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ASYMPTOTOLOGY

Martin D. Kruskal

When I first saw the program for this conference I was mildly
curicus about why myv talk was scheduled at the end of the first session,
following the opening lecture by Professor Grad. Although accepted
conference manners {conventional convention conventions, I almost
said) forbade inquiring of our genial organizers, I now know the rea-
son--Harold's stimulating and excellent lecture has roused a furore
of excitement and even controversy, as they must have foreseen,
and it is my function to calm vou down, bore you perhaps, and send
yvou off properly scoothed and relaxed to enjoy tonight's banquet,

The subject of this conference is unusual, and if I am not at
all confident that my chosen topic is entirely appropriate, 1 am em-
boldened to proceed because of a conviction that it would be out of
place anywhere else., But I do feel some trepidation at having Pro-
fessor Friedrichs in the audience, since I am so heavily indebted to
his most enlightening 1955 Gibbs Lecture article,1 already referred
to by Grad.

Asymptotics is the science which deals with such questions
as the asymptotic evaluatic:;n of integrals, of solutions of differential

equations, etc., in various limiting cases. Elements of this science

=t

" This text is based on a lecture I presented at the Conference on Math-
ematical Models in Physics at Notre Dame, April 15-17, 1962.
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may be learned from the works of van der Corput, z Erdglyi, 3 and de
Ji’>'.ruijn,4 and advanced acpects from the numerous references in Fried-
richs' cited article. By asymptotology I mean something much broader
than asymptotics, but including it; pending further elaboration, I would
briefly define asymptotology as the art of dealing with applied mathe-
matical systems in limiting cases.

The first point to note here is that asymptotology is an art, at
best 2 quasi-science, but not a science. Indeed, this explains much
of my difficulty both in expounding my material and in finding an appro-
priate occasion to do so, and it may serve handily to excuse my effort
for lacking the high degree of polish which Dean Rossini in his open-
ing remarks assured us we may expect of the presentations {and
indeed there does seem to be much Polish about this conference). It
explains, too, why I am unable to support the corpus of my dissertation
with the hard bones of theorems but must be content with a cartilage
of principles, into seven of which I have distilled whatever of asymp-
totology I have been able to formulate appropriately and sufficiently
succinctly.

The aspect of the definition of asymptotology just given which
1s most in need éf explanation is the concept of applied mathematical
systern. An applied mathematical system is merely the mathemat-
ical description of a physical {or occasionaily biological or other)

system in which the variables expressing the state of the system



are complete. The importance of formulating problems in terms of
complete state variables constitutes a preliminary principle, not
particularly of asymptotology but of applied mathematics in general,
the Principle of Classification (or, perhaps better, of Determinism).
It is illustrated by the overpowering tendency, in treating classical
mechanical problems, to enlarge the configuration space to a phase
space, since the phase (configuration together with its rate of change}
but not the configuration alone constitutes a complete description of
a classical mechanical syetem. Consider also the tendency, in
treating probabilistic mechanical problems, to switch over from
this original description, which is incomplete because, for instance,
the mechanical ""state” at one time does not determine the “'state’
at another time, to a new description in terms of a probability dis-
tribution function of the old '"states, " which function evolves "deter-
ministically' in time and is therefore preferable as a state des-
cription. This Principle is obviously closely related to the notion
of a well posed problem emphasized by Hadamard. Its particular
relevance to asymptotology comes about because only after one has
singled out (""determined’) an individual solution {or completely
""classified" the family of solutions) can one reasonably inquire into
its asymptotic behavior.

Asymptotology is important because the examination of

limiting cases seems to be the only satisfactory effective method of



proceeding with the analysis of complicated problems (systems) when
exact mathematical methods are of no (further) avail (and is often
preferable even when they are). It is of value both for obtaining
qualitative information (insight} about the behavior of a system and its
solutions and for obtaining detailed guantitative {numerical) results.
Thus it is hardly surprising that examples, from trivial ones to the
most profound, are found everywhere throughout the fields to which
analysis (in the technical sense as a branch of mathematics) is applied.
1 5
An excellent example of asymptotology is the familiar Hilbert
6 L LR by .
or Chapman-Enskog ({('"HCE" from now on} theory of a gas described
by the Boltzmann eqguation
af of of 3 ==
=ty == + a == = A dvd2 |v-v'jo{ ff' - £ )
3t =~ 9x = dv f“ |y~ y'lof ] (1)
in the limit of high density (f — ¢?) or equivalently of frequent collisions
(A — 0}, which Grad has already discussed this afternoon. Another
. 7 8
example is the Chew-Goldberger-Low theory of the so-called Viasov
system of equations governing an ideal collisionless plasma and its electro-
magnetic {ield in what is often called the strong magnetic field (or
small gyration radius) limit but is formally best t:t'ea.ted9 as the limit
of large particle charges. In the general theory of relativity there 1s
. . 10 . , .
the fundamental Einstein-Infeld-Hoffrnan™  derivation of the equation
of motion of a 'test particle” (one not influencing the space-time

