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Preface 

On April 15-17, 1962, a conference on "Mathematical Models in 
Physical Sciences" was held at the University of Notre Dame. The 
conference was sponsored by the National Science Foundation under 
grant No. NSF-G23332. 

I wish to express my appreciation to my graduate assistant, Paul 
A. Viebrock, whose collaboration in compiling and editing made 
the publication of these proceedings possible. 

Stefan Drobot 
Editor 

University of Notre Dame 
February, 1963 



16 Harold Grad 

They would, presumably, have some physical validity under condi-

tions when they admit solutions at all. 

Perhaps the greatest significance of the guiding-center plasma 

model is that it turns out to be partly macroscopic. Thus there are 

many important problems in which adherence to a purely micro-

scopic formulation offers no advantage over a macroscopic pie-

ture; this despite the much greater computational complexity which 

results from the detailed pursuit of individual particles. 

Both the mathematical and physical significance of the guiding-

center fluid and plasma systems remains largely to be discovered. 
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Asymptotology* 

MARTIN D. KRUSKAL 
Plasma Physics Laboratory 

Princeton University 

When I first saw the program for this conference I was mildly 

curious about why my talk was scheduled at the end of the first ses-

sion, following the opening lecture by Professor Grad. Although ac-

cepted conference manners (conventional convention conventions, I 

almost said) forbade inquiring of our genial organizers, I now know 

the reason-Harold's stimulating and excellent lecture has roused 

a furor of excitement and even controversy, as they must have fore-

seen, and it is my function to calm you down, bore you perhaps, and 

send you off properly soothed and relaxed to enjoy tonight's banquet. 

The subject of this conference is unusual, and if I am not at all 

confident that my chosen topic is entirely appropriate, I am em-

*This work was s upported under Contract AT(30-1)-1238 with the Atomic Energy Com
mission. 
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18 Martin D. Kruskal 

boldened to proceed because of a conviction that it would be out of 

place anywhere else. But I do feel some trepidation at having Pro

fessor Friedrichs in the audience, since I am so heavily indebted to 

his most enlightening 1955 Gibbs Lecture article; already referred 

to by Grad. 

Asymptotics is the science which deals with such questions as 

the asymptotic evaluation of integrals, of solutions of differential 

equations, etc., in various limiting cases. Elements of this science 

may be learned from the works of van der Corput; Erdelyi,3 and de 

Bruijn,4 and advanced aspects from the numerous references in 

Friedrichs' cited article. By asymptotology I mean something much 

broader than asymptotics, but including it; pending further elabora

tion, I would briefly define asymptotology as the art of dealing with 

applied mathematical systems in limiting cases. 

The first point to note here is that asymptotology is an art, at 

best a quasi-science, but not a science. Indeed, this explains much 

of my difficulty both in expounding my material and in finding an 

appropriate occasion to do so, and it may serve handily to excuse 

my effort for lacking the high degree of polish which Dean Rossini in 

his opening remarks assured us we may expect of the presentations 

(and indeed there does seem to be much Polish about this confer

ence). It explains, too, why I am unable to support the corpus of my 

dissertation with the hard bones of theorems but must be content 

with a cartilage of principles, into seven of which I have distilled 
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whatever of asymptotology I have been able to formulate appropri

ately and sufficiently succinctly. 

The aspect of the definition of asymptotology just given which is 

most in need of explanation is the concept of applied mathematical 

system. An applied mathematical system is merely the mathemati

cal description of a physical ( or occasionally biological or other) 

system in which the variables expressing the state of the system 

are complete. The importance of formulating problems in terms of 

complete state variables constitutes a preliminary principle, not 

particularly of asymptotology but of applied mathematics in gen

eral, the Principle of Classification (or, perhaps better, of Deter

minism). It is illustrated by the overpowering tendency, in treating 

classical mechanical problems, to enlarge the configuration space 

to a phase space, since the phase (configuration together with its 

rate of change) but not the configuration alone constitutes a com

plete description of a classical mechanical system. Consider also 

the tendency, in treating probabilistic mechanical problems, to 

switch over from this original description, which is incomplete be

cause, for instance, the mechanical "state" at one time does not 

determine the "state" at another time, to a new description in 

terms of a probability distribution function of the old "states," 

which function evolves "deterministically" in time and is there

fore preferable as a state description. This Principle is obviously 

closely related to the notion of a well posed problem emphasized by 
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Hadamard. Its particular relevance to asymptotology comes about 
because only after one has singled out ("determined") an individual 
solution (or completely "classified" the family of solutions) can 
one reasonably inquire into its asymptotic behavior. 

Asymptotology is important because the examination of limiting 
cases seems to be the only satisfactory effective method of pro-
ceeding with the analysis of complicated problems (systems) when 
exact mathematical methods are of no (further) avail (and is often 

"' preferable even when they are). It is of value both for obtaining 
qualitative information (insight) about the behavior of a system and 
its solutions and for obtaining detailed quantitative (numerical) re-
sults. Thus it is hardly surprising that examples, from trivial ones 
to the most profound, are found everywhere throughout the fields to 
which analysis (in the technical sense as a branch of mathematics) 
is applied. 

