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The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the

magnetohydrodynamic force balance in the Sun’s corona ejects a massive burst of particles and

energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been

formulated as the torus instability, relies on a detailed understanding of the various forces that

hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force

expressions are used to derive simplified eruption criteria that can be compared to solar observa-

tions and modeling. What is missing, however, is a validation that these idealized analytical force

expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper,

we address this shortcoming by using a laboratory experiment to study the forces that act on long-

lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range

of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3)

the downward toroidal field tension force. First, the laboratory force measurements show that, on

average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium.

This finding validates the laboratory force measurement techniques developed here, which were

recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions

[Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms

the low-b assumption that the plasma thermal pressure is negligible in these experiments. Next,

the measured force terms are directly compared to corresponding analytical expressions. While

the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied

conditions in the experiment are found to both reduce the measured hoop force and increase the

measured tension force with respect to analytical expectations. These two co-directed effects

combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analyti-

cally. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for

analogous flux ropes in the solar corona. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4966691]

I. INTRODUCTION

The arched, line-tied magnetic flux rope is a magnetohy-

drodynamic structure that plays a key role in solar eruptive

events such as solar flares and coronal mass ejections.1,2 The

prototypical flux rope is an arched tube of helical magnetic

field lines and confined plasma whose footpoints are line-

tied, or magnetically anchored, to the solar surface.3–6 This

footpoint line-tying breaks the flux rope’s toroidal symmetry

and changes both its equilibrium and its stability. Line-tied

flux ropes are a central component of the “storage-and-

release” paradigm for solar eruptions. Under this paradigm,

the flux rope first stores magnetic energy in a quasi-statically

evolving equilibrium before suddenly and dynamically

releasing the stored energy during an eruption.7,8

Consequently, understanding the physics that governs both

the equilibrium and the stability of line-tied flux ropes is a

key to predicting solar eruptions. In this paper, we introduce

a laboratory experiment that is specifically designed to study

storage-and-release phenomena in line-tied magnetic flux

ropes.

One physical mechanism that can trigger storage-and-

release eruptions is a loss-of-equilibrium, which occurs

when the vertical force balance of a quasi-statically evolving

flux rope breaks down suddenly and irreversibly. Originally

formulated as a catastrophe mechanism,9 the loss-of-equilib-

rium has more recently been studied in the context of an

ideal magnetohydrodynamic instability called the torus insta-

bility.10–14 The basic idea is that an upward perturbation of

the flux rope will be unstable if the downward restraining

forces acting on the rope decay more quickly with height

than do the upward driving forces. For the torus instability,

the restraining forces are assumed to be generated primarily

by the interaction between the flux rope and an ambient

“strapping” magnetic field. Thus, if this strapping field

decays too quickly with height, then its associated restoring

force is too weak to prevent the flux rope from erupting.10,15

The analytical loss-of-equilibrium criterion can be

expressed concisely in terms of the vertical force per unit

length F acting on the apex of the arched flux rope (i.e., at

the top of the loop)
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@F

@z

���
F¼0

> 0; (1)

where z is the vertical coordinate. This condition says that

the equilibrium will be lost when the flux rope, upon being

perturbed vertically upward from its equilibrium (F¼ 0)

position, feels a positive (upward) force that reinforces the

perturbation. The evaluation of the loss-of-equilibrium con-

dition requires knowledge of both the equilibrium force bal-

ance and the response of the equilibrium forces to a dynamic

upward perturbation. These two considerations can be sepa-

rated as

X
i

Fi ¼ 0 and
X

i

@Fi

@z
> 0; (2)

where Fi is the individual force term contributing to the equi-

librium. Thus, the key to understanding when a loss-of-equi-

librium will be triggered lies in understanding the individual

vertical forces acting on the arched magnetic flux rope.

In general, the magnetohydrodynamic forces acting on a

line-tied flux rope are comprised of both Lorentz (J� B) and

thermal pressure (rp) contributions. Fortunately, the condi-

tions in the solar corona permit the elimination of the pressure

gradient terms. More specifically, the corona is inherently

low-b such that the magnetic pressure dominates the thermal

pressure16 and only the Lorentz forces need to be considered.

Three key Lorentz force terms are considered in this paper:

(1) the upward hoop force; (2) the downward strapping force;

and (3) the downward toroidal field tension force. The tradi-

tional approach to treating these forces is to derive analytical

expressions that can be used to evaluate the loss-of-equilib-

rium criterion in Eq. (1). The resulting stability criterion is

then compared to solar observations and modeling in order to

determine if a loss-of-equilibrium could have caused a given

solar eruptive event. What is missing in this approach, how-

ever, is a validation of the analytical force expressions that are

used to derive the loss-of-equilibrium criteria. Since these

force expressions require assumptions and simplifications in

order to be analytically tractable, there is no guarantee that

they apply to the non-ideal, line-tied, low-aspect-ratio condi-

tions of the solar corona. Thus, in this paper, we introduce a

new tool for validating the analytical force expressions: the

direct measurement of magnetohydrodynamic forces in a lab-

oratory magnetic flux rope experiment.

The laboratory experiments introduced here are line-tied

flux rope experiments wherein the arched flux rope plasma

evolves quasi-statically so that storage-and-release phenom-

ena can be studied in detail.17 As such, these experiments are

the first to provide comprehensive measurements of the mag-

netohydrodynamic forces that govern arched, line-tied flux

ropes. This experimental capability has already been used to

identify a new flux rope stability regime where a dynamic

toroidal field tension force prevents otherwise torus-unstable

flux ropes from erupting.18 The present paper provides a full

description of the experimental techniques that were devel-

oped to measure this toroidal field tension force. It also

expands the force analysis to include a broad study of quasi-

steady hoop, strapping, and tension forces across an ensem-

ble of line-tied flux rope equilibria. Finally, it compares the

experimentally measured forces directly to the analytical

force expressions that are used to derive the torus instability

criterion.10,13,19

The paper is organized as follows: First, Section II

describes the various magnetic field, current density, and

flux rope force terms that are treated in this paper. Analytical

force expressions are derived that include compensations for

the line-tied geometry of the flux rope, and the theoretical

foundations for the torus and kink magnetohydrodynamic

instabilities are reviewed. Section III introduces the labora-

tory flux rope experiments, which are conducted in the

Magnetic Reconnection Experiment (MRX), and summa-

rizes the key results that motivate the detailed study of flux

rope forces presented here. Then, Section IV details the

direct laboratory measurements of the various flux rope

forces. Finally, Section V presents a comparison of experi-

mentally measured forces to analytical expressions. This

serves to validate some analytical force expressions and to

highlight the shortcomings of others. A summary and discus-

sion are presented in Section VI.

II. MAGNETIC FLUX ROPE FIELDS, FORCES, AND
INSTABILITIES

In order to study the equilibrium and stability of line-tied

magnetic flux ropes, it is necessary to identify the key compo-

nents of the magnetic field B and the electric current J that

make up the flux rope configuration. The various fields and

currents interact to produce Lorentz forces that contribute to

the flux rope equilibrium and stability. In this section, we

derive various analytical Lorentz force expressions, some of

which include corrections for the line-tied shape of the flux

rope. These expressions are key to understanding the torus

instability as a loss-of-equilibrium mechanism. They will be

directly compared to the experimentally measured forces in

Section V. We begin by describing the specific magnetic field

and electric current decomposition used in this paper.

A. The magnetic field and electric current
decomposition

As with any magnetized plasma, the magnetic fields in a

line-tied flux rope can be separated into vacuum (external) and

plasma (internal) components. The vacuum fields—also

known as “potential” fields—are those that are generated by

electric currents flowing outside of the flux rope plasma. In the

corona, the vacuum fields are generated by external currents

that flow across or beneath the solar photosphere. In the labo-

ratory, such external currents instead flow in copper coils or in

nearby conducting structures. In either case, the vacuum mag-

netic fields can be divided into two key components: (1) the

guide field Bg which runs toroidally along the flux rope arch;

and (2) the strapping field Bs which runs perpendicular to the

flux rope arch (see Fig. 1). Each of these vacuum field compo-

nents provides a restoring force that acts to confine the flux

rope plasma in a quasi-statically evolving equilibrium.

In contrast to the vacuum magnetic fields, the plasma-

generated fields are produced by currents flowing within the

body of the flux rope plasma. It is the energy stored in these

internal fields that drives the flux rope toward instability.

Here, we choose to decompose the internal fields and currents
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into poloidal P and toroidal T components (see Fig. 1 and

Table I). First, the toroidal flux rope current JT generates an

internal poloidal magnetic field BPi. This internal poloidal

field can be superposed with the external strapping field to

compute the total poloidal field BP ¼ Bs þ BPi. Likewise, the

poloidal flux rope current JP generates an internal toroidal

field BTi that can be superposed with Bg to compute the total

toroidal field BT ¼ Bg þ BTi. With the various flux rope

fields and currents in hand, we now derive expressions for the

forces that these field and currents generate.

B. Analytical expressions for the flux rope forces

The magnetic field and electric current components

introduced above interact to produce various J� B Lorentz

forces that act on the body of the flux rope. We are inter-

ested, in particular, in the forces acting at the flux rope apex

(i.e., the top of the loop) because this is the most likely trig-

ger point for an eruption. Formally, the total vertical force

per unit length Fz, acting at the flux rope apex (z ¼ zap) can

be defined as

Fz zapð Þ ¼
1

R0 DT

ðDT=2

�DT=2

dT

ð2p

0

dh
ða

0

dr r hT zð Þ fz r;hð Þ
� �

; (3)

where T is the toroidal coordinate, h is the poloidal angle,

and r is the minor radial coordinate. The integration is car-

ried out over a wedge-shaped plasma volume with a major

radius-of-curvature of R0 and toroidal width DT. The poloi-

dal boundary (i.e., the cross-section) of the wedge is defined

by the minor radius r ¼ aðhÞ. The utility of this formulation

is that we can assume that locally @=@T ’ 0 such that the

above integral reduces to

Fz zapð Þ ¼
1

R0

ð2p

0

dh
ða

0

dr r hT zð Þ fz r; hð Þ
� �

: (4)

The quantity hTðzÞ in the integrand is the curvilinear scale

factor that accounts for the out-of-plane toroidal curvature of

the flux rope. In a Cartesian system hT¼ 1, and in a cylindri-

cal system hT¼R, but in general hT is a non-trivial function

of the height along the vertical axis.20 Finally, the quantity

fzðr; hÞ in the integrand is the volumetric J � B force den-

sity. Since we are only concerned in this paper with vertical

(z-directed) forces, it is cumbersome to retain the subscript z
in the force notation. We therefore adopt the convention that

f � fz ¼ êz � f and F � Fz ¼ êz � F; (5)

where the lowercase f represents a volumetric force density

and the capital F represents a force per unit length.

The remaining task is to decompose the force density

into various physically meaningful terms. The specific force

decomposition used here considers three primary force

terms: (1) the hoop force fh; (2) the strapping force fs; and (3)

the toroidal field tension force ft. In the coming subsections,

we derive analytical expressions for the force per unit length

generated at the apex of a line-tied flux rope by each of these

Lorentz force terms. The various flux rope magnetic field,

electric current, and Lorentz force terms are summarized in

Table I.