metric, i.e. one of negligible mass) by treating it (its world-line,



rather) as an appropriate singularity in the metric and letting the
strength of the singularity appreoach zero. Hydrodynamics is rich in
asymptotology (theory of shocks as arising in the limit of small vis-
cosgity and heat conductivity, theories of strong shocks and of weak
shocks, shallow water theory, and 50 on and on), and so is elas-
ticify. Kirchoff's laws for electrical circuits can be properly derived
from Maxwell's equations only by going fo the limit of infinitely thin
conducters {(wires). Simpler examples also abound and are e_ncountered
daily by the practicing applied mathematician and theoretical phys-
icist. Naturally it is not practical to discuss deep examples in detail
here, so I shall have to confine myself to brief remarks about them,
relying for illustration mainly on simple and often trivial instances.

It should now be apparent, I hope, that whatever features such
important, wide~spread, and diverse examples may have in common,
and whatever lessons for future application may be gleaned from study-
ing them, are well worth formulating and eventually standardizing. Ewven
the many {most? far {rom all, as I know from my acquaintance) applied
mathematicians (etc.) who have become familiar by experience with
asymptotological principles, at least in the sense of knowing how to
apply them in practice, --even they must inevitably benefit from the
introduction of a standard terminology and of the clarity of expression
it permits. Implicit knowledge, no matter how widely distributed,
deserves explicit formulation, but [ am aware of no efforts in this

direction which attempt to go anything like so far as I am doing here,



though there are some related suggestions in Friedrichs' article.

The final possible obscurity in our previous tentative definition
of asymptotology is what it means to deal with a system. To clarify
this, we might alternatively define asymptctology as the art of deseribing
the behavior of a specified solution {or family of solutions) of 2 system
in a limiting case. And the answer quite generally has the form of a
new system {well posed problem) for the solution to satisfy, although
this is sometimes obscured because the new system is so easily solved
that one is led directly to the solution without noticing the intermediate
step.

To illustrate first by a trivial example, suppose it is desired

ta follow the (algebraically) largest root x of the simple polynomial

equation
2 3 2
3¢ x +x -€x-4=0 (2)
-2

in the limit € — 0. There is one root of order € obtained by

) . . . - ] )
treating the first two terms as dominant, » ® - — ¢ | for which in-

)

deed the other two terms are relatively negligible (even though one
: -1 c i

of them is absclutely large, of order ¢ '}, but which is.negative.

The other two roots are finite, obtained by neglecting the terms with

€ factors, x & £ 2, the one sought having the plus sign. If we desire

it to higher order, incidentally, we may put {2) for this root in the

“"recursion'' form



X:Z(l—éex + € ) , (3)

expand out the right-hand side in powers of €, and generate better and
better approkimations for x by continually substituting the previously
best approximation into the right side, DBut this i1s irrelevant to the
present point, which is that {the problem cf the algebraically largest
root of} the original cubic equation (2) has been replaced by (the prob-
lem of the algebraically largest root of} the quadratic equation
xz -4 =0, or more exactly :{2 - {4 - 362 x3 + ex} = 0, the quantity
in parentheses be’ing treated as known.

In the HCE treatment of system (1) in the limit A — <, the
original integro-differential equation in the seven independent variables

t, x, v gets replaced by the set of coupled partial differential (hydro-

dynamic) eguations

ap
at ~_8“>E ou),
du 1 3p
—= 4 AP o)
at -~ 8‘153.. p 9= (#)
a3 d -5/3
(3rF u «gg)( p) = 0

in the four independent variables t, % ; here p, u, p are of course

the usual velocity space moments of f,



These examples clearly illustrate the first asyrnptotological

principle, which is in fact largely the raison d'€tre of asymptotology.

This Principle of Simplification states that an asymptotological {lim-
iting) analysis tends to simplify the system considered. This can
occcur in at least three general ways.

The basic way systems simplify is merely by the neglect of
terms {or, in hicher order analyses, at least treatment of small terms
as if known, as in the case of the cubic equation earlier). Thus the
polyvnomial equations xs +éeéx+1=0 and x6 + ax4 + 6x3 +1=0,
without getting lower in degree as the cubic did, nevertheless become
simple enough in the limit € — 0 to be explicitly solvable algebra-
ically. Differentjal equations in irrcegular domains approximating
regular ones may in the limit become solvable by separation of var-
iables. In other cases the coefficients may become so simple in the
limit as to permit solution by Fourier or other transform. These
are typical instances of perturbation theory; there arc of course also
many instances where the simplification which occurs does not appre-
ciably facilitate the further analysis of the system.

