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A concise review of observations of the α dynamo effect in laboratory plasmas is given.
Unlike many astrophysical systems, the laboratory pinch plasmas are driven magnetically.
When the system is overdriven, the resultant instabilities cause magnetic and flow fields
to fluctuate, and their correlation induces electromotive forces along the mean magnetic
field. This α-effect drives mean parallel electric current, which, in turn, modifies the
initial background mean magnetic structure towards the stable regime. This drive-and-
relax cycle, or the so-called self-organization process, happens in magnetized plasmas in
a time scale much shorter than resistive diffusion time, thus it is a fast dynamo process
active in a strong magnetic field. The observed α-effect redistributes magnetic helicity
(a measure of twistedness and knottedness of magnetic field lines) but conserves its total
value. It can be shown that fast dynamos are natural consequences of a driven system,
where fluctuations are statistically either not stationary in time or not homogeneous in
space, or both. Implications to astrophysical phenomena will be discussed.

1. Introduction. Phenomena involving magnetic fields have been observed
in astrophysical systems ranging from planets and stars to accretion disks, galaxies
and even in clusters of galaxies [1]. Understanding the origins and effects of these
cosmic magnetic fields has been one of the most active research areas across multi-
ple subdisplines of physics. In particular, generation and sustainment of magnetic
fields from dynamics in electrically conducting media, or the so-called dynamo
actions [2], has long remained an unsolved problem.

A typical astrophysical system is driven by a combination of thermal, rota-
tional, and gravitational energies. For example, dynamics in the outer core of the
earth is dominated by the Coriolis force (due to rotation) and thermal convec-
tion (due to temperature gradient and gravity). Another example is the accretion
disks, where the differential rotation is a primary source of free energy originat-
ing from the release of gravitational energy. The magnetic field in these systems
can grow out of corresponding instabilities. Often, the resultant Lorentz force is
ignored in the equation of the motion. This is the so-called kinematic dynamo
problem. When the Lorentz force is fully taken into account in the flow dynamics,
the problem is nonlinear.

In the kinematic dynamo problem, the flow velocity is completely determined
by the corresponding free energy source, either thermal, rotational, or gravita-
tional. The growth of magnetic field is only passively determined as a linear prob-
lem, and is not a part of dynamics. The kinematic dynamo introduces simplicity,
but does not provide a self-consistent solution for either the flow or magnetic field.

The dynamos in astrophysical systems are mostly fully nonlinear in nature.
The effects of magnetic field must be fully taken into account, i.e., the Lorentz force
is an integral part of the dynamics, often resulting in saturation of the magnetic
field growth. In most cases, however, the nonlinear dynamos are too complicated
to be studied theoretically without invoking statistical treatments. One such ex-
ample is the so-called mean-field electrodynamics [3], where the ensemble-averaged
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electromotive force is calculated along the mean magnetic field (the α-effect) or
the mean electric current (the β-effect).

The mean electromotive force generates and sustains the entire mean mag-
netic field or current, which, in turn, influences the dynamo effects. This is true
in all the astrophysical systems driven non-magnetically. When a system is driven
magnetically, i.e., the free energy source is in the magnetic form, the electromo-
tive force or the α-effects still modify the externally supplied mean magnetic field.
Sometimes the modifications are so significant that the resultant mean field is
qualitatively different from its initial profile. This article is intended to describe
such an example in laboratory pinch plasmas, which are driven only magnetically.
The observed α-effects exhibit remarkably similar properties to those in astrophys-
ical systems: they modify the mean magnetic profile in a time-scale much faster
than resistive time scale, and they are closely related to the concept of magnetic
helicity as shall be described later. The laboratory elucidates key aspects of dy-
namo physics since detailed measurements are possible, and the MHD nonlinear
problem can be formulated and solved.

A comment on nomenclature is in order. Historically, and in some present
venues, the “dynamo”refers to the self-generation of a magnetic field through the
input of mechanical energy. In this paper, we expand the definition of dynamo
to encompass the self-generation or sustainment of magnetic fields, including the
systems, in which the magnetic field is only in part self-generated. This definition
includes the systems, in which mechanical energy (flow) is not the external en-
ergy source. This usage has been common in the plasma magnetohydrodynamics
literature for several decades, including several textbooks on the topic (see, for ex-
ample, [4, 5]). Such usage seems sensible for several reasons. First, the underlying
physics of dynamos in flow-driven and magnetically-driven systems share much
in common. In the simplest single-fluid MHD description, the magnetic field is
generated in both systems by the α-effect. In particular, there may be common-
ality in the nonlinear physics, which brings us to our second point. The question
of whether a seed field can be amplified (self-excited) by an imposed flow – the
kinematic and historical statement of the dynamo problem – is a linear problem
that is essentially solved (in the MHD context). Whether the linear growth rate
for a given flow is positive or negative is now obtainable through computation.
The challenge is rather to understand the nonlinear evolution of the system at
finite magnetic field. How does the nonlinear state behave? Most natural and
laboratory dynamos are in nonlinear states. The question of self-excitation from
a seed field only captures a fraction of the relevant physics. Third, there are new
mechanisms for magnetic field growth that have not yet been extensively explored.
These originate from a theoretical description beyond single-fluid MHD (discussed
in Sec. 4). MHD may be insufficient for many high temperature astrophysical and
laboratory plasmas, in which the magnetic field is self-generated. These effects
arise from terms in the generalized Ohm’s law that do not depend explicity on
flow. However, they appear on an equal footing, and sometimes in similar form, as
the α-effect term. It seems natural to refer to these self-generation mechanisms as
dynamo effects, even if they are not flow-driven. As a final note on nomenclature,
in what follows we refer to individual terms in the mean-field Ohm’s law (other
than the resistive term) as “dynamo effects”, one of which is the familiar α-effect
electromotive force.