An excellent example of asymptotology is the familiar Hilbert5 

or Chapman-Enskog6 ("HCE" from now on) theory of a gas de-
scribed by the Boltzmann equation 
(1) 

af af af f --- + v · - + a · = i\ d3v ctn Iv - v' I a[ff' 
at ax 

ff' J 
in the limit of high density (f - oo) or equivalently of frequent colli-
sions (i\ - oo), which Grad has already discussed this afternoon. An
other example is the Chew-Goldberger-Low7 theory of the so-called 
Vlasov8 system of equations governing an ideal collisionless plasma 
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and its electromagnetic field in what is often called the strong 
magnetic field (or small gyration radius) limit but is formally best 
treated9 as the limit of large particle charges. In the general theory 
of relativity there is the fundamental Einstein - Infeld - Hoffman10 

derivation of the equation of motion of a "test particle" (one not in
fluencing the space-time metric, i.e., one of negligible mass) by 
treating it (its world-line, rather) as an appropriate singularity in 
the metric and letting the strength of the singularity approach zero. 
Hydrodynamics is rich in asymptotology (theory of shocks as aris
ing in the limit of small viscosity and heat conductivity, theories of 
strong shocks and of weak shocks, shallow water theory, and so on 
and on), and so is elasticity. Kirchoff's laws for electrical circuits 
can be properly derived from Maxwell's equations only by going to 
the limit of infinitely thin conductors (wires). Simpler examples 
also abound and are encountered daily by the practicing applied 
mathematician and theoretical physicist. Naturally it is not practi
cal to discuss deep examples in detail here, so I shall have to con
fine myself to brief remarks about them, relying for illustration 
mainly on simple and often trivial instances. 

It should now be apparent, I hope, that whatever features such 
important, wide-spread, and diverse examples may have in common, 
and whatever lessons for future application may be gleaned from 
studying them, are well worth formulating and eventually standard
izing. Even the many (most? far from all, as I know from my ac-
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quaintance) applied mathematicians (etc.) who have become familiar 

by experience with asymptotological principles, at least in the 

sense of knowing how to apply them in practice,-even they must 

inevitably benefit from the introduction of a standard terminology 

and of the clarity of expression it permits. Implicit knowledge, no 

matter how widely distributed, deserves explicit formulation, but I 

am aware of no efforts in this direction which attempt to go any-

thing like so far as I am doing here, though there are some related 

suggestions in Friedrichs' article. 

The final possible obscurity in our previous tentative definition 

of asymptotology is what it means to deal with a system. To clarify 

this, we might alternatively define asymptotology as the art of de-

scribing the behavior of a specified solution (or family of solutions) 

of a system in a limiting case. And the answer quite generally has 

the form of a new system (well posed problem) for the solution to 

satisfy, although this is sometimes obscured because the new sys-

tern is so easily solved that one is led directly to the solution with-

out noticing the intermediate step. 

To illustrate first by a trivial example, suppose it is desired to 

follow the (algebraically) largest root x of the simple polynomial 

equation 

(2) 3£2X3 + X2 -£X 4 = 0 

in the limit£ - 0. There is one root of order £-2 obtained by treat

ing the first two terms as dominant, x ::::: -1 £-2, for which indeed 
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the other two terms are relatively negligible (even though one of 

them is absolutely large, of order £-1), but which is negative. The 

other two roots are finite, obtained by neglecting 'the terms with 8 

factors, x::::: ±2, the one sought having the plus sign. If we desire it 

to higher order, incidentally, we may put (2) for this root in the 

''recursion'' form 

(3 ) 

expand out the right side in powers of £, and generate better and 

better approximations for x by continually substituting the previ

ously best approximation into the right side. But this is irrelevant 

to the present point, which is that (the problem of the algebraically 

largest root of) the original cubic equation (2) has been replaced by 

(the problem of the. algebraically largest root of) the quadratic 

equation x2 - 4 ::::: 0, or more exactly x2 - (4 3£2x3 + £x) = 0, the 

quantity in parentheses being treated as known. 

In the HCE treatment of system (1) in the limit t\. --oo, the ori

ginal integro-differential equation in the seven independent vari

ables t, x, v gets replaced by the set of coupled partial differential 

(hydrodynamic) equations 

(4) 

a 
. (pu), 

au + u . _i_u __ 1 ap 
at a x - p a x , 

c
a

t + u. a�)(p-5/3 p)::::: 0 
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in the four independent variables t, x; here p, u, p are of course 
the usual velocity space moments of f. 

These examples clearly illustrate the first asymptotological 
principle, which is in fact largely the raison d'etre of asympto
tology. This Principle of Simplification states that an asympto
tological (limiting) analysis tends to simplify the system considered. 
This can occur in at least three general ways. 

The basic way systems simplify is merely by the neglect of 
terms (or, in higher order analyses, at least treatment of small 
terms as if known, as in the case of the cubic equation earlier). 
Thus the polynomial equations x5 

- ex + 1 = 0 and x6 + ax4 + cx3 + 1 
0, without getting lower in degree as the cubic did, nevertheless 

become simple enough in the limit £ - 0 to be explicitly solvable 
algebraically. Differential equations in irregular domains approxi
mating regular ones may in the limit become solvable by separa
tion of variables. In other cases the coefficients may become so 
simple in the limit as to permit solution by Fourier or other trans
form. These are typical instances of perturbation theory; there 
are of course also many instances where the simplification which 
occurs does not appreciably facilitate the further analysis of the 
system. 