A derivative way in which systems simplify, sometirmes
striking in effect, is the decomposition of the system inte two or more
independent systems among which the sclutions are divided, so that
the particular solution of interest satisfies a system with fewer so-
lutions and hence usually in some sense of lower order. Thus the

cubic polynomial equation considered earlier split up intoc a quad-



ratic equation and what is effectively a linear equation. That is, the
root of order 6_2 was obtained by neglecting the two last terms and
writing 3 EZ x3 + xz ~ 0, and though this is cubic it has two trivial
unacceptablé roots x & 0 {corresponding to the solutions of the quad-~
ratic for finite roots) and is therefore equivalent to the linear equation
obtained by divi;ling through by xz

The third {also derivative) way systems simplify, often spec-
tacularly, is through the splitting off of autonomous subsystems. By
an autonomeous subsystem of a system is meant a part of the system
(part of the condition together with part of the unknowns) which is
complete in itself, i.e. forms an applied mathematical system in its
own right, so that it can {in principle, at least) be solved before the
rest of the system is considered. The qualifier ”autonomous“.is by
no means superfluous. Thus the system {(x,vy) = 0, gix} = 0 for the
two variables =, y has the autonomous subsystem g(x} = 0. It has
also the nonautonomous subsystem f(x,y) = 0 for vy, nonautonomous
because it is not definite (well-posed) until x has heen determined,
which requires the other part of the system.

Systems with autonomous subsystems occur much more often than
one may at first realize, since there is an instinctive tendency to
concentrate attention on the subsystem and forget that it is part of a
larger problem. A particularly contemporaneous illustration of this
is provided by the gravitationally determined motion of the sun, a

planet, and an artificial satellite; the subsystem of the sun and
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planet alone is autonomous, since their motions are unaffected by the
satellite and are naturally considered to be given and definite when its
moticon is under consideration. But there is a very common special kind
of system having autonomous subsystems which do not get overlooked
just because there are too many of them for any one to be singled out
naturally. Such are the initial value problems, which, if well posed

for t <t = tl with initial conditions at to, are also well posed for

O

to <t = t2 for any tZ between tD and tl, so that the autcenomous
subsystems constitute & continuous one-parameter family.

For an illustration of the third way of simplifying, note that
in HCE theory the five moments p, u, p satis{y (in the limit, of
course) the autonomous subsystemn {1}, which is vastly simpler
than (1) in having only four independent variables instead of seven.
Similarly the ''general' {for finite € ) pair of simultaneous equations
f{x,v)} =0, g(x)+ €h{x,v) =0 reduces for € — 0 to the system with
" an autonomous subsystem considered earlier. The sun-planet sub-
system split off only by virtue of the implied limit of (relatively)
small satellite mass, as is apparent from the less extreme case of
the earth and its natural {rather than artificial) satellite.

The second and third ways both involve a reduction in the num-
ber of solutions from which the desired one must be singled cut. This
is a characteristically asymptotic simplification and, as Friedrichsl
has affirmed, 1t justifies the limiting process even though compli-

cations arise in other respects. For instance, 2 linear second order
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differential equation may reduce to one of first order but nonlinear,.

The "number'" of solutions must be counted in whatever way is appro-
priate to the instance: as an integer {e.g. for the polynomical equation);
as the dimensionality or number of parameters of a family of solutions
{as for an ordinary differential equation); as the dimensionality of a
parameter space, or number of independent variables for a function
characterizing a solution {as with HCE, where seven reduces to four);
or what have you.

In carrying out asymptotic approximations to higher order terms
we are aided by the (second) Principle of Recursion, which advises us
to treat the nondominant terms as if they were known (even though they
involve the unknown solution). The simplified system then determines
the unknown in terms of itself, but in an insensitive way suitable (in
principle at least) for iterative generation of an asymptotic representation
of the solution. This has already been illustrated for one of the finite
roots of our cubic equation example. For the numerically large root
of (2} we may obtain the recursion formula x = - (xz —ex - /(3 62 XZ).
However, this is far from unique; by grouping the terms differently we
obtain x = - (XZ -4Y/(3 62 XZ - €}, which is equally suitable, since =
has still been solvea for from the dominant terms. It would be folly to
solve for x from a small term such as ¢ x; iterationon x = (3¢ x +
xz -4)/€ merely produces wilder and wilder € behavior. If one solves
from the dominant terms inappropriately, namely in a way which does

not give the solution explicitly cutright when the small terms arc neg-



lected, then one has a scheme which may or may not converge, but
which, even if it does,: converges at a 'finite” rate, not improving the
asymptotic order of the solution on each iteration. This is illustrated
by putting (2) in the convergent but asymptotically inappropriate recur-
sion form x = - [ - (XZ - €X - 4)f{3€2x)]1f‘2, which is guite usable,
however, for numerical computation,

This trivial example is so trivial that the emphasis on recursion
formulas seems forced, It is true that here and in many many other
cases one can simply write down an obvicus power series in € and
determine the terms order by order. This approach fails, however,
whenever a more general representation is required, as is by no means
rare. For instance I recently encountered a case where the obvicus secries
needed to be supplemented by a single logrithmic term {which was nei-
ther the dominant nor even the next-to-dominant ferm); the recursion
relation generates all the right terms without prcejudice as to their form,
Generation of terms by recursion is often very clumsy for practical
purposes, apart from leading to terms of unexpected form. However,
it has a great theoretical advantage when properties of {all terms of)
the series are to be derived, since the recursion relation is highly
adapted naturally to the use of mathematical induction. {See the final
reference for an example.)