In the dynamo mechanisms discussed in this paper, spatial fluctuations cor-
relate to produce a large-scale magnetic field. This is a common feature that
connects many dynamo mechanisms. Extension of the definition of a dynamo,
beyond the original question of self-excitation from a seed field, enriches the topic
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Fig. 1. Coordinates for toroidal
geometry: the cylindrical coordi-
nate(major radius R, toroidal an-
gle φ, axial direction Z) and the
toroidal coordinate (toroidal angle
φ, poloidal angle θ, and radius r).
The aspect ratio of a torus is de-
fined as R0/a.

and emphasizes the underlying commonality between the large variety of systems
(Earth, lab, astrophysical) that display self-generation of a magnetic field.

The remainder of this paper is organized as follows: qualitative introduction
to laboratory pinch plasmas is given in Sec. 2, including demonstration of the
need for a dynamo mechanism to explain the magnetic field generation. The
nonlinear MHD description of the dynamo is summarized in Sec. 3, including the
role of the dynamo in the self-organization of the plasma, and the instabilities
that underlie the process. Experimental measurements of the α-dynamo effects
are presented in detail in Sec. 4. The nature of the observed dynamo effects and
their relation to magnetic helicity are discussed in Sec. 5, followed by implications
to the astrophysical dynamos and conclusions in Sec. 6.

2. Pinch plasmas: magnetically driven systems. The history of pinch
plasma experiments goes back to early 1950’s as a part of efforts for development
of magnetically confined plasmas for the nuclear fusion application. The basis of
these experiments is the pinch effect, in which a current channel in the electrically
conducting plasmas contracts through the magnetic field generated by the current.
The current can be driven either by a voltage applied between electrodes or elec-
tromagnetic induction through a transformer. We shall focus on a subclass of the
pinch experiments that are toroidal (Fig. 1), where most of relevant theoretical and
experimental dynamo work have been performed. Specifically, the reversed-field
pinch (RFP) plasmas [6, 7] shall be described in detail. A similar configuration
known as spheromak [8, 9] shall also be mentioned, but the interested readers
should refer to the review papers mentioned above for some experimental details.

2.1. Formation of pinch plasmas. The RFP plasmas are produced by an
inductive electric field along the toroidal direction through a transformer. The
plasma serves as the secondary coil of the transformer. A typical experimental
arrangement is conceptually illustrated in Fig. 2, where the plasma is surrounded
by a metal shell. The electrical skin time of the shell is much longer than the
experimental time, thus it can be considered as an ideal conductor to ensure that
the magnetic field lines are always parallel to the shell surface. The shell has gaps
along toroidal and poloidal directions permitting instantaneous penetration of the
applied electric field.

The time evolution of magnetic field and current density profiles as functions
of r are qualitatively shown in Fig. 3. Initially (t ≤ t0), a uniform toroidal mag-
netic field is imposed (Fig. 3a). At t = t0, the toroidal electric field1 is applied
through the transformer to drive the toroidal current, which, in turn, produces

1Penetration of electric field in the conducting plasma is observed to be much faster than the
skin time estimated from the classical resistivity of a plasma. The responsible mechanisms have
been a subject of research, but no clear answers exist to date.
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Fig. 2. Illustration of an RFP
plasma with its magnetic field
at several radii. The toroidal
component reverses its direc-
tion at the edge.

the poloidal magnetic field. Therefore, the field lines become helical. Since the
electrons freely move along the field lines, but not so across the field lines, the cur-
rent path also becomes helical with a poloidal component. The poloidal current
modifies the initially imposed toroidal field. Fig. 3b illustrates the magnetic and
current profiles at a time t = t1 > t0 when the modification to the initial field is
relative small. (This corresponds to the tokamak configurations, another subclass
of toroidal pinch plasmas.) We note that the toroidal field increases at the center
but decreases at the edge.

If the applied toroidal electric field is raised further, the amplitude of both
toroidal and poloidal currents increases to further modify the field profiles. The
poloidal field approaches to the magnitude of the toroidal field, while the toroidal
field continues to peak at the center and diminish at the edge, as illustrated in
Fig. 3c for t = t2 > t1. Finally, when the electric field is raised to a large enough
value, the toroidal field eventually reverses its direction at the edge (Fig. 3d for
t = t3 > t2), the origin of the name of reversed-field pinch (RFP). Fig. 2 also
illustrates magnetic structures at various radii. Since the center toroidal field
increases by a much larger value than the edge value decreases, the total toroidal
flux is amplified significantly.

Fig. 3. Qualitative illustration of time evolution of the normalized magnetic field and
current density profiles in a pinch plasma when the electric field is increased in sequence:
(a) initial state, where only a toroidal field exists; (b) a small electric field to drive mainly
toroidal current in tokamaks; (c) a modest electric field to significantly drive both toroidal
and poloidal current components; (d) and, finally, an RFP configuration is realized when
the toroidal magnetic field reverses its direction.
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Fig. 4. Mismatch between the ap-
plied electric field E‖ and the resis-
tive counterpart ηj‖ along the field
line at t = t4 of Fig. 3d. It is noted
that E‖ > ηj‖ at the center (often
called anti-dynamo) while E‖ < ηj‖
at the edge (dynamo).

The spheromak plasma configuration is similar to the RFP. It contains helical
field lines, with the field at the edge being mainly poloidal. The spheromak is a
torus with aspect ratio of unity (no hole in the center). An additional difference
from the RFP is that the electric field that drives the initial current is mainly
poloidal and localized at the plasma edge. Nonetheless, the observed dynamo
effects are strikingly similar to those in the RFP. Therefore, the rest of this paper
shall focus on RFP plasmas.