1. The toroidally symmetric hoop force

The primary force that drives a line-tied flux rope to

expand is the hoop force. This force, which is only present in

a toroidally arched flux rope, is derived from a curvature-

induced asymmetry in the poloidal magnetic field. In terms

of J� B forces, the hoop force results from the interaction

between the toroidal flux rope current density JT and the

self-generated internal poloidal magnetic field BPi. The

asymmetry in BPi appears because the various toroidal cur-

rent segments that make up the rope produce a field that is

stronger on the inboard side of the rope than on the outboard

side. Thus, because the hoop force is generated primarily by

FIG. 1. Magnetic fields and currents in a line-tied magnetic flux rope. The

arched flux rope is line-tied to the dense photosphere at two footpoints sepa-

rated by 2xf. Those fields and currents associated with the poloidal magnetic

field are shown in red, while those associated with the toroidal magnetic

field are shown in blue. The forces described in this paper are evaluated at

the flux rope apex, which is shaded in gray. Adapted with permission from

Chen, Astrophys. J. 338, 453 (1989) and Chen and Krall, J. Geophys. Res.

Space 108, 1410 (2003). Copyright 1989 American Astronomical Society

and 2003 American Geophysical Union.48

TABLE I. Decomposition of the magnetic fields, electric currents, and

Lorentz forces in a line-tied flux rope. Reprinted with permission from

Myers et al., Nature 528, 526 (2015). Copyright 2015 Nature Publishing

Group.

Quantity Expression

Strapping field (vacuum) Bs …

Internal poloidal field (flux rope) BPi …

Guide field (vacuum) Bg …

Internal toroidal field (flux rope) BTi …

Total poloidal field BP BsþBPi

Total toroidal field BT BgþBTi

Toroidal current density JT r� BPi=l0

Poloidal current density JP r� BTi=l0

Hoop force density (upward) fh êz � ðJT � BPiÞ
Strapping force density (downward) fs êz � ðJT � BsÞ
Tension force density (downward) ft êz � ðJP � BTÞ
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fields from non-local sources, the geometry of the flux rope

must be accounted for in the calculation of the hoop force.

The canonical treatment of the hoop force considers a

large aspect ratio, circular current loop of major radius R,

and minor radius a. In this configuration, the hoop force is

given by Shafranov21 to be

Fh ¼
l0I2

T

4pR
ln

8R

a

� �
� 1þ ‘i

2

� �
; (6)

where IT is the total toroidal flux rope current and ‘i is the

normalized “internal inductance” that characterizes the dis-

tribution of toroidal current density within the cross-section

of the rope. This quantity is calculated as ‘i � hB2
Pi=B2

Pa,

where BPa � l0IT=2pa is the edge poloidal field and the

quantity hB2
Pi is the cross-section average of B2

P. Typical

values for the internal inductance are ‘i ¼ 0 for a surface

current distribution and ‘i ¼ 0:5 for a uniform current distri-

bution. Equation (6) can quickly be derived from energy

considerations using the expression for the self-inductance

of a large aspect ratio circular current loop21,22

L ’ l0R ln
8R

a

� �
� 2þ ‘i

2

� �
� l0R ‘: (7)

Here, we have defined the normalized inductance

‘ � lnð8R=aÞ � 2þ ‘i=2. The self-inductance L is related to

the total magnetic energy of the system by Wm ¼ 1
2
LI2

T ,

which, in turn, can be used to derive the hoop force per unit

length

Fh ¼
1

2pR

@Wm

@R
¼ I2

T

4pR

@L
@R
¼ l0I2

T

4pR
‘þ 1ð Þ: (8)

This axisymmetric hoop force expression has been widely

validated and implemented in the study of toroidally sym-

metric plasma configurations such as tokamaks (see, e.g.,

Wesson23 and Miyamoto24). The line-tied flux ropes studied

here, however, are neither axisymmetric nor large aspect

ratio. We therefore now address the impact of the non-

axisymmetric geometry of a line-tied flux rope on the hoop

force.

2. The line-tied hoop force

When the flux rope is line-tied at two footpoints, the

toroidal symmetry assumed in the above hoop force calcula-

tion is broken. This symmetry breaking has several important

consequences, which include a modified toroidal current

path, a modified toroidal curvature, and a toroidally varying

minor radius. While the toroidal curvature and minor radius

effects can be handled locally at the apex of the flux rope,

the modified toroidal current path is a global effect that has

profound consequences for the hoop force.

To approximate the toroidal current path in a line-tied

flux rope, we introduce the “shifted-circle” model of Chen4

(see Fig. 2). This model accounts for geometric features of

the flux rope introduced by line-tying. In particular, the

shifted-circle model defines the x-z trajectory of the flux rope

magnetic axis in the region where z> 0. It asserts that the

magnetic axis is a shifted circle that intersects the flux rope

footpoints at x ¼ 6xf and reaches its apex at z ¼ zap. The

shifted circle’s vertical radius-of-curvature Rsc and centroid

height zsc are therefore given by

Rsc ¼
z2

ap þ x2
f

2zap
and zsc ¼

z2
ap � x2

f

2zap
: (9)

Note that these equations recover the circular profile of a

toroidally symmetric ring when zap ¼ xf . For all zap, the

angle /f from the z-axis to the footpoint at xf is

/f ¼
p
2
þ sin�1 zsc

Rsc

� �
; (10)

such that the flux rope length is given by Lsc ¼ 2Rsc/f .

While the shifted-circle model defines the flux rope

magnetic axis in the region where z> 0, it does not specify

the sub-surface current path in the region where z< 0. There

are several possible sub-surface current paths, the details of

which vary with the system under consideration. Four sub-

surface configurations of interest are shown in Fig. 3: (1) an

axisymmetrically expanding loop; (2) the shifted-circle clo-

sure, which is assumed by Chen4 and simply completes the

z> 0 profile described by Eq. (9); (3) the image current clo-

sure, which assumes that the z¼ 0 plane is perfectly conduct-

ing such that the sub-surface current path is an image loop;

and (4) the fixed current path closure, which is representative

of the MRX laboratory flux rope experiments where the clo-

sure is completed by fixed copper cables. In the solar corona,

on the other hand, where the photosphere acts as a highly

conducting plane, the most relevant sub-surface closure is

the image current case.13,25

With the shifted-circle model and the sub-surface con-

figurations in hand, the remaining step is to investigate the

impact of the line-tied toroidal current path on the hoop

FIG. 2. Diagram of the magnetic axis profile for a line-tied flux rope. The

shifted-circle model4 is used for z> 0. The flux rope current path is a partial

circle with a vertical radius-of-curvature Rsc and centroid height zsc that are

set so that the current path intersects the line-tied footpoints at x¼6xf and

reaches its apex at z¼ zap. In the case shown, the shifted-circle current path

is closed beneath the z¼ 0 plane by a fixed semicircular current path. See

the text for further discussion of relevant sub-surface current paths.
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force. This is achieved by inserting the shifted-circle major

radius R ¼ RscðzÞ into the hoop force expression in Eq. (6).

Additional corrections are introduced by accounting for

the various sub-surface current paths introduced in Fig. 3.

These corrections are numerically evaluated by computing

the change in the internal poloidal field BPi at the flux rope

apex that results from replacing the sub-surface shifted-circle

current path with either the “image” current path or the

“fixed” current path. The hoop force profiles that result

from these various toroidal profile corrections are shown

in Fig. 4, where the hoop force has been normalized to

Fnorm � l0I2
T=4pxf . In the figure, we see that, in the region

where zap=xf > 1, the line-tied hoop forces (blue, green, red)

behave similarly and decay more slowly than the axisymmet-

ric hoop force (black). The behavior in the region where

zap=xf < 1, on the other hand, is highly dependent on the

structure of the current path that closes the loop beneath the

z¼ 0 plane. In particular, the shifted-circle current path case

limits to zero, the image current path case to infinity, and the

fixed current path case to a finite value. As previously noted,

the image profile is most applicable to the solar corona and

the fixed profile is most applicable to the MRX experiments.

The various sub-surface closures will be compared directly

to experimentally measured hoop force data in Section V.

3. The poloidal field strapping force

The upwardly directed hoop force is opposed by the so-

called strapping force, which serves to hold down the flux

rope and prevent it from rising. In contrast to the hoop force,

the strapping force is generated by the interaction between

the plasma current and an externally generated poloidal mag-

netic field. In the solar case, this external field is derived from

the potential magnetic field arcade within which the flux rope

is embedded. In the laboratory case, this field is produced by

purpose-built external magnetic field coils. Many treatments

of solar flux ropes consider the strapping force to be the pri-

mary confining force in the system.4,10,15 The volumetric

strapping force is given by fs ¼ êz � ðJT � BsÞ. In general,

this volumetric strapping force density must be integrated

according to Eq. (3) to arrive at the strapping force per unit

length Fs. In this case, however, we will approximate the flux

rope as a line current, which simply gives

Fs ’ �ITBs0; (11)

where Bs0 is the strapping field evaluated at the flux rope

apex. Note that an explicit negative sign is included so that

IT and Bs0 are positive-definite. As we will see, this simple

form of the strapping force has surprising utility, even in

cases where the flux rope is not well approximated as a thin

line current.

4. The toroidal field tension force

Thus far, only forces from the poloidal magnetic field

have been considered. As we will show, however, forces

from the toroidal field are also important to the line-tied flux

rope equilibrium. The vertical force density produced by the

toroidal field is, in general, given by

ft ¼ êz � JP � BT½ � where JP ¼
1

l0

r� BT : (12)

The magnetic field can once again be separated into external

and internal components, which for the toroidal field gives

BT ¼ Bg þ BTi. This decomposition recasts the above equa-

tions as

ft ¼ �JPðBg þ BTiÞ: (13)

Unlike with the poloidal-field-generated force terms where

the internal and external contributions are separated into the

hoop and strapping forces, we elect here to retain a combined

toroidal field tension force. Furthermore, we do not separate

the toroidal field pressure and tension contributions such that

the above equation for the toroidal field tension force

includes both contributions. The next step is to analytically

FIG. 3. Sub-surface closures for the line-tied (LT) flux rope: (a) axisymmet-

ric flux rope for comparison to the various line-tied cases; (b) shifted circle

closure (as assumed by Chen4); (c) image current closure, which approxi-

mates the solar case; (d) fixed current path closure, which approximates the

laboratory case. The colored arrows indicate the direction of the current in

each element of the current path.

FIG. 4. Line-tied corrections to the hoop force. The forces are normalized to

Fnorm � l0I2
T=4pxf , and the color coding of each hoop force profile is

matched to the color coding in Fig. 3. Note that while the three line-tied

(LT) profiles are similar for zap/xf> 1, they differ substantially for zap/xf< 1

where the details of the sub-surface closure become important.
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evaluate the force per unit length acting on the flux rope due

to the toroidal field tension force in Eq. (13).

a. The toroidal field tension force in the large aspect ratio

limit. One of the key conclusions of this paper is that

restraining forces from the toroidal magnetic field play a key

role in the laboratory line-tied flux rope force balance. These

restraining forces can be understood heuristically by consid-

ering a torus-shaped coil with helical windings (see Fig. 5).