The limiting cases we keep referring to are conventionally, in
asymptotics, formulated so as to be cases where a parameter (often

denoted by A} approaches infinity. Since I intend asymptotology



to embrace also situations where the limit system itself (not merely
arbitrarily near ones) is meaningful {perturbation problems), it is
preferable now instead to use a small parameter, conventionally
denoted by € { = 1/A for comver=zion). In fact, it may not be known in
advance whether the limit case is meaningful. and, whether or not it is
meaningful physically, mathematically it may or may not be so¢ depending
on the description employed. This brings us to our third asymptot-
ological principle, the Principle of Interpretation: it is a major task
of asvmptotological analysis to find variables in which the given prob-
lem becomes a perturbation problem (has a meaningful limit situation).
This may inveolve nothing more than recognizing that the original var-
iables axe such, as is the case for two roots of the cubic; for the third
root, however, the formal limit of (2) is meaningless, but if trans-~
formation to the new variable y = ezx is effccted {irst, the equation
obtained for y may be solved by perturbation analysis.

The characteristic feature of asymptotic analyses proper, as
opposed to perturbation analyses, is the appearance (in both senses)
of overdeterminisim. Thus the cubic eguation (2) with three roots
apparently reduces in the limit to & quadratic with only two; the well
behaved (for € # 0) pair of simultaneous linear equations x+ y =1,
x+ {1+ €}y = 0 formally reduces to a mutually contradictory pair for
€ = 0; in the initial value problem ¢ j—t z+z=0 (t>0), 2(0) =1, for
the continuous function z{t), we seemingly have 2z{t) = 0 in the limit,

contradicting the initial condition; and the same thing happens in many



less trivial cases (such as the theories of shocks, of boundary layers,
and of fast oscillations), as described in detail by Friedrichs.l In this
connection we have the (fourth) Principle of Wild Behavior, which tells

us that apparent overdeterminism arises because {at least scme of) the
solutions behave wildly in the limit- -wildly, that is, compared to our
preconceptions, as embodied in the mathematical form of the expressions
employved for representing the solutions. Thus in neglecting the cubic

(in addition to the linear) term of (3} we have obviously made the implicit
assumption that x 1s not too large {say bounded), which is correct for

only two of the roots, while the third behaves "wildly"

in becoming in-
. . -2 . . . : .

finite {like € ); the solution of the simultancous equations is similarly
. ) -1 . e

wild (like € 7); the solution of the initial value problem, z = exp(-t/e€),

is wild in having a derivative which, though converging to zero for every

fixed positive t, does so neonuniformly and actually becomes infinite for

t approaching zero sufficiently rapidly; and similar wildncsses occur

in the deeper examples mentioned.

When overdeterminism occurs, if the solution we want 1s among
those still permitted by the formal limit system, well and good: the
loss of othexr solutions is our gain in simplicity {in the second way).

If the solution we want is among those lost, then according to the Prin-
ciple of Wild Behavicr we should allow for more general asymptotic
behavior of the selution. It is one of the moszt troublesome difficulties

of asymptotological practice to find an appropriate asymptotic form.

It is impossible to prescribe a prieri gil asymptotic representations
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that may ever prove useful, but ameng more general representations
to try are two worth specific mention as frequently successful. The
first is to supplement the originally expected series with new ferms,
such as smaller (more negative) powers, as in the case of the cubic
equation, or logarithmic ones. The second, effective in many of the
deeper problems, including those just referred to {see also a detailed
example from my own experiencell), and illustrated by the initial
value problem just exhibited {which may in fact be viewed as an ele-
mentary boundary laver problem), is to write the unknown as the
exponential of a2 new unknown represented Ly a series, the dominant
term of which must become infinite {atf least somewhere) in the limit
if anything is to be gained by so doing.