2.2. Need for a dynamo effect. The current density and magnetic field profile
in the RFP, particularly the reversal of the toroidal magnetic field, cannot arise in
a steady-state plasma that is toroidally symmetric (lacking in symmetry-breaking
fluctuations). This can be seen easily by comparing the terms in the MHD Ohm’s
law parallel to the magnetic field,

E‖ = ηj‖. (1)

The parallel component of electric field, E‖, can be calculated by E ·B/B =

EφBφ/B, where B =
√

B2
φ + B2

θ and E is the fully penetrated electric field and
has only the toroidal component. Since both Eφ and B are constants, E‖ has the
shape of Bφ, which reverses its sign at the edge. On the other hand, ηj‖ never
changes its sign across the radius, as shown in Fig. 2.1.. As a result, the edge parallel
current, essentially in the poloidal direction, flows against an externally applied
electric field. Thus, the parallel component of Ohm’s law cannot be satisfied
without additional terms, such as the α-effect.

The need for a dynamo effect can also be inferred by comparing the measured
toroidal flux with that predicted from a simple, symmetric resistive MHD theory.
Fig. 5 shows an example of the measured time evolution of a toroidal flux together
with that calculated by resistive MHD theory without dynamo effects. Interest-
ingly, the toroidal flux is sustained as long as the toroidal electric field is provided
in the experiment, while the flux decays away in the theory. Clearly, the existence
of dynamo effects is required to explain both amplification and sustainment of the
toroidal flux.

Fig. 5. Time evolution of
toroidal flux: measurement and
calculation with no dynamo ef-
fects in an RFP plasma [10].
Note that the decay around t =
18 ms is due to termination of
the applied electric field).
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Fig. 6. Schematic of magnetic self-organization in laboratory plasmas.

3. Self-organization and the MHD Dynamo. The dynamo effect in
laboratory plasmas is part of a self-organization process. Resistive diffusion evolves
the plasma away from a preferred state; the dynamo forces the plasma back to-
ward the preferred, self-organized state. The macroscopic features of magnetic
self-organization are described in Sec. 3.1. Resistive diffusion is well-understood;
the self-organization in the large scales driven by the dynamo is a current topic of
research and the focus of this paper. Single-fluid MHD equations provide a fully
nonlinear description of the dynamo in laboratory plasmas. The fluctuations, in
velocity and magnetic field, and the large-scale mean magnetic field, are all de-
termined self-consistently. The MHD calculations include both the effect of the
fluctuations on the mean field and the effect of the mean field on the fluctuations.
Weakly nonlinear analytic calculations capture some of the key physics, and com-
putational solution of the nonlinear, three-dimensional resistive MHD equations
provide a complete description. The fluctuations that underlie the dynamo arise
from tearing instabilities. A brief discussion of tearing instabilities in the labora-
tory context is included in Sec. 3.2. A description of some of the key results of the
nonlinear problem is presented in Sec. 3.3.

3.1. Magnetic self-organization. The dynamo effect underlies magnetic self-
organization in the laboratory [5]. The plasma is driven by an applied electric field
as seen in Sec. 2.1. The resulting magnetic configuration has excess free energy
leading to instabilities (or turbulence) that relax the plasma toward a state of
lower magnetic energy. The plasma relaxes to the lower energy state through the
dynamo effect. The self-generation of plasma current reconfigures the large-scale
magnetic field to the one with lower energy. This process is depicted in Fig. 6.

The structure of the relaxed state is partly captured by minimizing the mag-
netic energy in the plasma volume W =

∫
(B2/2µ0)dV subject to the constraint of

constant magnetic helicity K =
∫

A ·BdV , where A is the magnetic vector poten-
tial. Magnetic helicity is a topological measure of the knottedness of the magnetic
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Fig. 7. Solution for axial and az-
imuthal magnetic field of the re-
laxed state and its comparisons
with the measurements [7].
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Fig. 8. Toroidal magnetic flux
versus time in an RFP experiment.

field lines [11]. The minimization yields a magnetic field given by ∇ × B = µB,
where µ is the constant. Thus, the ratio of the current density to the magnetic
field, j/B, is a spatial constant. This relaxed state is sometimes referred to as
the Taylor state. For a one-dimensional cylindrical plasma (where B = B(r)) the
solution yields Bessel functions, Bz = B0J0(µr), Bθ = B0J1(µr), where B0 is
the constant. The noteworthy feature of this solution, shown in Fig. 7, is that it
approximates the measured profiles of the reversed field pinch shown in Fig. 3d
(identifying Bz with the toroidal field and Bθ with the poloidal field). In particu-
lar, the reversal of the toroidal field is obtained.

The driven/relaxation phenomenon can occur in experiment in either a con-
tinuous or cyclic fashion. The plasma is driven away from the relaxed state, and
the dynamo opposes this tendency. In some experimental plasmas, the net result
is that these effects are nearly balanced at all times; thus, the plasma mean field
is approximately steady. In other experimental plasmas, the two effects are sep-
arated in time [12, 13]. During the drive period, the plasma slowly evolves away
from the relaxed state, driven by the applied electric field. During the relaxation
period, the plasma rapidly returns to a relaxed state. This sawtooth cycle is evi-
dent experimentally in the toroidal magnetic flux in the plasma, shown in Fig. 8.
A slow decay of the flux is followed by rapid magnetic flux generation by the dy-
namo. The dynamo acts as discrete events in time. During the decay phase the
ratio j/B is becoming spatially peaked; during the relaxation phase it becomes
flatter. Relaxation processes happen also in spheromak plasmas [14], where the
driving electric field can be either in toroidal or poloidal direction with the aspect
ratio, R0/a, close to unity, but the underlying physics of relaxation is essentially
the same.