A derivative way in which systems simplify, sometimes striking 
in effect, is the decomposition of the system into two or more inde
pendent systems among which the solutions are divided, so that the 
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particular solution of interest satisfies a system with fewer solu
tions and hence usually in some sense of lower order. Thus the 
cubic polynomial equati�n considered earlier split up into a quad
ratic equation and what is effectively a linear equation. That is, the 
root of order C 2 was obtained by neglecting the two last terms and 
writing 3£ 2

X
3 + X

2 
� 0, and though this is Cubic it has two trivial un

acceptable roots x � 0 (corresponding to the solutions of the quad
ratic for finite roots) and is therefore equivalent to the linear 
equation obtained by dividing through by x2

• 

The third (also derivative) way systems simplify, often spectac
ularly, is through the splitting off of autonomous subsystems. By 
an autonomous subsystem of a system is meant a part of the sys
tem (part of the conditions together with part of the unknowns) which 
is complete in itself, i.e., forms an applied mathematical system in 
its own right, so that it can (in principle, at least) be solved before 
the rest of the system is considered. The qualifier "autonomous" 
is by no means superfluous. Thus the system f(x,y) = 0, g (x) = O 
for the two variables x, y has the autonomous subsystem g(x) = 0. 
It has also the nonautonomous subsystem f(x,y) = 0 for y, nonauton
omous because it is not definite (well-posed) until x has been de
termined, which requires the other part of the system. 

Systems with autonomous subsystems occur much more of ten 
than one may at first realize, since there is an instinctive tendency 
to concentrate attention on the subsystem and forget that it is part 
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of a larger problem. A particularly contemporaneous illustration 

of this is provided by the gravitationally determined motion of the 

sun, a planet, and an artificial satellite; the subsystem of the sun 

and planet alone is autonomous, since their motions are unaffected 

by the satellite and are naturally considered to be given and definite 

when its motion is under consideration. But there is a very com

mon special kind of system having autonomous subsystems which 

do not get overlooked just because there are too many of them for 

any one to be singled out naturally. Such are the initial value prob

lems, which, if well posed for to < t ::; t1 with initial conditions at 

to, are also well posed for to < t :::5 t2 for any t2 between to and ti, 

so that the autonomous subsystems constitute a continuous one

parameter family. 

For an illustration of the third way of simplifying, note that in 

HCE theory the five moments p, u, p satisfy (in the limit, of course) 

the autonomous subsystem (4), which is vastly simpler than (1) in 

having only four independent variables instead of seven. Similarly 

the "general" (for finite £) pair of simultaneous equations f(x, y) 

= 0, g(x) + £h(x, y) = 0 reduces for £ - 0 to the system with an au

tonomous subsystem considered earlier. The sun-planet subsystem 

split off only by virtue of the implied limit of (relatively) small sat

ellite mass, as is apparent from the less extreme case of the earth 

and its natural (rather than artificial) satellite. 

The second and third ways both involve a reduction in the num-
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ber of solutions from which the desired one must be singled out. 

This is a characteristically asymptotic simplification and, as 

Friedrichs1 has affirmed, it justifies the limiting process even 

though complications arise in other respects. For instance, a linear 

second order differential equation may reduce to one of first order 

but nonlinear. The "number" of solutions must be counted in what

ever way is appropriate to the instance: as an integer (e.g., for the 

polynomial equation); as the dimensionality or number of parame

ters of a family of solutions (as for an ordinary differential equa

tion); as the dimensionality of a parameter space, or number of 

independent variables of a function characterizing a solution (as 

with HCE, where seven reduces to four); or what have you. 

In carrying out asymptotic approximations to higher order 

we are aided by the (second) Principle of Recursion, which advises 

us to treat the nondominant terms as if they were known (even 

though they involve the unknown solution). The simplified system 

then determines the unknown in terms of itself, but in an insensi

tive way suitable (in principle at least) for iterative generation of 

an asymptotic representation of the solution. This has already been 

illustrated for one of the finite roots of our cubic equation example. 

For the numerically large root of (2) we may obtain the recursion 

formula x = -(x2 EX - 4)/( 3£2x2). However, this is far from unique; 

by grouping the terms differently we obtain x -(x2 - 4)/(3£2x2 -£), 

which is equally suitable, since x has still been solved for from the 
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dominant terms. It would be folly to solve for x from a small term 

such as c:x; iteration on x (3£ 2x3 + x2 
- 4)/£ merely produces 

wilder and wilder £ behavior. If one solves from the dominant 

terms inappropriately, namely in a way which does not give the so

lution explicitly outright when the small terms are neglected, then 

one has a scheme which may or may not converge, but which, even 

if it does, converges at a "finite" rate, not improving the asymp

totic order of the solution in each iteration. This is illustrated by 

putting (2) in the convergent but asymptotically inappropriate re

cursion form x = -[-(x2 c:x 4)/(3c3x)]112, which is quite usable, 

however, for numerical computation. 