If there can be overdeterminism there can also be underdeter-
minism, which means that the original well posed problem reduces
formally in the 1limit to 2 problem with more than one solution. For
instance let A be a known j-by-j matrix, let b and x be j-by-1
matrices, respectively known and unknown, and consider the matrix
equation Ax = b. Suppose that A and b depend on € and that the
determinant of A 1is zero if and only if € = 0. Then the formal lowest
©)_(0) _ (0}

order system A is certainly not well posed. Since

A( " is a singular matrix there exists a2 l-by-] matrix n (£0) such
0 . . . . :
that nA( ) _ 0; for simplicity assume that n 1is unique {(up to a constant

factar). If nb(o) #0 the limit system obviously has no solution

{overdeterminism, as in the previous example of simultanecus linear
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{0) {0}

equations), so assume nb = 0. Then x ie not completely deter-

mined by the limit system, and we have an example of underdeterminism.,
Another excellent and rather typical example of underdeterminism

is again the HCE problem. Letting A — % in (1} (after dividing through

(0)

bv A) leads to the information that £ is invariant under collisions,
i.e. locally Maxwellian in some {local Galilean) coordinate system,
which is very far from determining f(o), since there are five parameters
{p, 1. p) needed to specify such a distribution and we are left unprovid-
ed with information on how the parameters at different points of space-
time are related. (The Chew-GoldbergeraLowT theory is another such
e‘xarnple.S).

In such straits we are rescued by the (fifth) Principle of Anni-
hilation, which instructs us to find a complete set of annihilators of the
terms which persist in the limif, apply them to the original system, and
then go to the limit after multiplving by an appropriate function of ¢
so that the now dominant terms persist in the limit. DBy an annihilator
of a mathematical entity is micant an operator which results in zero when
applied to the entity, (Of course there are complicated cases in which this
produces only some of the missing information, and the same procedure
must be reapplied, perhaps repeatedly.}

(0} _{0)

In the matrix example, the terms A ¥ and b

O ehicn
persist in the limit are annihilated by multiplication on the left by n.

Applying this annihilator to the original equation, dividing by €, and

taking the limit gives what may be written
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lim {Guln [A - A{O)]} SO i {E_ln[b - b(O)]} (5)
€=0 €=0

(1)_(0) _

2 A x

(1

nb if A and b are expandable in integral powers

of €. In the normal case this provides just the one extra condition

0) (0)_(0) _ ,.(0)

needed to determine x( , which by the condition A b was

. 0
determined only up te a solution p of .-‘—‘x( )p = 0. In the abnormal case
that {(9) is not an independent condition, there is a linear combination

A(0)_(0) _ . (0)

of =b and {5) which gives 0 = 0. The formation of this

linear combination is then our new annihilator, the application of

{0)] (0)]

which to Ax - b and €_ln[A - A ® = €_1n[b -b leads to a
new extra condition which will normally be independent and provide the
missing piece of information,

In the HCE problem there are five scalars {mass, three com-
ponents of momentum, and energy) which are preserved by collisions,
so that taking the corresponding moments of (1) annihilates the right
side. These are therefore annihilators of the dominant terms, which is
why they are appiied to (1} to obtain the five hydrodynamic equations
relating the values of p, u, p {and therefore f which is expressed
in terms of them) at different points of space-time.

It is through the application of the Principle of Annihilation that

the Principle of Simplification is maintained. The loss of selutions in

a limit simplifies a system, while the gain of solutions, or loss of
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information. would "complicate' it if we were not able to recover
sufficient additional conditions to make up for the information iost.

The basic way systems simplifyv is by the ncglect of terms, as
stated earlier. But it commonly happens that the relative asymptotic
magnitude of two terms to be compared depends upon some knowledge
not yet available or on scme assumption or decision not yet made.
According to the (sixth) Principle of Maximal Balance {or of Maximal
Complication;m;, for maximal flexibility and generality we should keep
both terms, i.e. we should allow for the possibility or assume that they
are comparable. In the case of incomplete knowledge this is mere
prudence; any terr in anh equation definitely smailer in order of mag-
nitude than another term may be considered negligible, but no term should
be neglected without a gaod reason. In the case of a pending assumption
or decision, the desire to balance two such competing terms helps to

determine the choice.

b

"Use of this terminoclogy is justified even from the technical view-
point of Information theory, suggesting the possibility of assigning a
measure to the decrease in the number of sclutions occurring in a
Limit.

Hek

Q‘Partly as a consequence of Professor Friedriche comunent at the
conclusion of my lecture, I new feel that "Minimal Simplification”
is more appropriate here,
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The most widely applicable and hence most informative ordering
is that which simplifies the least, maintaining a2 maximal set of comparable
terms. Quite often there is more than one possible maximal set of terms,
with no set including all terms of any other. {Sets of terms form a lattice
ordered by inclusion.} Each maximal set corresponds to different as-
ymptotic behavior. The solutions may split up according to which be-
havier they have {second way of simplifying), as with the cubic, or each
solution may exhibit a variety of different behaviors, in different regions,
as with a boundary layer phenomenon.