An experimental test of the Taylor conjecture was achieved by inferring the
change in magnetic energy and helicity during a relaxation event [15]. An approx-
imate measurement was obtained by modeling the instantaneous plasma state as

Fig. 9. Time evolution of total
magnetic helicity and energy dur-
ing a relaxation event in an RFP
plasma [15].
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a slowly varying MHD equilibrium. Since the fields during relaxation are chang-
ing on a time scale longer than an Alfven time, the fields will satisfy the MHD
force balance equation, j × B = ∇p, through a discrete dynamo event. Through
solution of this equation with experimental constraints it is found that during a
relaxation event the magnetic energy reduces by about 8%, while the magnetic
helicity reduces by about 3%, as shown in Fig. 9. (also see Sec. 5.4)

3.2. Magnetic (tearing) instabilities. The Taylor conjecture provides a useful
framework to depict approximately the final state of the relaxation, or dynamo
process. However, it provides no information on the physical mechanism of the
dynamo. Solution of the resistive nonlinear MHD equations reveals the detailed
dynamics. The spatial fluctuations that underlie the dynamo are tearing instabil-
ities. Tearing instabilities are driven by spatial gradients in j/B, and cause the
field lines to tear and reconnect [16]. The MHD description of such spontaneous
magnetic reconnection has been investigated for several decades. From linear the-
ory, it is known that tearing instabilities grow on a timescale that is intermediate
between short Alfven time (a/VA, where VA = (B2/µ0ρ)1/2 and ρ is the mass den-
sity) and the long resistive diffusion time (µ0a

2/η, where η is the resistivity). For
the experimental plasma parameters, the theoretical growth time is approximately
100µs, comparable the observed fast relaxation time.

The tearing instability can be described by a wave function of the form
f(r) exp[i(mθ − nφ)] where m and n are integers representing the poloidal and
toroidal mode numbers. In laboratory plasmas, many tearing modes can be present
simultaneously. For tearing to occur, the fluctuating field must be constant along
the mean magnetic field. That is, the parallel wavenumber must vanish (paral-
lel wavelength must become infinite) somewhere in the plasma. This condition
(k‖ = 0) becomes

k ·B = kθBθ + kφBφ =
m

r
Bθ − n

R
Bφ = 0. (2)

The condition can be written as q = m/n where q = rBφ/RBθ is the winding
number of the mean magnetic field and varies with minor radius. This condi-
tion represents a resonance between the fluctuating and mean magnetic fields.
In laboratory plasma discussed here, multiple tearing modes with different mode
numbers occur. Hence, tearing occurs at many radii within the plasma, leading to
large-scale reorganization.

3.3. The nonlinear MHD dynamo. An α-effect arises from MHD tearing in-
stabilities, as indicated in the mean-field Ohm’s law

E + 〈ṽ × B̃〉 = ηj (3)

where the tilde denotes fluctuations and 〈 〉 denotes mean quantities (averages over
θ and φ). Some key features of the α-effect term (the second term on the left hand
side) that arises from the fluctuations can be discerned from quasilinear theory.
In linear theory the mean field is specified; the spatial structure and the growth
rate of the exponentially growing modes are calculated. In quasilinear theory,
the parallel component of the α-effect evaluated from the solutions by the linear
theory in the vicinity of the radius about which reconnection occurs is found to
be [17, 18]

〈ṽ × B̃〉‖ = ∇ ·
(

D∇ j

B

)
(4)

This indicates that the α-effect drives current so as to reduce the gradient in j/B,
consistent with a relaxation in the direction of the Taylor state. The α-effect is in
the form of a diffusion mechanism. The diffusion coefficient is proportional to B̃2.
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Fig. 10. Radial profile of each term in the
mean-field Ohm’s law, showing (a) the mean
electric field and current density and (b)
the fluctuation-induced dynamo term. Each
term is evaluated from nonlinear MHD com-
putation.
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Quasilinear theory is incomplete. It only captures the α dynamo effect during
the growing phase of the instability. Extensive computational study has produced
a fully self-consistent description of the MHD laboratory dynamo. The nonlinear
computation predicts a steady state dynamo, and includes the interaction be-
tween the fluctuations and mean fields (the quasilinear effect) and the nonlinear
energy transfer between different spatial Fourier modes. Computation predicts
that the fluctuation energy is spread over a modest number of nonlinearly inter-
acting modes, of order of the aspect ratio, R0/a. From an initial state of random
noise, the instabilities grow(excited by the gradient in j/B), reaching an ampli-
tude of about 1% of the mean field. The radial profile of each of the terms in the
parallel (to B) component of the mean-field Ohm’s law is displayed in Fig. 10.
Note that the α-effect is large. At the radius where the mean parallel electric field
is zero, all the current is driven by the α dynamo effect. Since the α-effect reverses
sign with radius, it can also be viewed as redistributing current from the center to
the edge.

4. Measurements of dynamo effects. Despite the long history of re-
search of RFP plasmas and subsequent recognition of existence of dynamo effects,
the experimental efforts to directly measure the α-effect did not start until the late
1980’s [19]. The main reason is the difficulty in measuring local velocity fluctua-
tions of both ions and electrons in a plasma. Below we describe several techniques
successfully used to measure the velocity fluctuations and the dynamo effects. In
addition to the MHD dynamo, discussed in the previous section, measurements
have been made to examine dynamo effects arising from pressure effects, the Hall
term, and kinetic effects. We discuss each of these four dynamo mechanisms in
turn.