The toroidal curvature of the coil makes the density of wind-

ings (per unit length) higher on the inboard side of the coil

than on the outboard side. If the toroidal magnetic field is

also stronger on the inboard side than on the outboard side,

which is typically the case, then the downward force on the

inboard side (JP � BT) will be stronger than the correspond-

ing upward force on the outboard side, thereby producing a

net downward (restraining) force.

In order to formulate this effect mathematically, we note

that the poloidal current density in the arched rope will fall

off as 1/R. Ampère’s Law indicates that the resulting toroidal

will also fall off as 1/R. Thus we can write

JP ! �
R0

R

� �
JP rð Þsin h and BT !

R0

R
BT rð Þ: (14)

The next step is to integrate ft ¼ �JPBT over the apex wedge

of the flux rope according to Eq. (4)

Ft ¼
1

R0

ð2p

0

dh
ða

0

dr r R
R0

R
JP sin h

� �
R0

R
BT

� �� �
: (15)

Here, we have assumed a curvilinear scale factor of hT¼R.

Canceling factors and making the large aspect ratio assump-

tion that r� R0, the above equation reduces to

Ft ¼
1

R0

ð2p

0

dh
ða

0

dr r R0 sin h� r sin2h
	 


JPBT

� �
: (16)

The integral over h eliminates the sin h term, leaving

Ft ¼ �
p
R0

ða

0

dr r2 JP rð ÞBT rð Þ: (17)

From Amp�ere’s Law, JP ¼ �@BT=@r such that

Ft ¼ �
p
R0

ða

0

dr rB2
T �

1

2

@

@r
r2B2

T

	 
� �
; (18)

which reduces to

Ft ¼ �
1

2

pa2

l0R0

hB2
Ti � B2

g0

h i
; (19)

where hB2
Ti is the cross-section-averaged square of the total

toroidal field, and we have assumed that the toroidal field at

the edge of the rope (r¼ a) is simply the external guide

field Bg0. From this result, we see that a paramagnetic inter-

nal toroidal field will increase hB2
Ti relative to B2

g0 and there-

fore, produce a downward restraining force on the rope.

Furthermore, though no assumption was made during this

derivation that Ft would be a tension force, the final result

takes exactly the form of a tension term with Ft � B2
T=R. For

convenience, we can rewrite the above equation as

Ft ¼ �
1

2

l0I2
T

4pRsc

� � hB2
Ti � B2

g0

B2
Pa

" #
; (20)

where BPa � l0IT=2pa is the edge poloidal field. What

remains to be constrained is the amplitude of the paramag-

netic toroidal field that causes hB2
Ti to exceed B2

g0 in Eq. (20)

and therefore generates a downward toroidal field tension

force.

b. The plasma-generated paramagnetic toroidal field. The

physical mechanism that lies at the heart of the toroidal field

force is the paramagnetic toroidal field BTi that is generated

by the plasma in the core of the line-tied flux rope. Without

this internal toroidal field and its corresponding poloidal cur-

rents, the toroidal field forces described in Eq. (13) would

vanish. The origin of the plasma-produced paramagnetic

field can be understood heuristically through simple minor

radius force balance arguments. The toroidal current flowing

in the flux rope generates a minor radius pinch force that

must be balanced by either thermal or magnetic field pres-

sure. In a zero-b system, the only available source for this

back pressure is the toroidal magnetic field. The presence of

a vacuum toroidal field alone is not sufficient because the

vacuum field is current-free. Instead, in the process of relax-

ing to a force-free state, poloidal currents are induced in the

plasma that generate a paramagnetic toroidal field in the core

of the rope. It is these poloidal currents that interact with the

toroidal field to oppose the minor radius pinch force pro-

duced by the toroidal plasma current.

In order to quantitatively analyze the paramagnetic

toroidal field, we now use a 1D linear screw pinch model to

derive an expression for BTi. This 1D flux rope model

assumes that the rope is an infinite cylinder with minor

radius a carrying a “toroidal” current IT along a uniform

FIG. 5. A helical coil demonstrates the nature of the toroidal field tension

force. The increased poloidal current density JP on the inboard side of the

coil produces a contraction force (JP�BT) that is stronger than the corre-

sponding expansion force on the outboard side of the coil. This asymmetry

results in a net contraction force on the flux rope.
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external guide field Bg¼Bg0. The only variation in this 1D

model is along the minor radial coordinate r. In order for a

zero-b linear screw pinch to be force-free, the magnetic

forces directed along this minor radius must cancel

0 ¼ JT � BP þ JP � BT

¼ �JTBP þ JPBT : (21)

Here, the first term represents the pinch effect from the toroidal

current and the second term represents the back pressure from

the plasma-generated paramagnetic toroidal field. Amp�ere’s

law can be used to eliminate currents in favor of fields, giving

JTBP ¼
1

l0

@BP

@r
þ BP

r

� �
BP; (22)

JPBT ¼
1

l0

� @BT

@r

� �
BT : (23)

Equating the two, multiplying through by 2r2, and recasting

the derivatives gives

2rB2
T �

@

@r
r2B2

T

	 

¼ @

@r
r2B2

P

	 

; (24)

which can be integrated over the cross-section of the flux

rope to get

hB2
Ti � B2

g0 ¼ B2
Pa: (25)

Here, we have again assumed that the toroidal field at the

edge of the flux rope is the guide field Bg0. This simple rela-

tionship allows us to write the paramagnetic toroidal field BTi

in terms of the “known” parameters Bg0 and BPa. Substituting

BT ¼ Bg0 þ BTi into Eq. (25) and solving for hBTii gives

hBTii ¼ c�1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
g0 þ cB2

Pa

q
� Bg0



; (26)

where c � hB2
Tii=hBTii2 is a parameter of order unity that

varies with the internal radial profile of BTiðrÞ. In Section V,

Eq. (26) will be compared directly with experimental meas-

urements in order to test the assumptions made in this deriva-

tion of BTi.

c. Connection to the hoop force. A final interesting result

can be obtained by combining Eqs. (20) and (25)

Ft ’ �
1

2

l0I2
T

4pR0

� �
: (27)

This expression is both independent of Bg and directly com-

patible with the hoop force expression in Eq. (6). Thus, the

analytical expression for the tension force can be thought of

as an offset to the hoop force

Fh þ Ft ¼ þ
l0I2

T

4pR0

ln
8R

a

� �
� 3

2
þ ‘i

2

� �
; (28)

where the �1/2 from the tension force is folded into the

�3/2 in this expression. We see here that the tension effect

is minimal in the large aspect ratio limit where the

lnð8R=aÞ term dominates. In the low aspect ratio limit that

is applicable here, on the other hand, the �3/2 vs. �1 term

can be quite important.

Over the course of this subsection, analytical expres-

sions have been derived for the hoop, strapping, and toroidal

field forces that are expected to contribute to the equilibrium

force balance at the flux rope apex. The results of these deri-

vations are summarized in Table II. This three part decompo-

sition of apex forces is by no means unique. We believe,

however, that this particular decomposition provides the best

opportunity to understand the physics that govern line-tied

flux rope equilibria.

C. The torus and kink instabilities

As described in the introduction, one of the primary moti-

vations for studying the forces acting on a line-tied flux rope is

to understand the onset criterion for loss-of-equilibrium-driven

solar eruptions. The loss-of-equilibrium has recently been for-

mulated in terms of an ideal magnetohydrodynamic instability

called the torus instability.10–14,25–27 The basic idea of the torus

instability is that an outward perturbation of the flux rope will

be unstable if the overlying strapping field decays sufficiently

quickly with height above the photosphere. The instability

occurs because the restoring forces provided by the strapping

field are too weak to prevent further expansion.

In the standard torus instability derivation,10 which was

originally carried out for laboratory fusion devices,15 the key

instability criterion is based on the vacuum field decay index

n

n zð Þ � �
z

jBvacj
@jBvacj
@z

>
3

2
; (29)

where Bvac is the vacuum magnetic field and z is the height

above the photosphere. This n> 3=2 instability criterion is

derived in the large aspect ratio limit by equating the hoop

and strapping force expressions from Eqs. (6) and (11),

TABLE II. Summary of source terms and analytical expressions for the forces acting on the flux rope apex. The hoop force expression comes from combining

Eq. (6) with the shifted-circle radius in Eq. (9). The hoop force corrections are the sub-surface current path corrections introduced in Section II B 2. The strap-
ping force expression comes from Eq. (11), while the two tension force expressions come from Eqs. (20) and (27), respectively.

Force Source term Analytical expression

Poloidal field hoop force (upward) fh ¼ þJTBPi
FhðzÞ ¼ þ

l0I2
T

4pRsc
ln

8Rsc

a

� �
� 1þ ‘i

2

� �
þ corr:

Poloidal field strapping force (downward) fs ¼ �JTBs FsðzÞ ¼ �ITBs0

Toroidal field tension force (downward) ft ¼ �JPBT

FtðzÞ ¼ � 1
2

l0I2
T

4pRsc

� � hB2
Ti � B2

g0

B2
Pa

" #
’ � 1

2

l0I2
T

4pRsc

� �
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respectively. One must also assume that the toroidal current

evolution is governed by poloidal flux conservation.10,15,17

The n> 3=2 instability criterion is a remarkably concise

result given the complexity of the system. That being said,

the assumptions of infinite aspect ratio and toroidal symme-

try substantially impact the final result. Olmedo and

Zhang,19 for instance, have considered the impact of line-

tying on the torus instability, much as we have considered its

impact on the hoop force in Section II B 2. Their findings

await validation.

A second magnetohydrodynamic instability to which

line-tied magnetic flux ropes are susceptible is the current-

driven external kink instability. Originally treated by

Kruskal and Schwarzschild28 and Shafranov29 in the context

of laboratory fusion devices, the kink has long been studied

as a candidate solar eruption mechanism.30–37 It is a global

instability that arises when the magnetic field lines at the

edge of the flux rope are sufficiently twisted such that they

resonate with helical n	 1 perturbations to the rope (here n
is the axial/toroidal mode number). This leads to the so-

called Kruskal-Shafranov instability criterion, which is tradi-

tionally written in terms of the edge safety factor qa

qa �
2p
ia
¼ 2pa

L

BTa

BPa
< 1: (30)

Here, ia is the rotational transform, which measures the field

line twist along the length of the flux rope. Specifically, ia

represents the number of poloidal radians traversed by a field

line as it runs from one end of the flux rope to the other.38

The other quantities in Eq. (30) are as follows: a is the flux

rope minor radius, L is the flux rope length, BTa is the edge

toroidal field, and BPa� IT/2pa is the edge poloidal field.

Note that increasing toroidal field and minor radius are stabi-

lizing, while increasing poloidal field and length are

destabilizing.

The instability criteria in Eqs. (29) and (30) indicate that

the field decay index n and the edge safety factor qa are two

key instability control parameters. As such, these two param-

eters define a two-dimensional n vs. qa instability parameter

space over which flux rope eruptivity can be studied. The

laboratory experiments described in this paper were specifi-

cally designed to explore this instability of parameter space

in detail. Thus, while the kink instability has previously been

studied in both linear39–41 and arched42 flux rope experi-

ments, the experiments reported here are the first to study the

torus instability and its relationship to the kink.