For instance in the case of the cubic equation, how could we know

-2
.that two solutions are finite and one of ordexr € 7 Put another way.
why did we not assume the first and third terms to be ths dominant ones,
or the second and third, or so on? In this particular case there is an
easy answer: if we had, we would have obtained a "solution” for which
the neglected terms were not in fact negligible compared to the supposed
dominant terms. i.e. the ""selution' found would not have been self-
consistent. But suppose there were several more terms, would we have
had to try every pair? (Or suppose there were two independent small
parameters 0 and € instead of only one.) Clearly, no matter which
terms are dominant x will behave predominantly as some power of
€. We therefore assume the general representation x & a el and wonder
what value of q to take. One might in fact choose arbitrarily any value
for q but will then generally find that for finite a only one term of (2)

dominates, which is nonsensical, so that a = % {if it was the constant
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term), which is not legitimate, or e¢lse a = 0 [if it was one of the
others), which, if more legitimate, is certainly no more useful, A value
of g will only be "proper' if we end up with a representation which is

"maximally complicated' in that it really consists of one term a e

instead of ''no terms' such as 0 or ®. If we put x & aed into (2}
the successive terms vary E;.S € to the respective powers 3q+ 2, 2q,
g+ 1, 0, and it is easy to see thatonly g =0 or g= - 2 make two (or
more) powers egual minima.

Cn the side it might be of interest to mention a graphical method
of finding the proper values of g which apparently goes back to Newton,
it is hardly needed in the present simple illustration but can be a great
time-saver in more involved examples (also those of higher dimensionality).
We plot each term of {2) as a point on a graph, the abscissa being the
exponent of x and the ordinate that of € (see four heavy points in
figure 1); the coefficient is ignored so long as it is not zero. The spec-
ification of a definite relationship between x and ¢ (i.e. of a definite
value of g} leads to the identification of the asymptotic behavior of all
terms {present or not) corresponding te points which are on a commen
line with a definite slopej. Thus for x ~ ¢ all points on the same down-
slanting {from left to right) 45° line corre spond to a comman asyrmptotic
behavier, while for x ~ eﬂl the same hoids for up--sianting 45° lines
{sce dotted lines}. OSince the smaller the power of € the larger the

term, we seek lines passing through (at ieast} two graphed points and

having no graphed points below them. We may think of finding the lower
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convex support lines of the set of graphed points, perhaps kinesthetically
by imagining pushing 2 line up from below until it first hits a graphed
poeint and then rotating it around that point until it next hits a second
graphed point. It is immediately apparent from figure 1 that there are
just two such lines and that they correspond to g =0 and q = -2 {(see
heavy dashed lines). It is also clear that the point (1, 1), like all points
in a semi-infinite vertical strip (see horizontally shaded area), are
"shielded'' by the points (0, 0) and {2, 0) and can never be on a support
line; it 1s indeed obvious that €x is negligible with respect to either

x  or 4 no matter how x wvaries with €. Similarly there is a semi-
infinite vertical strip shielded by the points (2, 0) and (3, 2) (see diag-
onally shaded area). In more complicated cases we can thus exclude
terms wholesale from competition.

To return to our proper business, iliustration of the Principle
of Maximal Complication, consider the problem of finding the lowest
frequency of vibration and the corresponding form of vibration of a
uniform membrane stretched between two close wires lying in a p.lane,
one of which we take straight for simplicity. The equation for the

standing vibration of 2 membrane is

8211 8211 2

—_— + —— + v u=40, {6)
2 2

ox ay '

where wu is the displacement normal to the (x, y)plane, which is the rest

plane of the membrane (the plane containing the wires}, and v 1is the
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frequency of vibration of the mode. Let the equations of the wires in

the (x,yJplane be v =0 and vy = €Y{x), where € of course is the small
parameter of closeness. We may suppose Y(xl} = Y(xz) =0 soasto
have to consider only the finite region % <x < #ys 0 <y <€ Y(x)
Imposing the condition u = ¢ on the boundary of this region and (6)

inside the region, we have an eigenvalue problem for the lowest cigen-
value V and its corresponding eigenfunction u. This is one common
type of asymptotic problem, asymptotic rather than ''perturbational'

in that there is no limit problem because the region of interest disappears

. 1 .
in the limit. The remedy for this is well known; we rescale the variables

appropriately, in this case introducing 1 =€ vy so that the region in
the (x, 17 ) plane becomes x <x < Xy 0 <7 < ¥Y(x), and {6) becomes
2
-2 3
B8, 2 Bu e, (7)

sz an 2

Taking the asymptotic behavior of each term at its face value {but

remembering that ¥ is not yet determined), we deern the first term

-

b

. L 2
negligible compared to the second, and (by the Principle) assume ¥ ~E€
to balance the second and third terms. Introducing ® = € ¥ we write