4.1. MHD dynamo. The key quantity to measure is the component of the
fluctuation-induced electromotive force along the mean magnetic field. In the
MHD model, where v is dominated by the E × B drift, the electron and ion
velocities are about equal. The corresponding term is 〈ṽ × B̃〉‖ ' 〈ṽ⊥ × B̃⊥〉‖.
Thus, the key is to measure ṽ⊥ with sufficient time and spatial resolutions. The
first technique invokes measurements of fluctuations in the perpendicular electric
field. The measuring principle is based on the fluctuating Ohm’s law, Ẽ+ ṽ×B+
v × B̃ = ηj̃, which reduces to

ṽ⊥ =
(Ẽ⊥ + v × B̃− ηj̃⊥)×B

B
2 ' Ẽ⊥ ×B

B
2 , (5)
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Fig. 11. Time evolution of the
measured MHD dynamo electric
field 〈Ẽ⊥ · B̃⊥〉/B by Langmuir
probes [21] in MST, compared
with the mismatch ηj‖−E‖ in the
parallel Ohm’s law during a relax-
ation cycle.

because Ẽ⊥ � ηj̃⊥ and Ẽ⊥ � v× B̃ in typical conditions. Therefore, the α-effect
becomes

〈ṽ × B̃〉‖ ' 〈(Ẽ⊥ ×B)× B̃⊥〉
B

2 =
〈Ẽ⊥ · B̃⊥〉

B
. (6)

Fluctuations in electric and magnetic fields and their correlations can be measured
by Langmuir probes and magnetic pickup coils, respectively,at the plasma edge
where the temperature is relatively low [20]. However, the first attempt using
this technique in a relatively dense RFP plasma measured [19] no perceivable α-
effect compared to the mismatch between E‖ and ηj‖ shown in Fig. 2.1.. It has
been suggested later that another mechanism (see next subsection) for the dynamo
action might be operational in these dense plasmas.

The first successful detection [21] of the MHD dynamo in the RFP plasmas
was made in the well-controlled Madison Symmetric Torus (MST) plasmas. As
discussed in Sec. 3.1, in addition to the continuous dynamo action to regenerate
toroidal flux against resistive diffusion, discrete relaxation events occur in MST in
a regular fashion to generate toroidal flux in a short time scale. Fig. 11 displays
the measured dynamo electric field compared with the mismatch between E‖ and
ηj‖. The agreement is excellent both during relaxation events (t ' −0.1 ms) and
between events. Successful measurements of MHD dynamo effects were made in a
spheromak using a similar technique [22].

The second technique used to measure fluctuating velocities is spectroscopic
detection of the Doppler shift from impurity carbon ions embedded within the
hydrogen plasmas [23, 24]. If the coupling between impurity ions and plasma ions
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Fig. 12. Time evolution of the measured MHD dynamo electric field 〈ṽ × B̃〉‖ (light
line) by an optical probe [24] in MST, compared with the mismatch ηj‖−E‖ (heavy line)
in the parallel Ohm’s law during a relaxation cycle.
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Fig. 13. Cross spectra of the MHD (solid lines) and diamagnetic dynamo (dotted lines)
terms for four different density cases in a RFP plasma [27].

are strong, or they behave in the same way when exposed to the slow electric field
fluctuations, the emission from impurity ions function as a tracer of plasma flow.
An optical probe [25] was utilized to measure local velocity fluctuations of impurity
ions. Correlations with local magnetic fluctuations have also yielded remarkable
agreement with the mismatch electric field at the edge as shown in Fig. 12. At
smaller radii, however, the measured dynamo term diminishes due to the phase
changes in ṽr [24]. Other mechanisms discussed in Sec. 3 for the dynamo effects
might be operational at the smaller radii.

4.2. Diamagnetic dynamo. Because of the collisionless nature of high tem-
perature plasmas, MHD approximations are not always a good model to describe
dynamics of such plasmas. A better model can be based on the two-fluid model
where ion fluid and electron fluid are treated separately. As described in Sec. 3.3,
the force balance for electrons is essentially the Ohm’s law, which is generalized
to include electron pressure force,

E + ve ×B +
∇Pe

en
= ηj, (7)

where the electron inertial effect is ignored. Then Eq.(6) is modified to

〈ṽe × B̃〉‖ ' 〈Ẽ⊥ · B̃⊥〉
B

+
〈∇⊥P̃e · B̃⊥〉

enB
(8)

where the second term is referred as “diamagnetic” dynamo since the fluctuating
electron velocity is due to electron diamagnetism. The diamagnetic dynamo was
first explored theoretically to study the dynamics of self-organization [26]. We
note that a small “battery” term is ignored here (see Sec. 5.1).

The diamagnetic dynamo has been detected at the edge of an RFP plasma
when the density is high [27]. Fluctuations in the electron pressure (density and
electron temperature) can be measured by Langmuir probes at different locations
to deduce their gradient. Fig. 13 shows the cross spectra of fluctuating quantities
for both MHD dynamo and diamagnetic dynamo for four different densities. In
the low density plasmas, the MHD dynamo dominates while at the highest density,
the diamagnetic dynamo dominates. Although the underlying mechanisms for the
transition are still unclear, this observation is consistent [28] with the early mea-
surements in a dense plasma where no significant MHD dynamo was detected [19].

4.3. Hall dynamo. Since j=en(vi−ve) and v≈vi, Eq. (7) can be written as

E + v ×B− j×B
en

+
∇Pe

en
= ηj, (9)
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Fig. 14. Evolution of energetic
electron current measured by an
electrostatic electron energy ana-
lyzer with the entrance aligned
along the field lineat the edge of an
RFP plasma [32].

where the third term in the left-hand side is called the Hall term. The fluctuation-
induced counterpart, 〈̃j× B̃〉/en, therefore called the Hall dynamo effect, has been
suggested to be important under certain conditions [29]. Experimentally, current
density fluctuations can be measured by magnetic pickup coils, placed at several
spatial points, using Ampere’s law. Measurements at the plasma edge indicated
small but non-negligible effects in the Ohm’s law [30]. Physically, the Hall dynamo
arises when electron flow does not fluctuate together with ions in the perpendicular
direction. For this to happen, electrons need to experience different forces than
ions. Electric force cannot be the cause since its fluctuations induce only the
same flow fluctuations for both species. However, the electron pressure force can
serve this purpose by driving flows only in electrons. Therefore, the diamagnetic
dynamo mentioned above is a manifestation of the Hall dynamo effect. Another
possibility for a finite difference in perpendicular flows of electrons and ions has
been suggested [27, 29] when the viscous force for ions is large.