This trivial example is so trivial that the emphasis on recursion 

formulas seems forced. It is true that here and in many, many other 

cases one can simply write down an obvious power series in £ and 

determine the terms order by order. This approach fails, however, 

whenever a more general representation is required, as is by no 

means rare. For instance I recently encountered a case where the 

obvious series needed to be supplemented by a single logarithmic 

term (which was neither the dominant nor even the next-to-dominant 

term); the recursion relation generates all the right terms without 

prejudice as to their form. Generation of terms by recursion is 

often very clumsy for practical purposes, apart from leading to 

terms of unexpected form. However, it has a great theoretical ad

vantage when properties of (all terms of) the series are to be de-
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rived, since the recursion relation is highly adapted naturally to 

the use of mathematical induction. (See the final reference for an 

example.) 

The limiting cases we keep ref erring to are conventionally, in 

asymptotics, formulated so as to be cases where a parameter (often 

denoted by A) approaches infinity. Since I intend asymptotology to 

embrace also situations where the limit system itself (not merely 

arbitrarily near ones) is meaningful (perturbation problems), it is 

preferable now instead to use a small parameter, conventionally 

denoted by £ (= 1/.>t for conversion). In fact, it may not be known 

in advance whether the limit case is meaningful, and, whether or 

not it is meaningful physically, mathematically it may or may not 

be so depending on the description employed. This brings us to our 

third asymptotological principle, the Principle of Interpretation: it 

is a major task of asymptotological analysis to find variables in 

which the given problem becomes a perturbation problem (has a 

meaningful limit situation). This may involve nothing more than 

recognizing that the original variables are such, as is the case for 

two roots of the cubic; for the third root, however, the formal limit 

of (2) is meaningless, but if transformation to the new variable 

y = £ 2x is effected first, the equation obtained for y may be solved 

by perturbation analysis. 

The characteristic feature of asymptotic analyses proper, as op

posed to perturbation analyses, is the appearance (in both senses) 
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well behaved (for £ * O) x + y 
== 1, x + (1 + r. )y = 0 reduces to a mutually contradictory 

d pair for £ == O; in the initial value problem £ dt z + z = 0 (t > O), 
z(O) = 1, for the continuous function z(t), we seemingly have z(t) = 0 
in the limit, contradicting the initial condition; and the same thing 
happens in many less trivial cases (such as the theories of shocks, 
of boundary layers, and of fast oscillations), as described in detail 
by Friedrichs .1 In this connection we have the (fourth) Principle of 
Wild Behavior, which tells us that apparent overdeterminism arises 
because (at least some of) the solutions behave wildly in the limit-
wildly, that is, compared to our preconceptions, as embodied in the 
mathematical form of the expressions employed for representing 
the solutions. Thus in neglecting the cubic (in addition to the linear) 
term of (3) we have obviously made the implicit assumption that x 
is not too large (say bounded), which is correct for only two of the 
roots, while the third behaves "wildly" in becoming infinite (like 
£-2

); the solution of the simultaneous equations is similarly wild 
(like r.-1

); the solution of the initial value problem, z = exp(-t/c:), 
is wild in having a derivative which, though converging to zero for 
every fixed positive t, does so nonuniformly and actually becomes 
infinite for t approaching zero sufficiently rapidly; and similar 
wildnesses occur in the deeper examples mentioned. 
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When overdeterminism occurs, if the solution we want is among 
those still permitted by the formal limit system, well and good: the 
loss of other solutions is our gain in simplicity (in the second way). 
If the solution we want is among those lost, then according to the 
Principle of Wild Behavior we should allow for more general 
asymptotic behavior of the solution. It is one of the most trouble
some difficulties of asymptotological practice to find an appropriate 
asymptotic form. It is impossible to prescribe a priori all asymp
totic representations that may ever prove useful, but among more 
general representations to try are two worth specific mention as 
frequently successful. The first is to supplement the originally ex
pected series with new terms, such as smaller (more negative) 
powers, as in the case of the cubic equation, or logarithmic ones. 
The second, effective in many of the deeper problems, including 
those just referred to (see also a detailed example from my own 
experience11

), and illustrated by the initial value problem just ex
hibited (which may in fact be viewed as an elementary boundary 
layer problem), is to write the unknown as the exponential of a new 
unknown represented by a series, the dominant term of which must 
become infinite (at least somewhere) in the limit if anything is to 
be gained by so doing. 

If there can be overdeterminism there can also be underdeter-
minism, which means that the original well posed problem reduces 
formally in the limit to a problem with more than one solution. For 
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instance, let A be a known j- by-j matrix, let b and x be j-by- 1 

matrices, respectively known and unknown, and consider the ma-

trix equation Ax b. Suppose that A and b depend on r, and that 

the determinant of A is zero if and only if r, = 0. Then the formal 

lowest order system A ( o )x < o l  = b < ol is certainly not well posed. 

Since A< o) is a singular matrix, there exists a 1-by-j matrix n (=t O) 

such that nA < o l  = O; for simplicity assume that n is unique (up to a 

constant factor). If nb< o l =t O the limit system obviously has no so-

lution (overdeterminism, as in the previous example of simultane-

ous linear equations), so assume nb< o l  = 0. Then x < o ) is not com-

pletely determined by the limit system, and we have an example of 

underdeterminism. 