III. LABORATORY FLUX ROPE EXPERIMENTS IN THE
MAGNETIC RECONNECTION EXPERIMENT

The laboratory experiments presented in this paper are

conducted in the Magnetic Reconnection Experiment (MRX)

at Princeton Plasma Physics Laboratory.43 For these experi-

ments, a novel apparatus was designed and constructed to

function as an insert to the MRX vacuum chamber. It produ-

ces both the vacuum (potential) magnetic field in which the

flux rope is embedded and the flux rope plasma itself. One of

the most important features of this experiment is its separa-

tion of timescales, which emulates the conditions of the solar

corona. This separation of timescales (dynamic � driving

� dissipation) is a key tenet of the storage-and-release erup-

tion paradigm described in Section I. In our experiments, the

dynamic timescale of the plasma (the Alfv�en transit time sA)

is sA ’ 3 ls, while the driving timescale sD over which the

plasma current is injected is sD ’ 75–300 ls, and the dissipa-

tion timescale (the resistive decay time sR) is sR � 500 ls

such that sA � sD � sR. As such, the line-tied flux ropes

produced in MRX persist in a quasi-statically evolving equi-

librium for many Alfv�en transit times. It should be noted that

laboratory experiments have been carried out in other devi-

ces to study the dynamics of a magnetized plasma arc.44,45

However, these experiments had only limited magnetic diag-

nostics, and it was unclear that the arcs were long-lived com-

pared to the Alfv�en time. A more recent experiment that uses

laser-produced plasmas at the footpoints of a stable arc to

drive an eruption46 is essentially testing a mass injection

model for eruption onset. Neither of these experimental

approaches achieves the separation of timescales required to

study the storage-and-release behavior that we seek in the

MRX flux rope experiments.

A. Experimental setup

Magnetic flux ropes are formed in MRX by generating

an arc discharge along arched field lines connecting two

upward-facing electrodes (see Fig. 6(a)). In order to enforce

the requisite magnetic field line-tying at the flux rope foot-

points, the electrodes are constructed from highly conducting

metals such as copper that lock in the vacuum magnetic field

for the duration of the discharge. The plasma region in these

experiments (z> 0) is physically separated from the potential

field coil region (z< 0) by an insulating glass substrate. Prior

to initiating the discharge, a static vacuum (potential) mag-

netic field is generated by driving current in four indepen-

dently controlled magnetic field coil sets (orange and blue in

Fig. 6(a)). These coil sets are directly analogous to the sub-

surface currents that produce sunspots and their associated

potential fields in the corona. By tuning the currents in the

various coils, vacuum field configurations with a wide range

of solar-relevant parameters can be produced.

Once the vacuum magnetic field has been generated, a

small amount of neutral gas (5–20 mTorr) is injected both at

the vessel wall and in the center of the cathode (i.e., the foot-

point that is negatively biased). The gas injection at the cath-

ode is key for breaking down the plasma at reasonable fill

pressures. Typically, hydrogen or helium is used due to their

low mass and corresponding high degree of magnetization.

In order to initiate the discharge, a capacitor bank is con-

nected across the electrodes, and the plasma breaks down

along the magnetic field lines that intersect the electrodes.

The current in the flux rope rises quasi-statically as the

energy stored in the capacitor bank is converted into mag-

netic energy that twists up the flux rope. A typical flux rope

discharge in MRX lasts for approximately a millisecond.

This timescale is set by the combined inductance and capaci-

tance of the series capacitor bank and plasma arc circuit. The

peak plasma current ranges from 10 to 25 kA, depending on

the voltage applied to the driving capacitor bank. This

amount of current is sufficient to produce non-potential mag-

netic fields of 300–500 G. Fields of this strength substantially
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modify the applied vacuum field configuration, thereby

forming non-potential equilibria, and, under certain condi-

tions, driving eruptive instabilities that are directly relevant

to events in the solar corona.

In order to study the torus and kink instabilities in

these experiments, it is imperative that we are able to inde-

pendently tune both the strength and the gradient of the

externally applied guide and strapping fields. The selection

of the desired vacuum field parameters (Bg, Bs, n, etc.) is

accomplished by selecting the individual currents that are

driven in the four sets of vacuum magnetic field coils

shown in Fig. 6(a). To demonstrate the technique that is

used for tuning a given field component, we focus in Figs.

6(b) and 6(c) on the strapping field coils. In this example,

the prevailing strapping field is provided by the in-vessel

strapping coils. The currents in these two rectangular coils

are configured so that the strapping field lines arch up out

of one coil and back down into the other. In order to tune

the decay index of the strapping field, a small amount of

current is driven in the large ex-vessel Helmholtz strapping

coils. This produces a spatially uniform offset to the strap-

ping field that either enhances or cancels a portion of

the prevailing field from the in-vessel strapping coils. In

Fig. 6(b), sample strapping field profiles are shown with

þ260 G of forward field and three different reverse field

values (þ20 G, �20 G, and �60 G). We see that even

though the reverse field values constitute only a perturba-

tion to the forward field, they substantially alter the strap-

ping field decay index profile (Fig. 6(c)). This magnetic

field superposition technique, which was verified with hall

probe measurements (not shown), is used to tune both the

guide and the strapping fields in the experiment.

B. Plasma parameters

While a laboratory experiment cannot directly simulate

the enormous scales of the solar atmosphere, we can estab-

lish the similarity of the relative values of a number of

important parameters. The first task is to identify the parame-

ters achieved in the laboratory, which are summarized in

Table III. Here, the magnetic field strength B is directly

measured, the neutral density nn is estimated from the fill

pressure, and the plasma density ne and temperature Te are

estimated from Langmuir probe measurements. The Alfv�en

velocity vA follows from the magnetic field and density val-

ues, and the various timescales have already been discussed.

For a line-tied plasma to be in the MHD regime, the fol-

lowing two conditions must be met: (1) the ion gyro-radius

qi must be much smaller than the flux rope cross-sectional

radius a; and (2) the electron-ion mean free path kei must be

FIG. 6. Experimental setup for studying arched, line-tied magnetic flux ropes in the Magnetic Reconnection Experiment (MRX). (a) A plasma arc (pink) is

maintained between two copper electrodes connected to a capacitor bank. The plasma arc is formed within a vacuum (potential) magnetic field configuration

that is generated by four independently controlled magnetic field coil sets (orange and blue). Two of the coil sets produce a guide magnetic field along the flux

rope arch, while the other two produce a strapping field orthogonal to the flux rope arch. These various field contributions combine to produce an obliquely

aligned vacuum field arcade (red) in which the flux rope is embedded. Reproduced with permission from Myers et al., Nature 528, 526 (2015). Copyright 2015

Nature Publishing Group. (b) Demonstration of how the two strapping field coil sets are used to tune the field decay index in the experiment. In this numeri-

cally calculated example, the in-vessel strapping coils provide þ260 G of strapping field at z ’ 10 cm, while the ex-vessel coils provide a spatially uniform off-

set of þ20, �20, or �60 G. Note that the vessel wall is located at zw ’ 68 cm. (c) The corresponding field decay index profiles for the three strapping field

profiles shown in (b). In this way, the height of the n¼ 3/2 point can be systematically varied.

TABLE III. Plasma parameters in the MRX flux rope experiments.

Reprinted with permission from Myers et al., Nature 528, 526 (2015).

Copyright 2015 Nature Publishing Group.

Laboratory parameter Symbol Value Units

Magnetic field strength B 300–500 G

Neutral density (approx.) nn �5� 1014 cm�3

Electron density (approx.) ne 0.5–1� 1014 cm�3

Electron temperature (approx.) Te 3–5 eV

Flux rope scale length L 0.5 m

Alfv�en velocity vA 65–150 km/s

Alfv�en transit time sA 3–8 ls

Footpoint driving time sD �150 ls

Resistive diffusion time (Spitzer) sR 0.8–2 ms
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much shorter than the plasma length L. As is well known,

both of these conditions are met for a typical solar flux rope.

In Table IV, we show that these conditions are also satisfied

for our laboratory flux ropes. Additionally, the Lundquist

number S � l0LvA=g, where L is the characteristic system

size and g is the electrical resistivity of the plasma, should

be much larger than unity. In the experiment, S� 100–500,

indicating that the magnetic field is largely frozen in to the

plasma. This parameter is important for simulating solar flux

ropes, where S ranges from 104 in the chromosphere to 1012

in the corona.

An additional experimental consideration is the effect of

neutral particles that are not ionized during the discharge.

Given the fill pressures used and the approximate plasma den-

sities achieved, the electron-ion mean free path kei � 1 cm is

at least an order of magnitude shorter than the electron-

neutral mean free path ken � 10 cm. This means that, despite

the presence of background neutrals, the ionized plasma dom-

inates the experimental dynamics. Furthermore, the role of

neutrals can be tested experimentally by increasing the fill

pressure and quantifying how the observed phenomena are

affected. Minimal changes were observed over more than an

order of magnitude in fill pressure.

C. Diagnostics

The MRX flux rope plasmas are primarily diagnosed

with two key systems: (1) fast visible light cameras that

image the plasma from multiple angles; and (2) an in situ
magnetic probe array that measures the internal magnetic

structure of the plasma. Images from the fast cameras, which

are used to qualitatively assess the plasma performance, can

be seen in Refs. 17 and 18. The results presented in this paper

are derived instead from the high-coverage magnetic probe

array. Such magnetic probe arrays are routinely deployed in

MRX to acquire magnetic field data over a two-dimensional

cross-section of the plasma. The probes are constructed from

miniature (�2 mm) magnetic pickup coils with �100 turns

each. The pickup coils are mounted in orthogonal triplets to

measure all three components of the vector magnetic field at

each location. These triplets are distributed at 4 cm intervals

inside long, thin glass tubes (7 mm OD) that serve as the

plasma-facing components. The raw _B signals are processed

through custom integrator circuits before being sent to

2.5 MHz high-speed digitizers.

For the flux rope experiments presented here, a new

two-dimensional magnetic probe array was constructed to

have unprecedented areal coverage (24 cm� 64 cm) and a

fine spatial resolution of 4 cm (see Fig. 7). As such, more

than 300 pickup coils provide in situ vector magnetic field

data at more than 100 locations within the plasma. A key fea-

ture is that the probe array can be rotated arbitrarily about

the z-axis between discharges (see Fig. 7). This means that

the cross-section of the probe array can be aligned at any ori-

entation with respect to the flux rope. The two orientations

featured here are the toroidal and poloidal cross-sections of

the flux rope (see Figs. 7(a) and 7(b), respectively).

The vector/color plots on the right hand side of Fig. 7

show a single-time snapshot of the magnetic field within the

flux rope. In each case, the vectors represent the in-plane

field, while the colors represent the out-of-plane field. For

the poloidal field components, the total poloidal field

BP ¼ Bs þ BPi is displayed. For the toroidal field compo-

nents, on the other hand, the vacuum fields are omitted in

order to emphasize the structure of the plasma-generated

toroidal fields BTi. One key measurement that can be

extracted from these magnetic field data is the vertical

TABLE IV. Dimensionless parameter comparison between the MRX flux

rope experiments and the solar corona. Here, MFP is the electron mean free

path kei. Reprinted with permission from Myers et al., Nature 528, 526

(2015). Copyright 2015 Nature Publishing Group.