4.4. Kinetic dynamo. For ions and electrons to be treated as fluids, their
distribution functions need to be close to Maxwellians. In the collisionless plasmas,
however, this cannot be always true especially in the pinch plasmas driven by a
large electric field. In such cases, often a high-energy tail of electrons forms along
magnetic field line. When the field lines wander from center to edge, these high-
energy electrons follow, resulting in transport of electric current outward. The
current transport due to these electrons can just make up the mismatch in the
electric field illustrated in Fig. 2.1.. The physical process, however, needs to be
treated by the full kinetic equations, referred as the kinetic dynamo theory [31].
The main support for this theory is from the observation [32] of high energy
electrons along the field lines carrying most of the current, as exemplified in Fig. 14.

However, the present form of this theory does not includethe effects of these
energetic electrons on the dynamics of magnetic field lines through Ampere’s law.
It has been pointed out [33] that such dynamical feedback to the magnetic field
structure would impose a severe constraint on the efficiency of this mechanism.
Alternately, the observation of energetic electrons is possibly just a manifestation
of other dynamo processes motioned above, i.e., they are accelerated by local
dynamo electric field [34]. Kinetic behaviors of the plasma in such a turbulent
environment may be far from a simple physical picture.

5. Implications to dynamo theories and astrophysical dynamos. What
we can learn from the observed dynamo effects described in the previous sections?
In this section, we discuss their implications to a number of important and often
controversial issues in recent developments in dynamo theory: fast dynamo ver-
sus slow dynamo; back-reaction of mean field on dynamo action; stationary and
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homogeneous turbulence versus driven systems; and its relationship with mag-
netic helicity. Finally, implications to astrophysical systems, especially the solar
dynamo problem, are discussed.

5.1. Fast dynamo versus slow dynamo. Fast dynamos are dynamo actions
which do not diminish in the small resistivity limit, while slow dynamos do. Fast
dynamos can change the magnetic field in a much faster time scale than the re-
sistive diffusion time, in which slow dynamos operate. A real solution for th-
eastrophysically observed dynamos must be a fast dynamo. In fact, the dynamo
effects described in the previous sectionare evidently also fast dynamos, which can
change the magnetic flux in a time scale (typically ∼ 100 µs during relaxation
events) much faster than the resistive diffusion time (typically ∼ 0.1 s). For clar-
ity, we re-derive the α-effect based on the Ohm’s law in the two-fluid framework,
Eq. (7), E+ve ×B+∇Pe/en = ηj. After ensemble-averaging over fluctuations it
becomes

E + ve ×B + 〈ṽe × B̃〉+
∇P e

en
= ηj, (10)

which can be subtracted from Eq. (7) to yield

Ẽ + ṽe ×B + (ve + ṽe)× B̃− 〈ṽe × B̃〉+
∇P̃e

en
= ηj̃, (11)

where small battery-like effects such as 〈ñ∇P̃e〉/en2 are neglected (see Sec. 5.4).
With the use of Eq. (11), the α-effect is calculated as

〈ṽe × B̃〉‖ =
〈ṽe × B̃〉 ·B

B
= −〈(ṽe ×B) · B̃〉

B

=
〈Ẽ · B̃〉

B
+
〈∇P̃e · B̃〉

enB
− η

〈̃j · B̃〉
B

. (12)

The first and second terms of the last line are MHD dynamo and diamagnetic
dynamo, respectively, and the third term is proportional to the resistivity η. We
note that the so-called “first-order smoothing” approximation [3], or ṽe × B̃ −
〈ṽe × B̃〉 = 0 needs not to be assumed in Eq. (11) to derive the above results.

The third term in Eq. (12) deserves special comment. It is likely a slow dy-
namo term since it diminishes as the resistivity goes to zero. It may be argued
that the current density fluctuations may goto infinity to make this term finite
in the vanishing resistivity limit [35]. But this possible singularity is only mathe-
matical but not physical because current density has to be bounded in any case:
microinstabilities will be destabilized sooner or later to stop the growth in the
current density. Therefore, this term should be always a slow dynamo term in real
plasmas. Indeed, this term is small in pinch plasmas where resistivity is small, as
mentioned in the previous section. In contrast, the other two terms in Eq. (12) can
be the fast dynamo terms since they are not constrained by the small resistivity,
and they can change the magnetic field in a fast timescale, as demonstrated in the
laboratory plasmas described in this paper. We discuss these terms further in the
following subsections.

5.2. Back-reaction of mean field on dynamo action. The concept of slow dy-
namo is closely related, if not identical, to the so-called back-reaction of mean
magnetic field on the α-effect in the analytic MHD models [36, 37, 38, 39], con-
firmed by MHD simulations [40]. A self-consistent constraint due to Lorentz force
on the flow [41] applies on the kinematic dynamo effects,

α ≡ 〈ṽ × B̃〉‖
B

= α0 +
τ

3ρ
〈̃j · B̃〉, (13)
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where the kinematic α-effect α0 = −(τ/3ρ)〈ṽ ·∇× ṽ〉 and τ is the correlation time
same for the velocity and magnetic field fluctuations. Combining with Eq. (12) in
the MHD limit,

α =
〈Ẽ · B̃〉 − η〈̃j · B̃〉

B2
, (14)

yields [38]

α =
α0 + τ

3ρη 〈Ẽ · B̃〉
1 + τ

3ρη B2
. (15)

In the limit of small resistivity, the above equation becomes

α =
3ρη

τB2
α0 +

〈Ẽ · B̃〉
B2

(16)

where, without the second term, the α-effect diminishes either by small resistivity
(or slow dynamo) or by large mean field, B (back-reaction of mean field) [37].
In either case, however, the second term can survive [42] to function as a fast
dynamo. In fact, the dynamo effects described in the previous section operate in
the pinch plasmas with small resistivity in a strong magnetic field (although part
of it is supplied externally); thus they are not suppressed by the back-reaction of
the strong magnetic field. An important question to be discussed in the following
subsection is under what conditions the fast dynamo terms can survive to dominate
the dynamo effect in systems with small resistivity and/or large mean magnetic
field.