Another excellent and rather typical example of underdetermin-

ism is again the HCE problem. Letting ;\ - oo in (1) (after dividing 

through by ;\) leads to the information that f< o l is invariant under 

collisions, i.e. locally Maxwellian in some (local Galilean) coordi-

nate system, which is very far from determining f< o >, since there 

are five parameters (p,  u, p) needed to specify such a distribution 

and we are left unprovided with information on how the parameters 

at different points of space- time are related. (The Chew-Goldberger

Low7 theory is another such example. 8) 

In such straits we are rescued by the (fifth) Principle of Anni-

hilation, which instructs us to find a complete set of annihilators of 

the terms which persist in the limit, apply them to the original sys-
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tern, and then go to the limit after multiplying by an appropriate 

function of r, so that the now dominant terms persist in the limit. 

By an annihilator of a mathematical entity is meant an operator 

which results in zero when applied to the entity. (Of course there 

are complicated cases in which this produces only some of the 

missing information, and the same procedure must be reapplied, 

perhaps repeatedly. ) 

In the matrix example, the terms A< 0 >x< o ) and b<o )  which persist 

in the limit are annihilated by multiplication on the left by n. Ap-

plying this annihilator to the original equation, dividing by r,, and 

taking the limit gives what may be written 

( 5 )  

or nA< 1 lx< o l = nb< 1 l if A and b are expandable in integral powers 

of r,. In the normal case this provides just the one extra condition 

needed to determine x < o >,  which by the condition A< 0 lx< o > = b< o l  was 

determined only up to a solution p of A < o l p  0. In the abnormal 

case that (5) is not an independent condition, there is a linear com-

bination of A< 0 lx( ol  = b< o l and (5) which gives O = 0. The formation 

of this linear combination is then our new annihilator, the applica-

a new extra condition which will normally be independent and pro-

vide the missing piece of information. 

In the HCE problem there are five scalars (mass, three compo-
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nents of momentum, and energy) which are preserved by collisions, 
so that taking the corresponding moments of (1) annihilates the right 
side. These are therefore annihilators of the dominant terms, which 
is why they are applied to (1) to obtain the five hydrodynamic equa-
tions relating the values of p ,  u, p (and therefore f which is ex-
pressed in terms of them) at different points of space-time. 

It is through the application of the Principle of Annihilation that 
the Principle of Simplification is maintained. The loss of solutions 
in a limit simplifies a system, while the gain of solutions, or loss 
of information, * would "complicate" it if we were not able to re-
cover sufficient additional conditions to make up for the informa-
tion lost. 

The basic way systems simplify is by the neglect of terms, as 
stated earlier . But it commonly happens that the relative asymp-
totic magnitude of two terms to be compared depends upon some 
knowledge not yet available or on some assumption or decision not 
yet made. According to the (sixth) Principle of Maximal Balance 
(or of Maximal Complicationt ), for maximal flexibility and gener-
ality we should keep both terms, i.e., we should allow for the possi-
bility or assume that they are comparable. In the case of incom-
plete knowledge this is mere prudence; any term in an equation 

*Use of this terminology is j ustified even from the technical viewpoint of information 
theory, suggesting the possibility of assigning a measure to the decrease in the number of 
s olutions occurring in a limit. 

t Partly as a consequence of Professor Friedrichs ' comment at the conclusion of my lec
ture, I now feel that "Minimal Simplification" is more appropriate here. 
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definitely smaller in order o f  magnitude than another term may be 
considered negligible, but no term should be neglected without a 
good reason. In the case of a pending assumption or decision, the 
desire to balance two such competing terms helps to determine the 
choice. 

The most widely applicable and hence most informative ordering 
is that which simplifies the least, maintaining a maximal set of 
comparable terms. Quite often there is more than one possible 
maximal set of terms, with no set including all terms of any other. 
(Sets of terms form a lattice ordered by inclusion.) Each maximal 
set corresponds to different asymptotic behavior. The solutions 
may split up according to which behavior they have (second way of 
simplifying), as with the cubic, or each solution may exhibit a vari
ety of different behaviors, in different regions, as with a boundary 
layer phenomenon. 

For instance in the case of the cubic equation, how could we 
know that two solutions are finite and one of order £ - 2? Put another 
way, why did we not assume the first and third terms to be the 
dominant ones, or the second and third, or so on? In this particu-
lar case there is an easy answer: if we had, we would have obtained 
a ' '  solution" for which the neglected terms were not in fact negli-
gible compared to the supposed dominant terms, i.e. , the " solution" 
found would not have been self- consistent. But suppose there were 
several more terms, would we have had to try every pair? (Or 
suppose there were two independent small parameters 6 and £ in-
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stead of only one.) Clearly, no matter which terms are dominant x 

will behave predominantly as some power of £. We therefore as-

sume the general representation x � a£ q and wonder what value of 

q to take. One might in fact choose arbitrarily any value for q but 

will then generally find that for finite a only one term of (2) domi-

nates, which is nonsensical, so that a = oo (if it was the constant 

term), which is not legitimate , or else a = 0 (if it was one of the 

others), which, if more legitimate, is certainly no more useful . A 

value of q will only be "proper" if we end up with a representation 

which is "maximally complicated" in that it really consists of one 

term a£q instead of "no terms" such as O or oo .  If we put x � a£ q 

into ( 2) the successive terms vary as £ to the respective powers 

3q + 2 , 2q , q + 1, 0 , and it is easy to see that only q O or q = -2 
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make two (or more) powers equal minima. -3 

