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From: Y. Raitses, et al., Phys. Plasmas 12, 073507 (2005).



Fluid theory: Wall losses strongly increase 
due to secondary electron emissiondue to secondary electron emission.
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If γ →1: The walls act as an effective energy 
sink and limit Te to  18eV, where γ (Te)=1.



Kinetic studies show two major factors 
i t d b fl id th imisrepresented by fluid theories 

Channel wall 1. Secondary electrons emitted from 
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SEEsheath
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collective effects

Channel wall
=> SEE fluxes from opposite walls 

totally compensate each other.
E. Ahedo and F.I. Parra,  Phys. Plasmas 12, 

2. Flux to the wall of plasma electrons with energy large 

073503, (2005).
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compared to the wall potential is a factor of ten smaller than 
predicted by fluid theory due to strong depletion of EVDF.



Because the cold SEE fluxes from opposite walls 
compensate each other the plasma SEE coefficient >1compensate each other, the plasma SEE coefficient >1.

Results of PIC simulations for H = 2.5 cm, νt = 5.6 Channel wall

106 s-1, Ez = 140 V/m, and B = 100 Gauss. 

A. Khrabrov, et al, IEPC paper 91 (2009).
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SEE coefficients: 
γp ≡Γ2p / Γ1p - SEE due to plasma electrons >1.
γb ≡Γ2b / Γ1b - SEE due to beam electrons <1.
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No space charge limited regime!



3D view of the EVDF
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6D. Sydorenko et al, Phys. Plasmas, 13, 014501 (2006).From:



Depletion of fast electrons due to wall 
l i H ll th t h llosses in a Hall thruster channel
Ez=200 V/cm,  Bx=100G

Tex=12eV, Φw =19.4eV ! Not 5Te

Bulk electrons with SEE
B lk l t ith SEEBulk electrons with no SEE
Maxwellian EVDF, Tex=12eV Tz = 
36.7 eV

λec >> H, ⇒
EVDF is depleted in the B- field 
direction > Φ !direction,  wx >eΦw !

EVDF is not depleted in the E-
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field direction, w >eΦw !



Plasma is not always in 
steady state: exhibits20
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Te = 40 eV,  Mi = 131 amu: general 
dependencies vs timedependencies vs time
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On (c), (d), (e): red lines – right wall, black lines – left wall.



Te = 40 eV,  Mi = 131 amu: general 
dependencies with the fine time scaledependencies with the fine time scale
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Te = 40 eV,  Mi = 131 amu: evolution of the 
phase planesphase planes
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Electrons in the 
plasma bulk



Details of Relaxation 
Oscillations 1.01
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Space charge limited regime does not establish 
due to strong modifications of EVDFdue to strong modifications of EVDF

Temporal evolution of EVDFs 
(a,d) in the SCL stage EVDF (arb.un.)
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(c,f) in the end of the non-SCL 
stage.
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Relaxation Oscillations are triggered 
b h th i t bilit d t hi h SEEby sheath instability due to high SEE.
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during the SCL stage (the weakly confined 
electrons). Region B corresponds to the 
range of perturbations of the plasma 
potential in the system. 
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Conclusions

Because cold SEE fluxes from opposite walls compensate each other, 
h l h h h d h li i d (SCL)the plasma sheath never reaches a steady space charge limited (SCL) 

state
even though the plasma SEE coefficient >1. 

The plasma-sheath system can perform relaxation oscillations related 
with the negative differential resistance of the sheath. 

Th ill ti l t t ith th l t ti l d E ti l tThe oscillation cycle starts with the plasma potential drop. Energetic electrons 
leave the plasma and due to their high SEE yield, the sheath enters the SCL 
regime. When an intense flux of cold electrons from the opposite wall arrives, 
the SCL sheath regime quenches. Trapped cold SEE electrons are heated until 
the c rrent oltage characteristics of the sheath acq ires a negati e cond cti itthe current-voltage characteristics of the sheath acquires a negative conductivity 
branch and the sheath becomes unstable again. 

The oscillatory relaxation process crucially depends on the intense
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The oscillatory relaxation process crucially depends on the intense 
anisotropic heating of electrons.
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Jumps in HT plasma parameters as a 
function of the width of the gap Hfunction of the width of the gap, H.

Plasma potential Φp in the midplane x=H/2

Final beam cyclotron rotation phase φ=ωcτ. Cross-hatched 
phase areas are forbidden.phase areas are forbidden.

Final secondary electron beam energy

Total emission coefficient

Frequency of electron-wall scattering 
ν=2Γ1/<n>H

Axial electron flow velocity averaged 
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y g
over the plasma gap

Electron temperature (Tz=red, Tx=green)



Effects of sheath instability on plasma 
properties in a Hall thr sterproperties in a Hall thruster
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When SEE is strong, the contribution of secondary electrons emitted at one wall to the 
primary electron flux to the opposite wall may be dominant. In this case, the sheath 
conductivity may become negative and the plasma potential, correspondingly, unstable 
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due to a strong dependence of the beam energy on the plasma potential implemented via 
the time of electron flight between the walls.

From:From: D. Sydorenko, et al, Physics of Plasmas 15, 053506 (2008).