5.3. Stationary and homogeneous turbulence versus driven systems. First,
let us turn our attention to the classical case of statistically stationary and homo-
geneous turbulence [3]. In this special case, by definition, all statistical quantities
of the turbulence do not vary in time and space. Therefore, the second term of
Eq. (12), 〈∇P̃e · B̃〉 = ∇ · 〈P̃eB̃〉, vanishes. Since Ẽ = −∇φ̃ − ∂Ã/∂t, where φ is
the electrostatic potential and A is the vector potential2, the first term of Eq. (12)
becomes 〈Ẽ · B̃〉 = −〈∇φ̃ · B̃〉 − 〈∂(Ã/∂t) · B̃〉. Obviously, the electrostatic part,
−〈∇φ̃ · B̃〉 = −∇ · 〈φ̃B̃〉, vanishes. Using vector identities and B = ∇ ×A, the
electromagnetic part vanishesas well:

−
〈

∂Ã
∂t

· B̃
〉

= −1
2

(
∂〈Ã · B̃〉

∂t
+∇ ·

〈
Ã× ∂Ã

∂t

〉)
= 0. (17)

Therefore, in the case of stationary and homogeneous turbulence, the only surviv-
ing dynamo term in Eq. (12) is η〈̃j · B̃〉, which is likely slow, and consequently,
the α-effect is quenched in Eq. (16). This is exactly what was predicted theoreti-
cally [36, 37, 38, 39]. When periodic boundary conditions are imposed, MHD sim-
ulations [40, 44] can produce such turbulence, demonstrating slow and quenched
α-effects [45].

Stationarity and homogeneity of a turbulence implies that the system is in a
steady state and it has no preferential directions in space to evolve. This is not the
case for the pinch plasmas as we have seen so far. They are driven systems. In fact,
almost all astrophysical systems are also driven by various sources, as discussed
in Sec. 1. More importantly, the system is not always in a steady state or there

2Theoretically, gauge-invariant treatments of these potentials are often not so straightforward,
but experimentally both parts of the electric field can be measured unambiguously: a double
Langmuir probe, consisting of two small electrodes in contact with plasma, can detect −∇φ
along the direction linking two electrodes while a loop wire with a straight part exposed to
electromagnetic induction but with the rest shielded can detect −∂A/∂t along the direction of
the straightpart [43].
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always exist preferences in directions in space during the driven processes. Often,
when the system evolves very slowly so that quasi-stationarity can be assumed,
the homogeneity in space still cannot be assumed. The inhomogeneous nature of
the driving processes can be reflected in the boundary conditions [45]. In fact,
MHD simulations with open boundary conditions [46, 47] exhibit fast growth of
large scale magnetic field, on a time scale intermediate between the fast Alfven
wave transit time (or eddy turnover time) and the slow resistive diffusion time.

Since stationary and homogeneous turbulence produces only slow dynamos
subject to suppression by a strong magnetic field, a logical next question then is
under what conditions the turbulence can drive fast dynamos which can function
also in a strong magnetic field? In other words, what effects do the first two terms
of Eq. (12) have on the turbulence? Answering this question leads to the relation
of dynamo effects with magnetic helicity.

5.4. Magnetic helicity and dynamo effects. As discussed in Sec. 3, magnetic
helicity is relatively conserved compared to magnetic energy during relaxation
where dynamo effects play important roles. The dynamo effects conserve the total
magnetic helicity except for resistive effects and a small battery effect [48]. This
can be seen easily from its rate of change,

dK

dt
= −2

∫
E ·BdV −

∫
(2φB + A× ∂A

∂t
) · dS, (18)

where V is enclosed by the surface S. Using Eq. (7), the first term becomes∫
E ·BdV =

∫
ηj ·BdV +

∫ ∇Pe ·B
en

dV. (19)

The first term on the RHS is a resistive effect, which vanishes with zero resistivity.
The second term requires finite pressure gradient, especially electron temperature,
along the field line to change the total helicity. However, we note that such parallel
gradients are very small owing to fast electron flow along the field lines. Such
effects, often called the battery effect [1], provide only a seed for magnetic field
to grow in a dynamo process and, of course, it can be accompanied by small but
finite magnetic helicity. However, the change in K observed during a relaxation
event [15], as shown in Fig. 9, is larger than estimated changes by resistive and
battery effects.

There are two ways for (the fast) dynamo effects to conserve total magnetic
helicity: transport helicity across space [49, 50] (also see Eq. (4) which can be
written into a surface term) or convert it to a different (often larger) scale, the
so-called inverse cascading [41, 51]. Defining helicity in the mean field Km ≡∫

A·BdV and in the fluctuations Kt ≡
∫

Ã ·B̃dV , using Eqs. (10-12) and Eq. (18)
in some algebra including cancellations and rearrangements of terms yields [48]

dKm

dt
= −2

∫ (
ηj ·B + η〈̃j · B̃〉+

〈
∂Ã
∂t

· B̃
〉)

dV

−
∫ (

2φ̄B− 2
P eB
en

+ A× ∂A
∂t

+ 2〈φ̃B̃〉 − 2
〈P̃eB̃〉

en

)
· dS (20)

dKt

dt
= 2

∫ 〈
∂Ã
∂t

· B̃
〉

dV −
∫ 〈

Ã× ∂Ã
∂t

〉
· dS, (21)

where the last equation is identical to Eq. (17). The resistive slow dynamo term,
appearing as the second term of Eq. (20), changes the mean helicity also in the
resistive time scale. The electrostatic MHD dynamo and diamagnetic dynamo,
both appearing in the surface integral, transport the mean helicity across space
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while the inductive part of the MHD dynamo −〈(∂Ã/∂t) · B̃〉, appearing in the
volume integral in the both equations but with opposite signs, converts helicity
from the fluctuations to the mean field [48]. Other terms in the surface integral
represent various ways to inject or extract helicity from the volume [48]. For
instance, the third term in the surface integral of Eq. (20) indicates the helicity
injection by the transformer in RFP plasmas. Since measurements in RFP plasmas
indicate that the inductive electric field fluctuations are much smaller than their
electrostatic counterpart by at least one order of magnitude, the fast dynamo
effects observed in the pinch plasmas are accompanied by a helicity flow, which is
disallowed in the stationary and homogeneous turbulence.