On the side it might be of interest to mention a graphical method 

of finding the proper values of q which apparently goes back to 

Newton. It is hardly needed in the present simple illustration but 

can be a great time-saver in more involved examples (also those of 

higher dimensionality). We plot each term of (2) as a point on a 

graph, the abscissa being the exponent of x and the ordinate that of 

£ (see four heavy points in Figure 1) ; the coefficient is ignored so 

long as it is not zero. The specification of a definite relationship 

between x and £ (i.e. of a definite value of q) leads to the identifi-

cation of the asymptotic behavior of all terms (present or not) cor-

Figure 1 

responding to points which are on a common line with a definite 

slope. Thus, for x - £ all points on the same down-slanting (from 

left to right) 45° line correspond to a common asymptotic behavior, 

while for x - £-1 the same holds for up-slanting 45° lines (see 

dotted lines) . Since the smaller the power of £ the larger the term, 

we seek lines passing through (at least) two graphed points and 

having no graphed points below them. We may think of finding the 

lower convex support lines of the set of graphed points, perhaps 
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kinesthetically by imagining pushing a line up from below until it 

first hits a graphed point and then rotating it around that point un-

til it next hits a second graphed point. It is immediately apparent 

from Figure 1 that there are just two such lines and that they cor-

respond to q = 0 and q = 2 (see heavy dashed lines) . It is also 

clear that the point (1, 1), like all points in a semi-infinite verti-

cal strip (see horizontally shaded area), are "shielded" by the 

points (0, O) and (2, 0) and can never be on a support line; it is in-

deed obvious that c:x  is negligible with respect to either x2 or 4 

no matter how x varies with 8 .  Similarly there is a semi-infinite 

vertical strip shielded by the points (2, 0) and (3, 2) (see diagonally 

shaded area). In more complicated cases we can thus exclude terms 

wholesale from competition. 

To return to our proper business, illustration of the Principle 

of Maximal Complication, consider the problem of finding the lowest 

frequency of vibration and the corresponding form of vibration of a 

uniform membrane stretched between two close wires lying in a 

plane, one of which we take straight for simplicity. The equation 

for the standing vibration of a membrane is 

(6)  

where u is the displacement normal to the (x, y) plane, which is the 

rest plane of the membrane (the plane containing the wires), and v 

is the frequency of vibration of the mode. Let the equations of the 

wires in the (x, y) plane be y = 0 and y = c:Y(x), where 8 of course 
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is the small parameter of closeness . We may suppose Y(x1) = Y(x2) 

= 0 so as to have to consider only the finite region x1 < x < x2, 

0 < y < c:Y(x). Imposing the condition u O on the boundary of this 

region and (6) inside the region, we have an eigenvalue problem for 

the lowest eigenvalue v and its corresponding eigenfunction u. 

This is one common type of asymptotic problem, asymptotic rather 

than "perturbational" in that there is no limit problem because the 

region of interest disappears in the limit. The remedy for this is 

well known; 1 we rescale the variables appropriately, in this case 

introducing rJ C
1
y so that the region in the (x, rJ) plane becomes 

x1 < x < x2, 0 < 7J < Y(x), and (6) becomes 

(7 )  
a 2U 

+ 8 
- 2 a 2u 

+ 
z;2u = 0 . 

ax2 37]
2 

Taking the asymptotic behavior of each term at its face value (but 

remembering that v is not yet determined), we deem the first term 

negligible compared to the second, and (by the Principle) assume 

v2 
- C: - 2 to balance the second and third terms . Introducing w = 8 v 

we write (7) as 

(8 )  

To lowest order we neglect the right side of (8), whereupon x de-

generates from an independent variable to a mere parameter . The 

really proper treatment at this point, by the Principle of Recursion, 

would be to treat the right side of (8) as known, solve for u on the 

left in the form of an integral representation (involving the simple, 
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well known, explicit Green's function), and try to obtain u itera-
tively. Instead we shall do something similar but simpler, more or 
less paralleling the lowest order version of the proper treatment. 
For each x we have, to lowest order, a simple eigenvalue problem 
with the lowest eigenstate u A sin(7T77/Y) and eigenvalue w = rr /Y. 
But w so defined depends on x, which is impermissible, so we take 
A(x) to be a Dirac delta function, the location of whose singularity 
we take to be at the maximum of Y(x) in order to have the smallest 
w; for simplicity we assume the maximum of Y to be unique and to 
occur at x = 0. In a sense we have now solved the problem origin-
ally posed, but since our answer is singular it is not entirely satis-
factory (see the next and final Principle to be formulated). Indeed, 
since our "solution" is singular in its x dependence, we ought to 

2 a 2
u . t ' f .  d d worry whether our earlier neglect of £ -2 was JUS 1 ie , an we 

a x  

might well be curious anyway about the true detailed x depend-
ence which we have cavalierly expressed as a delta function. Since 
the significant behavior occurs near x = 0 we introduce � = o - 1x, 
where o is a small parameter to be determined (related to r.). We 
also write w = wo + w ,  where wo = rr /Y(O) and w is small. SinGe 
0

2

� � - rr2Y(xr 2u, from (8) we obtain 
07] 

(9) _7T __ - w 2 A -[ 2 J 

Y(o � )2 -

Let Y(oO = Y(O) + { Y "  (0) 6 2
�

2 + . . .  with Y"(O) < 0, whereupon this 
becomes 
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( 1 0) 
According to the Principle of Maximal Complication we choose the 
as yet undetermined asymptotic behaviors so as to keep all the 

1/ 2 ,.._, - 1 A terms in the equation and are thus led to take o = £ and w = £ w ,  

obtaining 
( 1 1) d2 A rr [ rr Y"(O) 2 "' ]  -

cte + Y(O) Y(0)2 � 
+ 2w A - O. 

