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Simulation of Electron Kinetics in Gas Discharges
Vladimir I. Kolobov, Senior Member, IEEE, and Robert R. Arslanbekov

Abstract—We review the state-of-the-art for the simulation of
electron kinetics in gas discharges based on the numerical solution
of the Boltzmann equation. The reduction of the six-dimensional
Boltzmann equation to a four-dimensional Fokker–Planck equa-
tion using two-term spherical harmonics expansion enables effi-
cient and accurate simulation of the electron distribution function
in collisional gas discharge plasmas. We illustrate this approach
in application to inductively coupled plasmas, capacitively coupled
plasmas, and direct current glow discharges. The incorporation of
the magnetic field effect into this model is outlined. We also de-
scribe recent efforts towards simulating collisionless effect in gas
discharge plasma based on Vlasov solvers and outline our views on
future development of the numerical models for gas discharge sim-
ulations.

Index Terms—Boltzmann, capacitively coupled plasma, electron
kinetics, Fokker–Planck equation, inductively coupled plasma,
positive column, striations, Vlasov equations.

I. INTRODUCTION

GAS DISCHARGES represent an extremely nonequilib-
rium system where electron mean energy (temperature)

exceeds gas temperature by two orders of magnitude. The elec-
tron distribution function (EDF) is formed as a result of elec-
tron heating by electromagnetic fields and collisions with neu-
tral atoms, it deviates from an equilibrium (Maxwellian) distri-
bution in most cases. Solution of the Boltzmann kinetic equa-
tion for electrons becomes crucial for accurate simulation of the
plasma since many phenomena cannot be properly understood
without kinetic analysis [1], [2]. Fortunately, substantial simpli-
fication of the electron Boltzmann equation is possible due to
a large disparity of electron and atom masses. Due to this mass
disparity, the electron energy relaxation in elastic collisions with
atoms occurs much slower than momentum relaxation. As a re-
sult, the EDF is weakly anisotropic in velocity space and can be
presented as a sum of a large isotropic part and a small addi-
tion .

Furthermore, three different cases can be distinguished. In the
case of large and small (where is the gas pressure,
is the characteristic scale of the plasma, and is the electric
field), the spatial gradients are small and both and are de-
termined by local values of the electric field, electron density,
and plasma composition. The electrons can be described by con-
tinuum (fluid) equations with transport coefficients derived from
the local (non-Maxwellian) EDF. A typical example of such
plasmas is dielectric barrier discharges (DBD) and other atmo-
spheric pressure plasma sources described in a recent review [3].
The local Boltzmann solvers are being used more frequently to
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obtain electron transport coefficients and reaction rates for fluid
models [4], [5].

The second case corresponds to a collisional plasma where
is much larger than electron mean free path but is comparable
to electron energy relaxation length . The latter can exceed

by orders of magnitude due to small ratio of the electron to
atom masses. In this nonlocal regime, the isotropic part of the
EDF, , at a given point depends not only on the electric fields
at this point but also on plasma properties in the vicinity of the
point of the size (a memory effect). The anisotropic part
is a local function of the field (local electrodynamics). In this
collision-dominated regime, the plasma cannot be described by
hydrodynamics, and a number of interesting phenomena caused
by nonlocal electron kinetics take place [6]. The most typical
example is ionization waves (striations) in the positive column
of direct current (dc) glow discharges important for fluorescent
lamps and gas lasers.

With further decrease of , the electron mean free path be-
comes comparable or larger than the characteristic size of the
plasma. In this nearly collisionless regime, the anisotropic part

at a point is determined not only by the local value of the elec-
tric field at this point, but also by the profile of the electric field
in the vicinity of the point of size along the electron trajectory.
As a result, the local relationship between the current density
and the electric field (Ohm’s law) becomes invalid. This is the
area where gas discharge physics meets fusion plasma physics
which is traditionally focused on collisionless phenomena and
hot plasma effects [7]. Plasma reactors used for modern semi-
conductor manufacturing frequently operate in this regime [8].