The flow of magnetic helicity due to the fast dynamo effects have been directly
measured in RFP plasmas. For magnetic helicity to be physically meaningful, a
gauge-invariant definition [52] needs to be used for the double-connected toroidal
plasmas bounded by a conducting shell as illustrated in Fig. 2: Ktor ≡

∫
A·BdV −

Φφ(a)Φθ(a) where Φφ(a) is the total toroidal flux and Φθ(a) is the poloidal flux
threading the central hole of the toroidal plasma. Therefore, the rate of change
for Ktor is given by

dKtor

dt
= −2

∫
E ·BdV + 2Φφ(a)Vφ(a), (22)

where Vφ(a) is the toroidal loop voltage at the plasma surface r = a. The plasma
can be divided into two parts: a core part at 0 ≤ r ≤ b and an edge part at
b ≤ r ≤ a. Then the total helicity is the sum of three parts: core helicity, Kcore,
edge helicity, Kedge, and the single linkage between edge poloidal fluxand core
toroidal flux, Klink. The balance equation for Kedge and Klink can be written
as [15]

dKedge

dt
+

dKlink

dt
= −2

∫ a

b

ηj ·BdV + 2Φφ(a)Vφ(a)− 2Φφ(b)Vφ(b) +

+2
∫
〈φ̃B̃r〉dSb, (23)

where Sb is the surface area at r = b and Vφ(b) is the toroidal loop voltage at
r = b. The last term represents helicity transport across r = b by correlation
between fluctuations in electrostatic potential φ̃ and radial field B̃r associated
with the MHD dynamo effect. (The helicity flux due to diamagnetic dynamo was
small in this case.)

The helicity flux has been measured directly for the same plasma shown in
Fig. 11 at r = b ≡ a − 5cm. All other five terms in Eq. (23) were determined
independently. As shown in Fig. 15, the measured outward helicity flux due to
MHD dynamo can exactly account for helicity change in Kedge and Klink, demon-
strating the existence of a helicity flux associated with fast dynamos observed in

0.05

0.04

0.03

0.02

0.01

0

-0.01
-1.0 -0.5 0.0 0.5 1.0 1.5

H
e
li
c
it
y

fl
u
x

(V
T

)

t (ms)

Fig. 15. Time evolution of
measured helicity flux (thin
line) due to MHDdynamo ef-
fects compared to the predic-
tion (thick line) from the helic-
ity balance during a relaxation
event [15].
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RFP plasmas. We note that the quasi-steady state of the plasma is maintained by
an inward helicity injection by the transformer via the third term of the surface
integral of Eq. (20).

The requirement of helicity flow in a driven system for fast dynamos which
are not suppressed by a strong magnetic field has important implications to the
physics of astrophysical dynamos [53, 54]. A good example under debate is the
solar dynamo, which is driven by a combination of thermal gradient and rotation.
It has been found that there is a preference in the sign of the observed twisted
field lines (hence the helicity) in each hemisphere [55, 56] and consequently in
the solar wind [57]. This helicity preference may well be a result of helicity flow
accompanied with the solar dynamo, which must be fast to explain the observed 11
year solar cycle. If the electrostatic MHD dynamo is operational like in laboratory
plasmas, there are two possible explanations. The first possibility [48] is that the
fast dynamo actions transport or separate the large-scale helicity of one sign to one
hemisphere while leaving the opposite helicity in the other hemisphere. Then they
rise to the solar surface via buoyancy. The second possibility [53] is that the fast
dynamo produces a helicity flow from the convection zone to the surface to drive
the corona. The sign of the helicity is different at each hemisphere due to opposite
signs of the α effect. Both mechanisms conserve the total helicity. These large-
scale structures and its associated helicity are constantly removed from the solar
surface by flaring. Both mechanisms can also replace the lost helicity continuously.

6. Conclusions. The physics of the α effects measured in the pinch plas-
mas has been reviewed, largely based on simple, intuitive approaches. It has
been demonstrated that the observed dynamo effects are part of magnetic self-
organization processes, either continuous or discrete in time. MHD dynamo and
diamagnetic dynamo have been successfully measured and there is supporting evi-
dence on Hall dynamo and kinetic dynamo. The close relationship with the concept
of magnetic helicity has been studied, and it has been directly measured that the
dynamo activity is accompanied by an outward helicity flow. Implications of these
measurements and understanding have been discussed in the context of astrophys-
ical dynamos. Despite important differences in the form of the driving free energy,
dynamos in laboratory plasmas exhibit remarkable similarities with the required
astrophysical dynamos: they are fast (operational at small resistivity) and opera-
tional in a large mean field. It has been shown that these desired features cannot
exist in the traditionally assumed stationary and homogeneous turbulence. In fact,
both the laboratory plasmas and astrophysical dynamos are driven systems which
invalidate the stationarity and/or homogeneity assumption on the generated tur-
bulence, thus allowing fast dynamos to function in a strong magnetic field. Despite
several caveats, the availability of laboratory plasmas provides a unique and useful
testbed to enhance understanding of astrophysical problems, such as dynamo.
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