On the � distance scale A must vanish at "infinity," and we have 
a well known eigenvalue problem arising in the quantum theory of 
the harmonic oscillator. The lowest eigenfunction is the Gauss
ian A = exp { i Y(Or31 2

[ - Y"(O) ] 11 2 e} with real eigenvalue w 
= i [-Y"(O)/Y(0)] 11 2

• 

Incidentally, if we should be interested in the behavior of u for 
Ix  I not very small, where u decreases rapidly, a different proce-
<lure must be used. The right side of (8) cannot be neglected there, 
since w � 7T/Y(O) does not even approximate the local eigenvalue 
rr / Y(x) for which the left side can vanish with u * 0. The device 
mentioned earlier of representing the unknown as an exponential 
works here; with u = exp v, (8) becomes 
( 12) (av)2 + w 2 = -r.2[a 2v + (av)2

] .  

01] o X2 0 X 

d bl . . - 1 [ 
( 0) We may assume that v is expan a e as a series m £, v = £ v 

+ r.v0 > + . . .  ], where the leading term has been taken large of order 
r,-1 to permit the right side of ( 1 2) to contribute. We must have 
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a v( O) -ar;- = 0 or the left side will dominate again, so v < o )  is a function 
of x only, and to dominant terms (12) becomes 

--- + -- + w2 a 2 v< 1 ) (av< l ) )2 

a� 2 a� o 
Viewed as an equation for v0) this can be linearized and "homo
genized" by reversing the exponentiation procedure, namely by in
troducing w = exp v< l l ,  whence 

a 2w [ (av< o i )2 ] a� 2 + w5 + ax w = 0. 
Together with the boundary conditions on w (that it vanish at � = o, 

Y(x)) this is an eigenvalue problem which determines the variation 
of v< 0 > ,  

as well as the � dependence of w (sinusoidal). All that the device 
has amounted to in this case, of course, is factoring out (from u) a 
fast varying function of x, but the use of the exponential represen
tation has led to that procedure in a natural and systematic way. 

We complete our list with the simple (seventh) Principle of 
Mathematical Nonsense: if, in the course of an asymptotological 
analysis, a mathematically nonsensical expression appears, this in
dicates that the asymptotology has not been done correctly or at 
least not carried out fully (although even incomplete it may be sat
isfactory for one's purposes). One may come upon expressions 
such as 0/0, divergent sums or integrals, singular functions, etc.,  
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and whether they are to be considered nonsensical sometimes de
pends on the use they are to be put to. In the just discussed mem-
brane vibration problem the first instance of mathematical non-
sense was the disappearance in the limit of the region over which 
the partial differential equation was to be solved, the second was 
perhaps the dependence of w on x, and the third was the response 
to this, the use of a singular (delta) function. 

Frequent in asymptotological analyses is the occurrence of phe
nomena on different scales of distance or time. The HCE problem 
is a well-known case (as Grad has just pointed out), since if f is 
not prescribed Maxwellian at the initial instant, there is a rela-
tively short period of time (the order of a collision time) during 
which f becomes Maxwellian, while the five moments remain ap
proximately constant, and a relatively long period (of order A times 
as long) during which the five moments (hydrodynamic variables) 
vary but f maintains its Maxwellian form. For an extremely sim
ple example of the same type, consider the familiar electric circuit 
equation V = RI + Li, where the voltage V(t) is an imposed function 
of time, the current I (t) is to be found, the resistance R and the 
inductance L are positive constants, and we choose to examine the 
limit L - 0. Treating Li as if it were known, we immediately ob
tain a recursion formula for I, 

( 1 3) 

1 . 
I =  - (V - LI) 

R 

= _Rl [v 
L . (L)2 

• •  (L)3
• • •  J R V + R V - R V + ... ' 
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which is fine except for not in general satisfying the arbitrary ini

tial condition on I natural for the original first order differential 

equation. For short times (of order L) I is large and V approxi

mately constant, so that the difference of I from its quasi -equilib

rium value V /R decays like exp (-Rt/L) ;  after this transient has 

died out ( 13) holds. Incidentally , the expression in brackets in ( 13) 

is just like the Taylor expansion in powers of L of V evaluated at 

the argument t - L/R except for a factor of (n - 1) ! in the denom

inator of the n-th term , which shows that the asymptotic series (13) 

for I cannot be expected to converge even if V is analytic (which 

does not stop it from being very useful). 