The importance of electron kinetics in gas discharges has
been recognized and emphasized in a number of review pa-
pers [9], [10]. Over the last decade, considerable progress has
been achieved in simulations of electron kinetics and self-con-
sistent modeling of gas discharges [11]–[13]. In this paper, we
review recent progress in the numerical solution of the elec-
tron Boltzmann equation and outline future directions for scien-
tific research and development of software tools for computer
aided engineering of plasma devices and processes. We focus
our attention on deterministic methods of solving the Boltzmann
equation, and only briefly mention statistical particle simulation
methods reviewed in [14] and [15].

II. BASIC EQUATIONS

A. Boltzmann Equation and Its Derivatives

The Boltzmann transport equation (BTE) describes the evo-
lution of a particle distribution function in a six-di-
mensional (6-D) phase space [16]

(1)

0093-3813/$20.00 © 2006 IEEE



896 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006

Here, is a position vector in physical space, is the velocity
vector, is the acceleration vector, and is time. The right-hand
side of (1) contains an integral operator in velocity space de-
scribing binary collisions among particles. Integrating
over velocity space gives particle density, .

For weakly ionized plasmas, electron collisions with neutrals
usually dominate over collisions among charged particles. Due
to disparity of electron/atom mass , the Boltzmann
collision integral for elastic collisions of electrons with heavy
neutrals can be written in the so-called Lorentz-gas form [17],
[18]

(2)

where is the velocity angle on a unit sphere in velocity
space , and is the collision cross section, and is
the gas density. The flux is given by

where is the gas temperature, is the transport collision fre-
quency, and is the average fraction of the energy
lost by the electrons in one elastic collision. The first term in (2)
is small and describes energy exchange between electrons and
neutrals. The second, leading term in (2) describes collisions
with infinitely heavy particles which tend to isotropize the elec-
tron distribution but do not change their energy. Thus, due to
mass disparity, electron momentum relaxation in elastic colli-
sions occurs much faster than energy relaxation, and the EDF
averaged over velocity angles evolves on a time scale

, much slower than evolving the complete distribution.
Inelastic processes do not change this picture if characteristic
energy of electrons is small compared to inelastic threshold [19].

For collisional plasmas, a two-term spherical harmonics ex-
pansion (SHE) of the EDF in velocity space is commonly used
[20], [21]

(3)

This approximation results in two coupled equations for and
(sometimes called Davydov–Allis system):

(4)

(5)

Here, and are the unsigned charge of an electron and
electron mass, is electric field vector, is the collision
integral involving energy exchange in elastic and inelastic elec-
tron–atom collisions and electron–electron interactions. It is
seen from (5) that the two-term approximation results in Ohm’s
law because depends on local value of the electric field. The

accuracy of the two-term SHE for electron swarms and plasmas
is discussed in [22]. Even in situations where its applicability is
not obvious, the two-term SHE gives unexpectedly good results
[23].

For many cases, (5) can be resolved for and substituted into
(4). Dividing the electric field into a potential and vortex compo-
nents, , where is the electric potential and

is the vector magnetic potential, and using the Volt-equiva-
lent of the kinetic energy as the independent vari-
able, one obtains a single closed equation for the electron energy
probability function (EEPF) in the form

(6)

Different terms in (6) describe, correspondingly, the diffusion
in physical space (second term), with a diffusion coefficient

, the electron drift and heating (cooling) due to
the electrostatic field (third term); quasi-elastic processes (third
term) represented by the convection and diffusion along the en-
ergy axis with a convection velocity and a diffusion coeffi-
cient in energy . The quasi-elastic processes include elastic
collisions of electrons with neutrals, excitation of molecular vi-
brations, Coulomb interactions among electrons and ions, and
electron heating by electromagnetic fields. Strongly inelastic
collisions (excitation, ionization, attachment, etc.) are described
by the right-hand side of (6). Specific expressions for and
can be found, for instance, in [24].

The Fokker–Planck equation (FPE) (6) appears as an inter-
mediate step between the BTE (1) and continuum models for
the time scales exceeding collision time and for spatial scales
exceeding the mean free path . Numerical methods of solving
FPE in the form (6) were developed in [25] and [26].