{7) as

— s u=-ce¢ —-g (8)
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To lowest order we neglect the right side of (8), whereupon x degenerates
from an independent variable to a mere parameter. The really proper
treatment at this point,by the Principle of Recursion, would be to treat

the right side of (8) as known, solve for u on the left in the form of an
integral representation {involving the simple, well known, explicit Green's
function), and try to obtain u iteratively. Instead we shall do something
similar but simpler, more or less paralleling the lowest order version

of the proper treatment. For each x we have, to lowest order, &

simple eigenvalue problern with lowest eigenstate u = A sin(wn/Y) and
eigenvalue @ =m/Y. But w so defined depends on x, which is imper-
missible, so we take A{x) to be a Dirac delta function, the location of
whose singularity we take to be at the maximum of Y(x) in order to

have the smallest W; for simplicity we assume the maximuin of Y to

be unique and to occur at x = (. In a sense we have now solved the
problem originally posed, but since our answer is singular it is not entire-
ly satisfactory (see the next and final Principle to be formulated).

Indeed, since our ''solution' is singular in its x dependence, we ought

2
5
2 u g
to worry whether our earlier neglect of € —5 was justified, and we
ax
might well be curious anyway about the true detailed x dependence which
we have cavalierly expressed as a delta function. Since the significant
behavior occurs near x = 0 we introduce & =0 “x, where O is a

small parameter to be determined {related to €). We also write

w=w +& where @ =a/Y(0) and & is small. Since
0 o]
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2
2 -2
2 U.') o Yix) Tu, from (8) we obtain
an "~
2l 2 2
™ 2 . € d
[ 5~ @ ] AR S T 5 . {%)
YL ) o &t
1 P . , .
Let Y(8&) = Y(0) ts Y036~ & + . . . with Y"{0) < 0, whereupon this
becomes
2., , )
2 ~ —~ A
[- X2 YO &2 ~2ww]A~—€—7§—z~ ) (10)
Y{0) © 6% ak

According to the Principle of Maximal Compilication we choose the as

yet undetermined asymptotic behaviors so as to keep all the terms in

/ -
the equation and are thus led to take & = Gl' 2 and =¥ ! &, obtaining
2
d A Y0 e s .
_)+;(O}[1T {2)5 +2874A%0 . - {11}
d§ = Y{G)

On the £ distance scale A rmust vanish at "infinity, " and we have a
well known eigenvalue problem arising in the quantum theory of the

harmonic oscitlator. The lewest eigenfunction is the Gaussian

A = exp {- % Y{O)_B/Z [-v"(0)] e

2z . ) ~ 1
£7} with real eigenvalue w :é
a1l /2
[-¥"{0)/Y({0)] .
Incidentally, if we should be interested in the behavior of u for

[ b4 | not very small, where u decreases rapidly, a different procedure

must be used. The right side of {8} cannot be neglected there, since
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w w/Y{(0) does not even approximate the local eigenvalue w/Y(x) for
which the left side can vanish with u £ 0. The device mentioned earlier
of representing the unknown as an exponential works here; with u = exp v

?

(8) becomes

2 2
AT v 2 2 2.0 v Jv .2
S b (=) W = [ () (12)
2 an 2 ox
an Ix
; . _ : . -1
We may assume that v is expandable as a series in €, v = €
(o) A1) : _
[v T e + . . .], where the leading term has been taken large of

-1
order € to permit the right side of (12} to contribute. We must have
(o)
(o)

v ; . ) . X .
= (0 or the left side will dominate again, so v i1s a functicon of

an

x only, and to dominant terms {12} becomes

{
PLIRSY YALL AP o) o
— (= W = - )
o} ax
am on
Viewed as an equation for v(” this can be linearized and "homogenized"

1
by reversing the exponentiation procedure, namely by introducing w = exp v( ),
whence

2

3w [wz_,av(o) 27w -0
2 o Vax W
an

Together with the boundary conditions on w (that it vanish at 1 = 0,

Y(x)) this is an eigenvalue problem which determines the variation of

(o)

V L]
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Vo= {w/Yix)]T,

as well as the 7 dependence of w (sinusocidal). All that the device
has amounted to in this case, of course, is factoring out {{rom u}a fast
varying function of x, but the use of the exponential representation has
led to that procedure in a natural and systematic way,

We complete our list with the simple Principle of Mathematical
Nonsense: if, in the course of an asympteiclogical analysis, a math-
ematically nonsensical expression appears, this indicates that the
asymptotology has not been done correctly or at least not carried out
fully (although even incomplete it may be satisfactory for one’s purposes).
One may come upon expressions such as 0/0, divergent sums or integrals,
singular functions, etc., and whether they are toc be considered non-
sensical sometimes depends on the use they are to be put to. n the just
discussced membrane vibration problem the first instance of mathematical
nonsense was the disappearance in the limit of the region over which the
partial differential equation was to be soived, the second was perhaps
the dependence of @ on x, and the third was the response to this, the
use of a sinpgular (delia) function.