Dimensionless parameter Symbol Solar Laboratory

Driving/Alfv�en time sD/sA 100–104 20–50

Driving/resistive time sD/sR 10�7 �0.1

Ion gyroradius/minor radius qi/a 10�6 0.05

MFP/plasma length kei/L 10�2 10�3–10�2

Lundquist number S 104–1012 100–500

Ionization fraction ne/(nnþ ne) 50%–100% 10%–20%

Plasma beta b �1% 2%–20%

FIG. 7. The in situ magnetic probe array used to diagnose the internal mag-

netic structure of the plasma. (a) Schematic and representative data acquired

with the probe array aligned in the toroidal (x-z) cross-section of the flux

rope. In this case, the vectors represent the in-plane toroidal magnetic field

produced by the plasma BTi 
 Bxiêx þ Bziêz, while the color represents the

total out-of-plane poloidal magnetic field BP ¼ êy � B. This out-of-plane

field reverses sign at the magnetic axis of the flux rope. (b) Schematic and

representative data acquired with the probe array aligned in the poloidal

(y-z) cross-section of the flux rope. In this case, the vectors represent the

in-plane total poloidal field BP, while the color presents the out-of-plane

toroidal field produced by the plasma BTi ¼ êx � Bi. BTi is always paramag-

netic with respect to the background guide field Bg. Reproduced with per-

mission from Myers et al., Nature 528, 526 (2015). Copyright 2015 Nature

Publishing Group.
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position of the flux rope magnetic axis. This position is

defined as the location where the poloidal magnetic field

reverses sign. For the examples in Fig. 7, the measured mag-

netic axis position is shown as a solid black line in Fig. 7(a)

and a black dot in Fig. 7(b). This capability will be used in

Sec. III D to analyze the flux rope height under a variety of

experimental conditions.

A second key feature of the magnetic field data is the

direct measurement of the internal toroidal field BTi. The

magnetic field data show that BTi has the following proper-

ties: (1) BTi is bundled in the core of the flux rope; and (2)

BTi is paramagnetic, or co-directed, with respect to the

vacuum toroidal guide field Bg. These properties are demon-

strated most clearly in Fig. 8, which shows magnetic meas-

urements of BTi from two sample flux rope discharges. In

each case, the guide field, which is not shown, arches from

right to left. Correspondingly, the measured BTi vectors also

arch from right to left, confirming that the plasma-produced

BTi is paramagnetic. Furthermore, the color, which shows

BT ¼ êT � BTi, demonstrates that the BTi is bunched in the

core of the flux rope. Note that the BTi in one sample dis-

charge is substantially more intense than in the other. The

difference is that the strength of Bg is different in the two

cases, with the strong Bg case corresponding to weak BTi and

vice-versa. This inverse relationship between Bg and BTi at

fixed BPa is consistent with Eq. (26).

D. Key results on the torus and kink instabilities

The final step is to summarize the key results on flux

rope eruptivity that provide the motivation to study the flux

rope forces in detail. These results were originally reported

in Ref. 18, where the torus versus kink (n vs. qa) instability

parameter space was explored using the MRX flux rope

experiments. Four different instability regimes are identified,

with one of them—the so-called failed torus regime—consti-

tuting a new discovery. The conclusion, as summarized

below, is that a previously unknown dynamic enhancement

of the toroidal field tension force can prevent torus-unstable

flux ropes from erupting. This measured dynamic enhance-

ment of the tension force is attributed to non-ideal magnetic

self-organization events in the flux rope plasma.18

Flux rope eruptivity is best quantified by studying the

height-time evolution of the flux rope’s magnetic axis.

Fortunately, as described in Sec. III C, the magnetic meas-

urements from the probe array can be used to track the apex

height of the flux rope, zap(t), as a function of time. Four

sample height-time traces are shown in Fig. 9. In particular,

each subpanel in Fig. 9(b) shows zap(t) as a black line along

with the poloidal magnetic field measured along the central

probe in the probe array By(t, z), which is shown in color. In

each plot, the magnetic axis position is the location where

the poloidal field reverses sign.

The four sample discharges shown in Fig. 9(b) are

chosen because they represent the four stability regimes

identified in the MRX flux rope experiments.18 These stabil-

ity regimes, which are labeled as stable, eruptive, failed

kink, and failed torus, are delineated by different values of

the torus and kink instability control parameters n and qa

(see Section II C). These two control parameters are scanned

independently by modifying the strength and spatial varia-

tion of the applied vacuum field configuration as described

in Section III A. We note here that it would also be possible

to control qa by varying the plasma current, but in practice

the plasma current is held fixed (see Fig. 9(a)) due to experi-

mental considerations. For the four sample discharges in Fig.

9, the achieved values of the instability control parameters n
and qa are listed in the table in Fig. 9(c). These scalar values

FIG. 8. Two sample magnetic measurements of the plasma-produced inter-

nal toroidal field BTi (vectors and color). In each case, the BTi vectors arch

from right to left, which makes them paramagnetic, or co-directed, with the

applied vacuum guide field Bg (not shown). Additionally, the magnitude of

BTi (color), is largest near the magnetic axis (the black line). The magnitude

of BTi is weaker in the case on the left than in the case on the right. The dif-

ference between the two is the strength of the applied guide field, which is

strong in the left hand case and weak in the right hand case.

FIG. 9. Temporal evolution of the flux rope apex height zap(t) in four differ-

ent stability regimes. (a) Mean plasma current waveform (green) and its

standard deviation (the lighter green band). Each discharge has the same

nominal plasma current. (b) Flux rope apex height waveforms (black lines)

along with the poloidal field measurements By(t, z), from which the apex

height is measured. (c) Table of key parameter values for these four dis-

charges. Reproduced with permission from Myers et al., Nature 528, 526

(2015). Copyright 2015 Nature Publishing Group.
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are determined by evaluating Eqs. (29) and (30) for the flux

rope parameters achieved in a given discharge. In particular,

n and qa are evaluated at the maximum of the temporally

filtered apex height hzapðtÞi which is shown in red in each

subpanel of Fig. 9(b). Additional details of the evaluation of

n and qa can be found in Ref. 18.

The four different sample discharges in Fig. 9(b) behave

qualitatively different from each other. The magnetic axis in

the stable discharge remains steady throughout the lifetime

of the plasma, while the eruptive discharge rapidly and

repeatedly erupts toward the wall of the chamber, which is

located at the top of each plot (at z=xf ’ 3:8). The two

“failed” regimes, which will be discussed shortly, show

intermediate behavior with small-scale spatial oscillations

but no catastrophic eruptions. In order to quantify these

disparate behaviors, we introduce a metric called the normal-

ized instability amplitude hdzi=xf . Here, the instability

amplitude hdzi is defined as the maximum of the envelope of

the dynamic spatial oscillations about the equilibrium posi-

tion of the flux rope hzapðtÞi. The quantity hdzi is then nor-

malized to half of the footpoint separation distance 2xf such

that a flux rope with hdzi=xf � 1 oscillates vertically on the

scale of the footpoint major radius. Values less than 0.5 are

clearly stable, while values above unity are clearly eruptive.

Later in this paper, hdzi=xf ¼ 0:8 is used to delineate non-

erupting flux ropes from those that erupt. The specific values

of hdzi=xf for the four cases in Fig. 9(b) are listed in Fig.

9(c), showing that the normalized instability amplitude pro-

vides a quantitative assessment of the qualitatively disparate

behaviors in Fig. 9(b).

The remaining task is to examine how the instability

amplitude varies over the broader n vs. qa instability parame-

ter space. In Fig. 10, the results of more than 800 flux rope

discharges are combined into a single scatterplot of flux rope

eruptivity. Each data point is the mean of 2–5 plasma

discharges taken under identical experimental conditions.

The four stability regimes identified in Fig. 9 are observed

across the instability parameter space in Fig. 10. As expected,

the stable regime in the bottom right is stable to both the kink

and the torus instabilities, while the eruptive regime in the

top left is unstable to both. The failed kink regime in the

bottom left is kink unstable but torus stable, and it does not

produce eruptions. This result, which is consistent with

numerical simulations of line-tied flux ropes,36 confirms that

the onset of the kink instability does not necessarily lead to

an eruption.

The failed torus regime in the top right of Fig. 10, on the

other hand, constitutes an entirely new discovery. Here, torus

unstable flux ropes fail to erupt. Detailed measurements of

the flux rope forces presented in Ref. 18 show that the toroi-

dal field tension force is dynamically enhanced in this

regime, thereby preventing flux rope eruptions. One of the

purposes of this paper is to fully develop and validate the

force measurement techniques that are used to identify the

dynamically enhanced toroidal field tension force in Ref. 18.

Additional analysis of the evolution of the poloidal and toroi-

dal fluxes shows that the dynamically enhanced tension force

is a result of magnetic self-organization events that conserve

magnetic helicity within the flux rope.18

We note that observed torus and kink instability thresh-

olds of n� 0.8 and qa� 0.8 (shown in gray in Fig. 10) differ

from the theoretically predicted values of n¼ 3/2 and qa¼ 1.

The reduced kink threshold is consistent with numerical sim-

ulations of line-tied flux ropes.31–37 The reduced torus

threshold is perhaps more interesting. It calls into question

whether the analytical force models that are used to derive

the n¼ 3/2 torus threshold are representative of the flux rope

forces in the line-tied, low-aspect-ratio conditions of the lab-

oratory and coronal flux ropes. This interesting result moti-

vates the detailed study of flux rope forces that follows.

Unlike in Ref. 18, the focus here is on the measurement of

quasi-steady (equilibrium) forces that feed into loss-of-equi-

librium calculations of flux rope stability.

IV. LABORATORY MEASUREMENTS OF
MAGNETOHYDRODYNAMIC FORCES

In this section, we use the internal magnetic field data

acquired from the MRX line-tied flux rope experiments to

directly measure the J�B force terms acting on the flux

rope plasma. These measurements provide the necessary

information to both evaluate the flux rope equilibrium force

balance and validate (or invalidate) the analytical force

expressions derived in Section II. We begin by describing in

detail the laboratory force measurement procedure that has

been developed for the MRX flux rope experiments. The

goal of the flux rope force analysis, which is carried out on

data acquired with the probe array aligned in the poloidal

(y-z) plane of the flux rope (see Fig. 7), is to measure the inte-

grated force per unit length F(zap), acting on the flux rope

apex (see Fig. 1). The formal expression for the integration of

F(zap) is given in Eq. (4). In order to use this formulation to

directly measure the flux rope forces from the experiment, we

must determine several key quantities including the toroidal

scale factor hT(z) and the in-plane boundary of the flux rope

r¼ a(h).

Identifying the toroidal scale factor hT(z) is an involved

process wherein magnetic field data from various configurations

FIG. 10. The experimentally measured flux rope instability parameter space.