It is often convenient to use total energy
as the independent variable instead of kinetic energy . In this
case, the FPE (6) can be written in the form [27], [28]

(7)

where , .
It is seen that using total energy eliminates complicated cross-
derivative terms in (6). The price for this simplification is more
complex boundary conditions for (7) which have to be specified
at curved boundaries in the space (see Fig. 1). One of the
boundaries corresponds to zero kinetic energy and is defined
by the equation . At this boundary, zero flux of
particles is usually assumed. The boundary condition at
corresponds to . The commonly used boundary condition
in physical space at absorbing boundaries is of the form

(8)
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Fig. 1. Example of computational domain and boundary conditions for (7).
Arrows show a typical trajectory of an electron emitted from the boundary at
x = 0. Inelastic collisions correspond to a jump along the energy axis at a
given point in space.

where is the loss cone, and is the
potential value at a distance from the boundary. The boundary
condition at electron-emitting boundaries is

where function is determined by the near-electrode pro-
cesses (see, for instance, [29]).

In our simulations, we used a uniform mesh along the axis
and arbitrary mesh in physical space. It is possible to mesh only
the band and use a nonuniform
grid in as in [30]. This could save computer memory for prob-
lems where potential variation is large compared to the typical
kinetic energy of electrons, such as the positive column of a dc
discharge in a long tube.

B. Self-Consistent Discharge Simulation

For self-consistent plasma simulations, the transport and
chemistry of charged and neutral particles have to be calculated
in a coupled manner with electromagnetic fields. Often, it is
possible to enforce quasi-neutrality by assuming zero electron
current in the plasma. From (6), this condition gives the electric
field in the current-free plasma [25]

(9)

An alternative approach for calculation of the electric field is
to use charge conservation [31] or solve the Poisson equation
[32]. Details of our implementation of a hybrid plasma solver
can be found in [33]. Below, we give only a brief outline of the
important features.

The electrostatic potential for transient simulations has been
obtained from the following equation (see [34] and the refer-
ences therein):

(10)

where is the electrical permittivity of the medium, and
are the electron mobility and diffusion coefficients, and
are the electron and ion densities, is the sign of -ion charge,
and is the time step of transient simulations. Equation (10)
is solved in the entire domain, including plasmas, dielectrics,
and conductors. The surface charges on dielectric surfaces are
calculated from fluxes of ions and electrons to the surface. For

, (10) is reduced to the Poisson equation, for
, it expresses the conservation of electron current,

. Employing (10) for calculation of the electrostatic potential
allows using time steps much larger than the time steps dictated
by CFL criteria, .

For calculation of electron density in (10), the electron bal-
ance equation is solved together with the kinetic equation (7),
using the electron production rate and electron flux provided by
the kinetic module. The electron number density calculated this
way is also used in Maxwell equations for calculations of the
vector magnetic potential .

The ion density has been found by solving continuum equa-
tions with either a drift-diffusion approximation for the ion flux
or by solving a momentum equation for the ion drift velocity.
Usually, the ion velocity distribution is strongly anisotropic and
the ion drift velocity exceeds the thermal ion velocity. Ion tem-
perature is assumed to be equal to gas temperature in our calcu-
lations.

Different FPE approaches to simulate electron transport in
plasmas are compared in [35]. Details of our numerical FPE
solution can be found in [36] and [37].

C. Including Magnetic Field and Electron Inertia

When a static magnetic field is included in the two-term SHE
approximation, (5) becomes

(11)

where is the electron cyclotron frequency vector.
An implicit two-dimensional (2-D) solver for (4) and (11) with
account of self-consistent magnetic field and electron inertia
was developed in [38]. A similar approach was used in [39] for
studies of spatial relaxation of electrons and in [40] for simu-
lation of magnetron discharges. Electron kinetics in radio-fre-
quency (RF) electric and magnetic fields was discussed in [41].

D. Solution of the Vlasov Equation

In the absence of collisions, (1) is called the Vlasov equa-
tion. Vlasov solvers have been used for studies of collisionless
plasmas as an alternative to particle-in-cell (PIC) methods. Re-
cently, these solvers have been also applied to simulation of gas
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Fig. 2. Calculated electron temperature (left) and electrostatic potential (right)
for 10 mtorr, 6.8 MHz, 100 W. (Color version available online at http://ieeex-
plore.ieee.org.)

discharge plasmas. A recent review of Eulerian Vlasov solvers
can be found in [42].

