabilities

Twist in B carries plasma from bad curvature region
to good curvature region:

Unstable Stable

Similar to how twirling a honey dipper can prevent honey from dripping.



Cut-away view of tokamak turbulence simulation

Waltz (General Atomics), Kerbel (LLNL), et.al., gyrofluid simulations. Similar pictures from gyrokinetc particle

simulations.

Lots more pictures at www.acl.lanl.gov/GrandChal/Tok/gallery.html.



Simulations of Tokamak Plasma Turbulence

• Realistic simulations made possible by advances in plasma the-
ory, experimental insights, and parallel supercomputers.

• Fundamental science: fascinating physics of plasma turbulence.

• Applications: studying ways to reduce turbulence and the cost
of a fusion energy power plant.
General Atomics (San Diego), NERSC (Livermore/Berkeley), PPPL (Princeton), IFS (U.Texas, Austin), ACL (Los Alamos),

part of the Numerical Tokamak Project, a DoE/HPCC Computational Grand Challenge.



Simulations can handle realistic non-circular geometry

Turbulence can be reduced by strong plasma shaping in advanced tokamaks,
spherical tori, etc.
General Atomics (San Diego), NERSC (Livermore/Berkeley), PPPL (Princeton), IFS (U.Texas, Austin), ACL (Los Alamos),

part of the Numerical Tokamak Project, a DoE/HPCC Computational Grand Challenge.
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Fluid closure approximations for collisionless limit
(Hammett & Perkins, Chang & Callen, Dorland, Beer, Waltz, ...)

f(~x, v‖, v⊥, t) → ∫
d3vfv

j
‖v

k⊥
5D + t → 3D + t × 6 moments

(Density, avg. flow, parallel and
perp pressures and heat fluxes)

Example closure: Heat conductivity: χ‖ =
v2
t

νcollisions︸ ︷︷ ︸
Chapman-Enskog
Collisional Transport

+ |k‖|vt︸ ︷︷ ︸
Collisionless limit
n-pole approx. to
Landau damping (and
inverse) 1/|k‖| → non-
local integral operator
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IFS-PPPL Transport Model
Kotschenreuther, Dorland, Beer, Hammett ’94

• Based on nonlinear gyrofluid simulations of ITG turbulence to map out struc-

ture of ion thermal conductivity χi, & on linear gyrokinetic calc of growth rates

and critical gradients.

Hahm-Burrell ExB shear
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χe/χi = quasilinear

• Brought together scalings from many analytic theories into a single formula.
Comprehensive enough to explain many observed trends in standard tokamak
operating regimes, including some improved confinement regimes (given edge
B.C.’s)



IFS-PPPL transport model represented a significant advance. But a more com-
plete model is needed:

• advanced tokamak regimes (negative shear, high β, strong shaping)

• internal transport barriers: suppress χi & De, but large χe ??!!

• particle and momentum transport (presently just heat transport)

• edge turbulence

• better shear in equilibrium E ×B, ω∗(r), ηi(r)

• better zonal flows, gyrofluid/gyrokinetic diffs
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Transport Model Based on Turbulence Simulations
Follows Many Experimental Trends
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Kinsey, General Atomics

ITER profile database+DIII-D

• GLF23 transport model by Waltz et.al fit to Beer et.al. nonlinear 3-D gyrofluid
simulations of ITG/trapped-electron turbulence.
• Encouraging results so far, but many caveats: uses measured density and rotation profiles, uses measured temperatures

at r/a = 0.9, electrostatic turbulence simulations need extension to magnetic fluctuations, gyrofluid/gyrokinetic discrepancy,

etc... Much future work needed to be more accurate over a wider range of plasma parameters.

• Rescaled GLF23, ↓ χ and E ×B shear, improves to RMS error ≈ 19%.
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Higher quality image available at w3.pppl.gov/ ∼zlin/gyrokinetic.html
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Gyrofluid/gyrokinetic (GF/GK) simulation differences
→ 20-33% change in predicted temperature gradient
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• Dimits (LLNL): good convergence in his gyrokinetic particle simulations

• New neoclassical gyrofluid closure significantly improves GF/GK comparison.

• Turning this plot around, for a fixed amount of heat flux ∝ χ∇T , the tem-
perature gradient predicted by the original gyrofluid-based IFS-PPPL model is
20-33% low. But Pfusion ∝ T 2, and so may increase by ×2 or more.

• Nonlinear upshift in critical gradient may depend on: Rosenbluth-Hinton un-
damped zonal flows ↑ with elongation (W. Dorland), ↓ with weak collisions (Z.
Lin), ↓ ?? with non-adiabiatic electrons [may limit inverse cascade that drives
zonal flows (Diamond, Liang, Terry-Horton, Waltz, ...) and ↑ turbulent viscosity].



CONCLUSIONS

Major progress has been made during the past 10 years in di-
rect 3D simulations of plasma turbulence and in reduced transport
models.

Reasonable agreement with core temperature profiles ( ∼30%) in
many cases, but more work needed to resolve significant uncer-
tainties (edge turbulence, zonal flows, electron dynamics, ...).

Relatively complete simulations should be achievable soon... †

Also: many ways to reduce turbulence and improve performance
(sheared flows, IBW, edge beams, density peaking, high beta ad-
vanced tokamak designs with strong Shafranov shift and shaping,
...)

†But needs a lot of hard work, more complete physics in codes, and new generation of comput-

ers.



P.S.: The content of the above slides is the same as I used in my talk at the Atlanta APS meet-
ing (March, 1999), though I converted of few of them to be typest instead of just scanning in
handwritten slides.