Freguent in asymptotelogical analyses is the cccurrence of
phenomena on different scales of distance or time. The HCE problem
is a well known case {as Grad has just pointed out), since if f is not
prescribed Maxwellian at the initial instant, therc is a relatively short

period of tirne {the order of a collision time) during which { becomes



Ma=zwellian, while the five moments remain approximately cohstant,
and a relatively long period (of order A times as long) during which
the five moments (hydrodynamic variables} vary but { maintains its
Maxwellian form. For an extremely simple example of the same tvpe,
consider the familiar electric circuit equation V = RI + LI, where
the voltage V{t) is an imposed function of time, the current I{t) is

to be found, the resistance R and the inductance I are positive
constants, and we choose to examine the limit L — 0. Treating LI

as 1f it were known, we immediately cbizin a recursion formula for I,

1-R YV - RTPLA
1 L .2 L .3

== .=V = S %
R[V R + (R) v (R) Vot 1, (13)

which is fine except for not in general satisfying the arbitrary initial
condition on I natural for the original firs£ order differential equation.
For short times (of order L)1 is large and V approximately constant,
s¢ that the difference of I from its guasi-equilibrium wvalue V/R decays
like exp{-Rt/L)}; after this transient has died out {13} holds. Incidentally,
the expression in brackets in {13) is just like the Tavylor expansion in
powers of L of V evaluated at the argument t - L/R except for a
factor of (n - 1)! in the denominator of the n-th term, which shows that
the asymptotic series (13) for I cannot be expected to converge even

if 'V is analytic {which does not stop it from being very useful).
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In phenomena with behavior on two different time scales there
is a widely pertinent distinction to be observed between finite conservative
systems on the one hand and infinite or dissipative systems on the
other. For instance the well known problem of the harmonic coscillator
with slowly varying coefficient of restitution,lz ¥ + ki{€t)x = 0, is an
example of the first kind; on the short (finite) time scale k is approx-
imately constant and the oscillator simply oscillates steadily, while on
the long (Ne_l) time scale the frequency and amplitude of the oscillation
vary in response to the variation in k. Contrast with this the behavior
of the dissipative electric circuit, where only initially the current I
varies on the short time scale, swooping toward its quasi-steady value,
The HCE example shows that a conservative system can act the same
way so long as it is infinite; in this case the decay comes about by a
process of "'phase mixing, " and is possible because the Poincaré
recurrence time is infinite.

The asymptoiic separation of time scales is the basis for an
exciting recent approach in statistical mechanics, L Typically one
obtains equations for the one-particle and the two-particle distribution
functions fl and fz for a gas of appropriate characteristics, and finds
fl can vary only slowly, but f2 can vary quickly so as to phase-mix
towards a quasi-steady distribution as t gets large on the short time
scale while remaining small on the long time scale, The limiting dis-
tribution fz is a functional of fl, which when substituted into the equation

for il leads to a closed "kinetic equation' for fl. The irreversibility
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{timewise) of this kinetic equation comes about in a natural way, in that
the limiting fz depends on which direction t is taken to the limit {(on
the short time scale)}, whether to plus or to minus infinity. It is a major
triumph of this approach that the '"Stosszahlansatz’ can for the first
tirne be actually derived {under moderate smoothness assumptions}.

To return to the conservative case, I am glad to take the
opportunity of advertising a recent pape r14 in which I have elaborately
worked cut the asymptotic theory of finite systems of ordinary differential
equations depending on a small parameter € which to lowest order have
all solutions periodic. Applied to Hamiltonian systerns the theory leads
to the existence of adiabatic invariants which are censtant {integrals)
to all orders in €.

We are all familiar with these rather unsatisfactory research
papers in which the author makes a series ot largely arbitrary ad hoc
approximations throughout, often dubious withcout {sometimes even with)
the author's intuitive grasp of the situation, These "ad-hoaxes' have
their place and utility, but how much more desirable and convincing is
4 properly worked out and elegant asymptotological treatment, with
any arbitrary assumptions (like remarkable coincidences in a well
constructed mystery storv) made openly and aboveboard right at the
beginning where anvone can assess their merits for himself. and with
the later development unfolding naturally and inexorably once a definite

problem and the limit in which it 1s to be considered have been settled

uporn!



The art of asymptotology lies partly in choosing fruaitful limiting
cases to examine--fruitful first in that the system is significantly sim-
plified and second in that the results are qualitatively enlightening or
quantitatively descriptive. It is also an art to construct an appropriate
generic description for the asymptotic behavior of the solution desired.
The scientific element in asvmptoteclogy resides in the nonarbitrariness
of the asymptotic behavior and of its description, once the limiting case
has been decided upon.

Moliére has one of his characters observe that for more than
forty years he has been talking prose without knowing it. It is doubtful
that he benefited from the discovery, but I hope that you will be more
fortunate and not disappointed in having by now discovered that

asvmptotology is what you have been practicing all aleong!
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