Four distinct instability regimes are identified, with the empirical stability

boundaries shown in gray. While the stable, eruptive, and failed kink

regimes are expected, the failed torus regime constitutes a new discovery.

Reproduced with permission from Myers et al., Nature 528, 526 (2015).

Copyright 2015 Nature Publishing Group.
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are used to measure the toroidal curvature of the flux rope. The

details of this procedure are described in Appendix A. In short,

an ensemble of flux rope discharges is used to determine an

average toroidal scale factor that can be applied to many flux

rope discharges with similar experimental conditions (e.g., they

have the same footpoint separation distance, 2xf). In cases where

a directly measured toroidal curvature is not available, the line-

tied curvature from the shifted-circle model (Eq. (9)) is used

instead.

With the toroidal scale factor in hand, the next task is to

gather all components of the magnetic field B and the current

density J that are needed to compute the various force den-

sity terms fi. All three components of the magnetic field are

directly measured by the magnetic field probe array. From

these magnetic field measurements, the various components

of the current density can be computed as

JP ¼
1

l0

1

hT

@ hTBTið Þ
@z

� �
êy �

1

l0

@BTi

@y

� �
êz;

JT ¼
1

l0

@Bzi

@y
� @Byi

@z

� �
: (31)

These current densities, along with their corresponding mag-

netic fields, are plotted for a sample time slice in Fig. 11.

The sample discharge from which this time slice is drawn is

non-erupting with hdzi=xf < 0:8 (see Fig. 10) such that the

flux rope plasma persists in a quasi-static equilibrium

throughout its evolution. In the left panel of Fig. 11, the

poloidal magnetic field BP is plotted in vectors with the

toroidal current JT in color. In the right panel, the poloidal

current density JP is plotted in vectors with the plasma toroi-

dal field BTi in color. At this juncture, we now possess all of

the raw quantities that are required to compute the magnetic

force density f ðy; zÞ ¼ êz � ðJ� BÞ. The remaining task is to

define the minor radius, a(h), that sets the in-plane limits on

the volumetric integration of the force densities.

In order to define the in-plane boundary of the flux rope,

we define a local poloidal flux function w(y, z), that is

directly related to the toroidal vector potential AT via

wðy; zÞ ¼ hTðzÞATðy; zÞ. It can be computed by integrating

along any integration path C¼CyþCz as

wðy; zÞ ¼ �
ð

Cy

dy hTBz þ
ð

Cz

dz hTBy: (32)

In practice the integration path is chosen to run vertically

along the center probe of the array and then left and right at

each z value. This ensures that residual integration errors

are minimized. The flux function determined from Eq. (32)

is only unique if the in-plane poloidal magnetic field mea-

sured by the probes is divergence free. Unfortunately, small

measurement errors can introduce a non-zero divergence

into the measured fields. As such, the in-plane fields are

processed using a “divergence cleaning” technique that

removes any magnetic field divergence introduced by mea-

surement errors. The procedure for the diverge cleaning

technique is described in detail in Appendix B. Sample con-

tours of the integrated flux function as determined from

divergence-cleaned fields are shown in blue in the left panel

of Fig. 11.

What remains is to use w(y, z) to formally define the

boundary of the flux rope (i.e., its minor radius). Defining

the boundary of the flux rope in the y-z plane is an important

task for two reasons: (1) this boundary sets the limits of inte-

gration in the force per unit length calculations; and (2) sev-

eral of the analytical models developed in Section II B rely

on the apex minor radius aap as an input. In this paper, we

define the boundary of the flux rope as the poloidal flux con-

tour that encloses 90% of the measured toroidal current. The

value of the flux function at this boundary location is

w¼wedge. In practice, the exact percentage of enclosed cur-

rent does not substantially modify the force measurement

results. The contour that encloses 90% of the toroidal current

for the flux rope measurements in Fig. 11 is shown in red.

One important issue that becomes clear from Fig. 11 is

that the probe array does not capture the entire cross-section

of the flux rope. While there are several options for address-

ing this shortcoming, we choose here to take the simplest

approach of scaling all of the integrated quantities by the

ratio of the total current passing through the electrodes to the

total current measured within the cross-section of the probe

array. This measured current scaling gives a reasonable esti-

mate of how much of the current and other integrated quanti-

ties (such as forces) are acting outside of the probe array. For

the discharge under consideration, this scale factor does not

exceed �1.3 during the main phase of the discharge.

Before presenting the force balance results, it is instruc-

tive to examine how the key parameters at the edge of the

flux rope evolve as a function of time. In Fig. 12(a), the apex

height evolution of the same discharge from Fig. 11 is shown

for reference. In Fig. 12(b), measurements of the minor

radius show that, once the equilibrium sets up at its peak

height, the apex minor radius aap is much larger than the

footpoint radius. This footpoint-to-apex expansion is a key

FIG. 11. Magnetic field and current density profiles from a sample non-

erupting discharge. On the left is the in-plane poloidal field BP and the out-

of-plane toroidal current JT. On the right is the in-plane poloidal current JP

and the out-of-plane internal toroidal BTi. The blue contours on the left are

contours of the flux function w(y, z). The red contour encloses 90% of the

toroidal current flowing in the rope and therefore defines the flux rope

boundary.
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feature of the low-aspect-ratio, line-tied flux rope. Figure

12(c) shows the measured values of the normalized internal

inductance ‘i � hB2
Pi=B2

Pa, which hovers just below unity for

most of the discharge. Finally, in Fig. 12(d), we see that the

measured hBTii matches well with the analytical expression

from Eq. (26) throughout the discharge. This is a strong indi-

cation of the effectiveness of the 1D force-free model for the

paramagnetic toroidal field that was developed in Section

II B 4. The validity of this analytical expression is examined

in more detail in Section V. Most importantly, Fig. 12 dem-

onstrates that the methods developed in this section permit

the direct measurement of key parameters such as zap, aap,

and ‘i that are required to evaluate the analytical expressions

developed in Section II B.

The above analysis techniques provide all of the neces-

sary information to use Eq. (4) to measure the various forces

per unit length acting on the flux rope apex. In particular, we

can now directly integrate each J�B term in Table II to

examine the various contributions to the force-free equilib-

rium. The results of these laboratory force measurements for

two sample discharges are shown in Fig. 13. Here, the experi-

mental measurements are plotted as solid patches of color,

while the corresponding analytical models are plotted as solid

lines of the same color. The positive and negative forces are

added one on top of the other, and the net force, which is the

sum of all of the measured force terms, is shown in black. All

of the forces are normalized to Fnorm � l0I2
T=4pxf . The small

value of the net force when compared to the individual force

terms indicates that a quasi-force-free equilibrium is, in fact,

achieved in these experiments. This is one of the key conclu-

sions of this paper: that a force-free equilibrium is measured

by considering only the hoop, strapping, and tension Lorentz

force terms. This conclusion, which validates the low-b
assumption in these experiments, will be substantiated with a

database-wide comparison of measured forces in Section V.

Upon examining the various force terms shown in Fig. 13,

we see that, as expected, the hoop force pushes upward while

the strapping and toroidal tension forces pull downward. When

comparing to the analytical expectations, the strapping force is

very well predicted in both cases. The hoop force, on the other

hand, is weaker in both cases than is predicted analytically.

Finally, the toroidal field tension force matches well in one

case, but is stronger than predicted in the other. As we show in

Section V, these trends continue across a database of several

hundred shots: the strapping force is accurately predicted,

while the tension and hoop forces are more susceptible to var-

iations in the experimental parameters.

V. DATABASE-WIDE COMPARISON OF LABORATORY
AND ANALYTICAL FORCES

In this section, we apply the force measurement techni-

ques developed in Section IV to a database of flux rope plas-

mas that spans a wide range of experimental conditions. The

central goal is to validate the various analytical force models

developed in Section II B. The flux rope database considered

here is a subset of the �800 discharge database that is used

to analyze the torus vs. kink instability parameter space in

Fig. 10. Since the present objective is to quantify the quasi-

steady forces acting on each flux rope plasma, only non-

erupting discharges with hdzi=xf < 0:8 are considered. This

condition reduces the database by half. The further require-

ment that the magnetic probe array be aligned in the y-z

FIG. 12. Time-resolved quantities evaluated at w¼wedge at each time point

during the discharge. (a) Apex height evolution zap(t). (b) Expansion of the

apex minor radius aap during the main phase of the discharge. Note that the

aspect ratio is less than 1.5. (c) Measured normalized internal inductance ‘i.

Values above 0.5 indicate a somewhat peaked current profile. (d) Calculated

(via Eq. (26)) and measured average paramagnetic toroidal field in the rope

cross-section. Parameters such as zap, aap, and ‘i are key for evaluating the

analytical expressions derived in Section II B.

FIG. 13. Two examples of experimentally measured forces at the flux rope

apex. The measured forces are represented by the solid colored patches,

while their corresponding analytical predictions are represented by the

same-colored lines. The net force measured in the experiment is shown in

black, indicating that quasi-force-free equilibrium is achieved.
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plane in order to measure the flux rope forces leaves the final

force database with �200 viable discharges. The non-

erupting flux rope plasmas in the force database span three

of the four quadrants of the torus vs. kink instability parame-

ter space in Fig. 10 and therefore provide a broad sampling

of flux rope parameters.

To analyze the measured and predicted forces across the

force database, the various time-resolved force waveforms in

Fig. 13 must be reduced to a single value per force term per

discharge. This is accomplished here by averaging over the

peak 5% of the discharge as defined by the toroidal current

injected at the electrodes (see Fig. 9). For the two sample

discharges in Fig. 13, this constitutes an average over �20 ls

in the vicinity of t¼ 275 ls. Note that each force waveform

is filtered prior to averaging to eliminate transient deviations

from the mean.

Figure 14 summarizes the database-wide force analysis.

Here, the measured values for each force term are plotted

against their corresponding analytical predictions, which are

summarized in Table II. The goodness-of-fit between the

measured forces and the analytical predictions is quantified

here in terms of a residual of the form

Res: �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j

Fmeas;j � Fcalc;j

Fnorm

� �2

vuut ; (33)

where the sum is over all values of a given force term and

the forces are normalized to Fnorm � l0I2
T=4pxf . The resid-

uals for the hoop, strapping, and tension force terms are

listed in the figure legend.

It is clear that the preliminary trends from the time-

resolved force analysis in Fig. 13 continue across the broader

force analysis database. First, while the measured hoop force

correlates positively with the analytical model, it

consistently underperforms its prediction. Second, the strap-

ping force is very well predicted by its analytical model. In

some sense this is not surprising given that, unlike the hoop

and tension forces, the strapping force does not depend on

the arched geometry of the flux rope. Finally, the toroidal

field tension force also positively correlates with its analyti-

cal model, although it often exceeds the analytical prediction

in magnitude. The non-ideal trends in the hoop and tension

forces will be examined more thoroughly later in this

section.

Possibly the most important conclusion from Fig. 14 is

that, when all three force terms are summed and averaged

over the database, the net force is very nearly zero. To dem-

onstrate this, the mean net force is plotted with error bars as

the single black dot in Fig. 14. The fact that the measured

net force is zero indicates that a force-free equilibrium is

achieved among the hoop, strapping, and tension Lorentz

force terms. This validates both the force measurement tech-

niques developed here and the low-b assumption that is

applied to these experiments.18 While the measured net force

is zero, the predicted net force is substantially positive, indi-

cating that the analytical force models expect the equilibrium

to be at a higher altitude than is realized in the experiment.