In phenomena with behavior on two different time scales there 

is a widely pertinent distinction to be observed between finite con

servative systems on the one hand and infinite or dissipative sys

tems on the other. For instance, the well-known problem of the har

monic oscillator with slowly varying coefficient of restitution, 12 

x + k(c:t)x = 0 ,  is an example of the first kind ; on the short (finite) 

time scale k is approximately constant and the oscillator simply 

oscillates steadily , while on the long (-c: - 1 ) time scale the frequency 

and amplitude of the oscillation vary in response to the variation in 

k. Contrast with this the behavior of the dissipative electric cir

cuit, where only initially the current I varies on the short time 

scale,  swooping toward its quasi-steady value. The HCE example 

shows that a conservative system can act the same way so long as 

Asym ptotology 45 
it is infinite ; in this case the decay comes about by a process of 

"phase mixing, "  and is possible because the Poincare recurrence 

time is infinite. 

The asymptotic separation of time scales is the basis for an ex

citing recent approach in statistical mechanics.1 3 Typically one 

obtains equations for the one-particle and the two-particle distribu

tion functions f1 and f2 for a gas of appropriate characteristics, 

and finds that f1 can vary only slowly , but that f2 can vary quickly 

so as to phase-mix towards a quasi-steady distribution as t gets 

large on the short time scale while remaining small on the long 

time scale. The limiting distribution f2 is a functional of f1 , which 

when substituted into the equation for f1 leads to a closed "kinetic 

equation" for f1. The irreversibility (timewise) of this kinetic 

equation comes about in a natural way , in that the limiting f2 de

pends on which direction t is taken to the limit (on the short time 

scale) , whether to plus or to minus infinity. It is a major triumph 

of this approach that the "Stosszahlansatz" can for the first time 

be actually derived (under moderate smoothness assumptions). 

To return to the finite case, I am glad to take the opportunity of 

advertising a recent paper14 in which I have elaborately worked out 

the asymptotic theory of finite systems of ordinary differential 

equations depending on a small parameter £ which to lowest order 

have all solutions periodic. Applied to Hamiltonian systems the 

theory leads to the existence of adiabatic invariants which are con

stant (integrals) to all orders in £ .  
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We are all familiar with those rather unsatisfactory research 

papers in which the author makes a series of largely arbitrary ad 

hoc approximations throughout, often dubious without (sometimes 

even with) the author's intuitive grasp of the situation. These "ad-

hoaxes" have their place and utility, but how much more desirable 

and convincing is a properly worked out and elegant asymptotologi-

cal treatment, with any arbitrary assumptions (like remarkable co-

incidences in a well constructed mystery story) made openly and 

aboveboard right at the beginning where anyone can assess their 

merits for himself, and with the later development unfolding natu-

rally and inexorably once a definite problem and the limit in which 

it is to be considered have been settled upon! 

The art of asymptotology lies partly in choosing fruitful limiting 

cases to examine-fruitful first in that the system is significantly 

simplified and second in that the results are qualitatively enlight-

ening or quantitatively descriptive. It is also an art to construct an 

appropriate generic description for the asymptotic behavior of the 

solution desired. The scientific element in asymptotology resides 

in the nonarbitrariness of the asymptotic behavior and of its de-

scription, once the limiting case has been decided upon. 

Moliere has one of his characters observe that for more than 

forty years he has been talking prose without knowing it. It is doubt-

ful that he benefited from the discovery, but I hope that you will be 

more fortunate and not disappointed in having by now discovered 

that asymptotology is what you have been practicing all along ! 

Asymptotology 
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DISCUSSION 

Friedrichs : I would like to make a few comments concerning the 

terminology of these various In your " Principle of 

Maximal Complication" the term ' 'complication" doesn't quite 

convince me. You want to catch a wild solution. You have to tamper 
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with it. If you tamper too much it tends to something trivial . So 

you have to make it tame but you have to minimize the tameness . 

I wanted to use the term " complication" in connection with the 

" Principle of Simplification" because so many complications in-

volved in the mathematical formulation of problems in physics are 

thus due to simplification. For example, if you take a second order 

equation with £ in front of the second derivative ,  for which the 

limit equation for £ - 0 is of the first order, you don't know 

whether the boundary condition gets lost, or the new equation is 

nonlinear ; it might have a singularity or the solution may not be 

single-valued: There are lots of complications.  But in spite of this 

you want to make the simplification . So perhaps you should call 

this the " Principle of Simplification in Spite of the Resulting Com-

plications . ' '  

Kruskal : Obviously all these things require interpretation of the 

words . It is hard to get labels that are entirely satisfactory. 

Models of 

Total Ignorance 
in Quantum Mechanics 

FREEMAN J. DYSON 

Institute for Advanced Study 

Princeton, New Jersey 

1. DEFINITION OF ENSEMBLES 

The theory I will talk about is a new kind of statistical mechan-

ics ,  invented about 10 years ago by Wigner . In ordinary statistical 

mechanics we assume that we are totally ignorant of the state of a 

system. We then deduce properties of the system which hold on the 

average,  where the average is defined with respect to a suitably 

large ensemble of possible states. In the new statistical mechanics 

we assume that we are ignorant not only of the state of a system, 

but also of the nature of the system . We then deduce properties 

which hold on the average, where the average must be defined in 

terms of an ensemble of systems. 

A system is described in quantum mechanics by a finite matrix 

M operating in a finite vector- space H. We assume that all we 

(Coovrie:h t (C) 1963 bv Prentice-Hall .  Inc . )  