This mismatch between the measured and predicted equilib-

rium heights is expected to have implications for the loss-of-

equilibrium/torus instability criterion that are calculated

based on these analytical models. Given the length of this

manuscript, we defer such analysis to future work.

The database-wide underperformance of the hoop force

in Fig. 14 warrants further investigation. In particular, it is

instructive to assess the impact of the various line-tying con-

siderations that were introduced in Section II B. As such, Fig.

15 shows the measured hoop forces versus the analytical pre-

dictions derived from the four different hoop force models in

Fig. 3. In the circular and line-tied image cases (Figs. 15(a)

and 15(c)), the higher-magnitude data points diverge substan-

tially to the right, implying that the analytical prediction is

too large. These higher magnitude data points correspond to

lower-lying ropes, which for the circular case means a small

major radius. For the image case, on the other hand, this

means a close proximity between the physical loop and its

image loop. Both conditions result in large predicted hoop

forces that do not match well with the experiment.

The line-tied circle case (Fig. 15(b)) has the opposite

problem where the higher-magnitude cases pull to the left. In

this case, the low-lying ropes are far from their shifted-circle

return loop. Only in the line-tied fixed case do the higher-

magnitude points fall in line with the lower-magnitude

points. While the residual values of 0.486 do not discern

between the line-tied circle and line-tied fixed cases, we con-

clude based on the slope of the data that the line-tied fixed

case, which matches the experimental configuration, per-

forms the best. It is important to note that in each of these

cases, induced currents in the stainless steel wall of the vac-

uum vessel also modify the hoop force. Since the vessel cur-

rents oppose the flux rope current, they reduce the measured

hoop force. This effect, which is treated in detail in Ref. 17,

is included in all four subpanels in Fig. 15 so as not to bias

the results.

FIG. 14. Measured versus predicted forces across the equilibrium parameter

space. The forces are normalized to Fnorm � l0I2
T=4pxf . The strapping force

is well-predicted, while the hoop force is consistently weaker than predicted

and the tension force is often stronger than predicted. The measured net

force is nearly zero, indicating that a force-free equilibrium is measured

across the database.
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The central conclusions of this extended hoop force

analysis are twofold. First, Fig. 15 shows that the line-tied

nature of the flux rope and the details of its sub-surface clo-

sure are key to accurately predicting the hoop force over a

wide range of parameters. Second, even with the line-tied

profile and correct sub-surface closure, the hoop force con-

sistently underperforms the analytical prediction. We attri-

bute this latter effect to low-aspect-ratio and line-tying

effects that act to rearrange the internal profiles of the flux

rope in ways that are not accounted for in the large-aspect-

ratio analytical model (Eq. (6)). Given the stringent assump-

tions of the large-aspect-ratio model, it is not surprising that

low-aspect-ratio, line-tied ropes would behave differently

than predicted. In fact, it may be more surprising that the

median difference between the measured and predicted

forces is just 30%.

Given that the strapping force agrees well with its ana-

lytical model, we move on to analyze the toroidal field ten-

sion force in more detail. The conclusion from Fig. 14 is that

the tension force is well-predicted in some cases, but that it

can substantially exceed its predicted magnitude in others. It

is important to note that the present tension force results

should be considered independently of those in Ref. 18. In

that case, the focus is on transient enhancements of the ten-

sion force that are generated in certain parameter regimes by

dynamic magnetic self-organization events. The present

analysis, on the other hand, considers only time-averaged,

quasi-steady forces in an effort to better understand the flux

rope equilibria. As such, the transient tension forces that are

the focus of Ref. 18 average out in the present analysis.

The toroidal field tension force derivation in Section

II B 4 makes it clear that predicting the cross-section-aver-

aged paramagnetic toroidal field hBTii is key to predicting

the toroidal field tension force (Eq. (20)). According to the

analytical expression in Eq. (26), this quantity should depend

only on the applied guide field Bg0 and the edge poloidal

field BPa. Figure 16 compares the experimentally measured

paramagnetic field to the analytical prediction from Eq. (26).

The figure shows that, in spite of the wide variation in the

FIG. 15. Comparison of measured ver-

sus analytically predicted hoop forces

as derived from the four different flux

rope models in Fig. 3. The measured

data points are the same in each subpa-

nel such that only the predicted data

points change. The goodness-of-fit

residuals (Eq. (33)) are list in the bot-

tom right of each subpanel. The

higher-magnitude cases diverge to the

right in (a) and (c) and to the left in (b)

due to the different subsurface clo-

sures. The line-tied (LT) fixed closure

in (d), which most closely matches the

experimental configuration, is the case

that is used in Fig. 14.

FIG. 16. Comparison of measured hBTii values with the analytical prediction

from Eq. (26). The measured values each represent a single discharge from

the force analysis database in Fig. 14. Though there is some scatter in the

data, the analytical prediction from Eq. (26) holds quite well across the

parameter space.
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experimental parameters, the paramagnetic field is quite well

predicted analytically. It is impressive that the analytical

expression performs so well given that it is derived from a

simple 1D model of a linear screw pinch. The good agree-

ment between the experimental measurements and the ana-

lytical prediction further confirms that these flux rope

plasmas are low-b.

A final conclusion regarding the tension force is that, as

can be seen in Fig. 14, the tension force is a substantial con-

tributor to the flux rope equilibrium force balance. Its mea-

sured strength in many cases is commensurate with the

measured strength of the strapping force. This conclusion is

important given that the tension force is often ignored in the

analytical treatment of solar flux ropes. One example is the

traditional torus instability derivation, which considers only

hoop and strapping forces.10,15 As a final note, the tension

force measurements reported in this paper include both mag-

netic tension and magnetic pressure contributions. While

the tension term generally dominates, the pressure term can

be non-negligible. This distinction is analyzed further in

Appendix C.

VI. SUMMARY AND DISCUSSION

In this paper, the quasi-steady equilibrium forces acting

on low-aspect-ratio, line-tied magnetic flux ropes are studied

in detail using a well-diagnosed laboratory flux rope experi-

ment. The goal of this study is to inform loss-of-equilibrium

solar eruption models that rely on an understanding of such

forces to analyze and predict flux rope eruptions in the Sun’s

corona. Three flux rope force terms are considered in detail:

the hoop, strapping, and tension forces. First, analytical mod-

els are developed for each force term in Section II and the

experimental setup is described in Section III. Then, in

Section IV, a laboratory force measurement procedure is

developed based on spatially resolved magnetic measure-

ments from within the flux rope plasma. Using this force

measurement procedure, we find that a force-free equilib-

rium is measured across a flux rope database of nearly 200

discharges (Section V). This finding provides two key con-

clusions: (1) it validates the laboratory force measurement

procedure, which is used extensively here and in Ref. 18;

and (2) it validates the low-b assumption that is applied to

these experiments given that a force-free equilibrium is mea-

sured among three purely magnetic force terms.

With the force measurements in hand, we performed

detailed comparisons of the various measured force terms to

their corresponding analytical predictions. This leads to sev-

eral conclusions about line-tied flux rope equilibria:

1. While the hoop force does act to drive the flux rope

upward, its magnitude is systematically smaller than pre-

dicted, even after correcting for the partial toroidal shape

of the line-tied rope. This difference is attributed to low-

aspect-ratio and line-tying effects not accounted for in the

traditional large-aspect ratio analytical models.

2. Assessing the hoop force requires a proper accounting of

the partial toroidal shape of the line-tied rope and of the

shape of the return path beneath the flux rope footpoints.

3. The strapping force, on the other hand, behaves as

expected, increasing with the product of plasma current

and strapping field.

4. The toroidal field tension force contributes substantially

to the laboratory flux rope equilibra. It can often be larger

in magnitude than is predicted analytically. This observa-

tion is also attributed to low-aspect-ratio and line-tying

effects, but further analysis, likely computational, is

required to understand the relative impact of these effects.

We emphasize once again that the toroidal field tension

forces studied in this paper are quasi-static forces that contribute

to the flux rope equilibrium force balance. These quasi-static

forces differ fundamentally from the dynamic tension forces

that are reported in Ref. 18. An exploration of the relationship

between these two tension forces is left for future work.

The conclusions of this paper represent an enhanced

understanding of the Lorentz forces that act on line-tied flux

ropes. In particular, the combination of a weaker-than-expected

hoop force and stronger-than-expected toroidal field tension

force results in lower altitude flux rope equilibria than are pre-

dicted analytically. This deviation from the analytical predic-

tions is expected to impact the expected loss-of-equilibrium

criteria for analogous flux ropes in the solar corona.

Several opportunities remain for further analysis of the

laboratory data. In particular, the observed n� 0.8 torus

instability criterion is quite intriguing. With the enhanced

understanding of the equilibrium forces provided by this

paper, this reduced loss-of-equilibrium threshold should be

investigated in the context of the partial torus instability of

Olmedo and Zhang.19 Experimental factors such as the series

inductance of the capacitor bank are expected to contribute

to this reduced instability criterion, but the effects of line-

tying are fundamental to both the laboratory experiments

and the solar corona. The impact on the hoop force as shown

in Fig. 4 should be considered. Furthermore, the question

of how much of the reduced threshold is due to low aspect

ratio and line-tying effects should be explored. This may

ultimately help to pin down the torus instability threshold in

line-tied systems.

The differences between the analytical predictions and

laboratory measurements presented in this paper highlight the

need to further understand how idealized analytical predic-

tions are modified in the highly three-dimensional, line-tied

conditions of the solar corona. In our view, computational

analysis of the laboratory flux ropes studied here and of anal-

ogous systems in the solar corona represents the best chance

to strengthen the connection between our laboratory results

and observations of solar flux ropes. At a minimum, the

results presented in this paper pose several sharp questions

that can serve as a launching point for a numerical simulation

effort: Can the same equilibrium effects of a weakened hoop

force and a heightened tension force be recovered numeri-

cally? Are these effects a consequence of low aspect ratio

and/or line-tying as we postulate here? How do these consid-

erations modify the expected loss-of-equilibrium criterion?

Answering such questions, and determining how these results

can be applied to flux ropes in the Sun’s corona, is an impor-

tant step on the path toward understanding and ultimately

predicting solar eruptive events.
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APPENDIX A: FLUX ROPE TOROIDAL CURVATURE
MEASUREMENTS

As described in Section IV, the direct measurement of

the magnetohydrodynamic forces at the apex of the flux rope

requires a measurement of the out-of-plane (toroidal) curva-

ture jT. Due to the line-tied nature of the flux ropes studied

here, jT is, in general, a non-trivial function of z. From vec-

tor calculus arguments,20 jT(z) is related to the curvilinear

scale factor hT(z) via

jT �
1

Rc
¼ 1

hT

@hT

@z
; (A1)

where Rc is the toroidal radius-of-curvature. This equation

can be inverted to get

hT ¼ exp

ð
dz jTðzÞ þ C0

� �
; (A2)

where the integration constant C0 is chosen so that hTðzapÞ
¼ RcðzapÞ. This ensures that the coordinate T represents the

angular toroidal displacement along the magnetic axis of the

flux rope. From the above relationship, we see that a mea-

surement of jT(z) is required in order to compute hT(z) and

carry out the force balance analysis. We now demonstrate

the procedure for measuring jT(z) in the MRX flux rope

discharges.

The MRX force measurements can only be carried out

in flux rope discharges where the magnetic probe is array

aligned in the y-z (poloidal) cross-section of the flux rope

(see Fig. 7). This is because the integrals over r and h in Eq.

(4) require full poloidal resolution. As we will see, however,

measuring the toroidal curvature requires that the probes be

aligned instead in the x-z (toroidal) cross-section. Thus,

the force measurement procedure developed here uses a

multi-discharge approach where curvature measurements

from x-z-aligned discharges are used to evaluate the forces in

y-z-aligned discharges.

The general expression for the curvature of a magnetic

field line is given by

j ¼ ðb � rÞ b; (A3)

where b � B=B is the magnetic field unit vector. In

Cartesian (x, y, z) coordinates, this expression expands to

nine terms (three for each of the three vector components).

Here, we are interested in the z-directed (vertical) curvature,

which is given by

êz � b � rð Þb ¼ bx
@bz

@x
þ by

@bz

@y
þ bz

@bz

@z
: (A4)

As we will see, bz@zbz is small when evaluated at the flux

rope apex (on the z axis). This leaves the first two terms as

the dominant components of the vertical curvature.

To demonstrate the evaluation of Eq. (A4), we examine

magnetic probe data from two nearly identical stable dis-

charges, one with the probe array in the x-z plane and the

other with the probe array in the y-z plane (see Fig. 17). These

magnetic field data are the vector measurements B(0, 0, z)

acquired along the z-axis by the central probe in the magnetic

probe array. The specific measurements in Fig. 17(a) are taken

from the two discharges shown in Fig. 7. Here, Bx is the local

toroidal field (BgþBTi), while By is the local poloidal field

(BsþBPi). The agreement between the data from the two dis-

charges is excellent, thereby confirming their similarity. It

should be noted, however, that the z locations of the plasma

fields in the x-z discharge were scaled by �1.1 in order to

match the height of the flux rope in the y-z discharge.

With the magnetic field data in hand, we now evaluate the

various curvature terms in Eq. (A4). The evaluation is carried

out about the center probe in the array with the numerical

derivative data being sourced from the probes to the left and

right of the center probe. The results for the discharges under

consideration are shown in Fig. 17(b). The bx@xbz term comes

from the x-z discharge, the by@ybz term from the y-z discharge,

and the bz@zbz term from both discharges. As expected, this

final term is small compared to the other two. We see that the

remaining terms represent the major radius (toroidal) curvature

and the minor radius (poloidal) curvature, respectively. Since

we are interested in the major radius curvature, we focus on

the bx@xbz term and define

FIG. 17. Experimentally measured terms of the vertical flux rope curvature

(Eq. (A4)). Solid lines are from the x-z probe alignment, while dashed lines

are from the y-z probe alignment. Note that the dominant vertical curvature

components in the right panel are the toroidal curvature (blue) and poloidal

curvature (dashed green).
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jT � �bx
@bz

@x
: (A5)

Thus, the toroidal curvature profile jT(z) can be directly

measured from probe data acquired in the x-z plane and used

in the analysis of data acquired in the y-z plane.

The curvature analysis procedure developed here can

now be applied to the range of x-z-aligned discharges in the

MRX flux rope database. Of the 800þ shots in the database,

only �200 of them were acquired with the probe array in the

x-z configuration. Furthermore, only half of the 200 x-z-

aligned discharges are “non-erupting” as established by the

hdzi=xf < 0:8 definition used throughout this paper (see

Sections III D and V). This leaves a set of �100 x-z-aligned

discharges from which to develop an understanding of the

toroidal curvature of the laboratory flux ropes.

Ideally, each y-z-aligned discharge would have a corre-

sponding x-z aligned discharge from which to extract curva-

ture information. In practice, not enough data is available to

facilitate this one-to-one mapping. Instead, the simplest

approach with the available x-z aligned discharges is to

aggregate the curvature measurements from all available dis-

charges to generate ensemble-averaged curvature and curvi-

linear scale factor profiles. To do this, the curvature profiles

for each discharge are first averaged over 150 ls in the mid-

dle of the discharge. Then, all of the time-averaged profiles

are combined via a weighted average to produce the

ensemble-averaged curvature profiles shown in Fig. 18.

In Fig. 18(a), the ensemble-averaged curvature profile is

shown along with a model “line-tied” curvature profile

derived from the shifted-circle flux rope model described by

Eq. (9). The aggregate apex height of the flux rope is also

shown. Fig. 18(b) shows the normalized curvilinear scale

factor ĥT � hT=RcðzapÞ that results from applying Eq. (A2)

to the measured curvature profile in Fig. 18(a). The measured

scale factor profile shows that the actual apex wedge integra-

tion volume is notably wider underneath the rope (z< zap)

and narrower above the rope (z> zap) than is predicted by

the line-tied model.

A final wrinkle is that a subset of the discharges used in

the flux rope force study in Sections IV and V are not well-

described by the aggregate curvature profile in Fig. 18. This

is because these discharges were taken with a smaller foot-

point separation distance (xf¼ 15 cm versus xf¼ 18 cm) than

all of the discharges that contribute to Fig. 18.

Unfortunately, no x-z discharges were taken in the xf¼ 15 cm

configuration. As such, the line-tied curvature model is used

as the curvature profile for the xf¼ 15 cm discharges.

APPENDIX B: DIVERGENCE CLEANING OF THE
IN-PLANE MAGNETIC FIELD DATA

A crucial aspect of the force analysis presented in this

paper is the ability to define a local poloidal flux function (see

Eq. (32)). In order for the flux function to be unique, however,

the measured magnetic fields must be divergence free

(r � B ¼ 0). This can become a problem when experimental

noise and measurement errors inject residual divergence into

the measurements. Fortunately, we can take advantage of the

assumed local toroidal symmetry of the flux rope to implement

a “divergence cleaning” procedure that removes any residual

divergence from the in-plane components of the y-z magnetic

field data. In particular, given the toroidal scale factor hT (see

above) and the assumption that @/@T ’ 0, the divergence of

the magnetic field is given by

r � B ¼ @By

@y
þ 1

hT

@ hTBzð Þ
@z

; (B1)

which depends only on the in-plane field components By and

Bz and their in-plane derivatives. The divergence cleaning

procedure implemented here uses an iterative technique to

diffuse away the divergence47

Bnþ1 ¼ Bn þ ðdrÞ2r½r � Bn�; (B2)

BN ¼ B0 þ ðdrÞ2
XN�1

n¼0

r½r � Bn�; (B3)

where n is the iteration index and dr is a characteristic diffu-

sion length scale. The convergence of the iteration is faster

for larger dr, but numerical stability ultimately limits its

magnitude. An interesting feature of this divergence cleaning

method is that the resulting field B
N will give the exact same

toroidal current density as the initial field B0. This is because

J ¼ r� B=l0 and r�rg¼ 0 for all scalar functions g.

Thus, since the added divergence cleaning terms are all gra-

dients of a scalar, they do not modify the measured current

density. Simply stated, this technique finds the in-plane mag-

netic field that is both divergence free and corresponds to the

originally measured toroidal current density.

FIG. 18. Aggregate experimentally measured toroidal curvature and scale

factor profiles for the MRX flux rope database. On average, the measured hT

profile makes for a wider integration volume under the rope and a narrower

volume above the rope when compared to the shifted-circle.
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In practice, the divergence cleaning technique imple-

mented here is very effective, if somewhat computationally

intensive. Each time point requires tens of iterations to con-

verge, but the results are excellent (see Fig. 19). In the left

panel of this figure, the vectors show the raw poloidal mag-

netic field measurements BP while the colors show their

computed divergence. In the right panel, the vectors instead

show the difference between the raw and cleaned data DBP

while the color shows the divergence of the cleaned fields.

Note that both the vectors and the colors in the right panel

are amplified by a factor of five (�5) in order to appear as

something other than zero. The plots show that the diver-

gence is reduced by at least an order of magnitude and that

the overall modification to the interpolated magnetic field

data is less than 10%. In fact, for the case shown, the average

change in the field magnitude is hjDBPj=jBPji � 7%.

APPENDIX C: ADDITIONAL TENSION FORCE
ANALYSIS

A remaining concern with the tension force analysis in

Section V is how to reconcile the good agreement between

the measured and predicted paramagnetic toroidal field in

Fig. 16 with the modest agreement between the measured

and predicted toroidal field tension force in Fig. 14. Recall

from Section II B 4 that two related analytical models were

developed for the tension force: Eqs. (20) and (27). The latter

expression is used as the analytical tension force model in

Fig. 14 since it is this model that is assumed in the canonical

torus instability derivations.10,15 In order to understand the

comparison between the two tension force models, however,

we now plot the measured tension force data against each of

the two models (see Figs. 20(a) and 20(b), respectively). The

stiffness of Eq. (27), which assumes that hB2
Ti � B2

g0 ’ B2
Pa,

is evident in Fig. 20(a). More scatter is observed in Fig.

20(b), on the other hand, which uses the experimentally mea-

sured values of hB2
Ti � B2

g0. Based on the residuals, it is not

clear that either of the models captures the tension force

behavior.

Further insight can be gained by recognizing that the

source term for the toroidal field tension force, ft¼�JPBT, is

actually comprised of a magnetic tension term and a mag-

netic pressure term

fTt ¼ �
BTi

l0R

� �
BT ; (C1)

fTp ¼ �
1

l0

@BTi

@R

� �
BT : (C2)

The contributions from each of these two terms are explicitly

separated in Fig. 20(c). In this case, the tension term shows

much better agreement with the model. The pressure term

can be negligible in some cases but important in others. It

turns out that the cases where the magnetic pressure term

is large are those that around low-lying and bound closely

to the surface. We again postulate that these effects are

FIG. 19. Sample results from the divergence cleaning of in-plane magnetic

field data. Left: Raw poloidal field vectors and their divergence (color).

Right: Difference between the raw and cleaned poloidal field data (vectors)

and the divergence of the cleaned data (color). Both quantities on the right

are amplified by a factor of five (�5).

FIG. 20. Comparison of measured data to various analytical tension force models. (a) Comparison to Eq. (27), which is the model that is used in Fig. 14 and in

the traditional torus instability derivation. (b) Comparison to Eq. (20), which uses the measured values of hB2
Ti � B2

g0. (c) Decomposition of the results in (b)

into toroidal field tension and pressure terms. The agreement with the tension term is very good. The pressure term is negligible in some cases, but can be

important in others.
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due to a reconfiguration of the internal flux rope profiles

due to low-aspect-ratio and line-tying effects that are not

captured by the simplistic analytical models developed in

Section II B. Further analysis, likely computational, is

required to better understand the relationship between the

toroidal field tension and pressure terms in various flux

rope equilibria.
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