III. SIMULATION OF COLLISIONAL PLASMAS

A. Inductively Coupled Plasmas

Among different plasma sources, inductively coupled plasma
(ICP) is probably the simplest for the numerical solution. Due
to the small thickness of the space charge sheaths at plasma
boundaries, a good solution can be obtained using quasi-neutral
approximation (9) for calculation of the electrostatic potential in
the plasma. As a next step, the sheath structure can be resolved
using nonuniform mesh near the boundaries. For typical driving
frequency of 13.56 MHz, there is no need to resolve the RF
period since all the plasma parameters vary slightly during the
RF period.

We will demonstrate typical results of 2-D self-consistent
simulations of ICP for the experimental system studied in detail
by Godyak’s group over the last several years (see [43], [44],
and the references therein). The experimental setup and elec-
trical characteristics of this system are described in [43]. The
plasma is created in a cylindrical chamber of radius cm
and length cm driven by a planar five-turn coil sep-
arated from the dielectric window by the Faraday shield. With
good accuracy, the system is axially symmetric and 2-D simu-
lations are sufficient. Experimental data for this system is avail-
able [44] for a wide range of operating conditions (pressure
0.3–100 mtorr, power absorbed in plasma 12–200 W, driving
frequency 0.45–13.56 MHz). Fig. 2 shows the calculated spa-
tial distributions of electron temperature (left) and electrostatic
potential (right) for 10 mtorr, 6.8 MHz, 100 W. It is worth noting
the minimum of electron temperature in the center of the reactor,
which cannot be explained by fluid models.

The model included four plasma species: Ar (ground
state), and (two metastable states with energies

and , correspondingly), radia-
tion transitions from to states, direct, stepwise and
Penning ionization, according to [45]. The ion inertia effect
was shown to play an important role for gas pressure below 10
mtorr. The electrostatic potential was found by solving (10)

using spatially nonuniform mesh to resolve the sheath structure
near the boundaries. The surface charge on dielectrics was
found from the local balance of electron and ion fluxes. The
boundary condition for the electron energy probability function
(EEPF) at the walls was defined according to (8).

The measured and calculated EEPFs [46] are shown in Fig. 3
as functions of total electron energy in different points along
the discharge axis at radius cm where the induced electric
field reaches maximal value. It is seen that the body of the EEPF
depends solely on total electron energy, and the EEPF tail is en-
hanced by hot electrons near the coil due to electron heating, in
accordance with the experiments. Similar results were obtained
for a different system in a series of publications by Kortshagen
et al. (see [47]–[49] and the references therein) using a similar
computational approach, and for the same system by Vasenkov
and Kushner [45] using Monte Carlo simulations of electrons.
It should be noted the EEPF deviates from the Maxwellian even
for highest plasma densities obtained in this system. The elec-
tron induced reaction rates are very sensitive to the “tail” of the
EEPF and assumption of a Maxwellian EEPF can result in large
errors in calculation of electron induced reaction rates.

The calculated axial distributions of electron temperature
and plasma potential are compared in Fig. 4 with the experi-
mental data [44]. The electron temperature is defined as

, where denotes the mean kinetic energy.
Gas heating affects plasma parameters in ICP even for mod-

erate input powers [50], [51]. Spatially nonuniform gas heating
occurs due to ion and electron collisions with neutrals in the bulk
plasma and heat release at surfaces due to ion bombardment and
surface reactions. Fig. 5 shows the calculated gas temperature in
the center of the reactor as a function of the power absorbed in
plasma for different gas pressures [46].

With the decrease of driving frequency, oscillations of plasma
parameters during RF period become noticeable. The origin of
these oscillations can be easily understood by assuming that the
induced electric field in ICP has a single time-harmonic compo-
nent with angular frequency . Then, the part of the diffusion
coefficient in energy in (7) caused by electron heating
has the form [52]

(12)

where , and is
the amplitude of the inductive RF electric field. The time varia-
tion of the diffusion coefficient is the primary reason for oscilla-
tions of the electron temperature, trapping potential, and the ex-
citation/ionization rates. Fig. 6 shows an example of time modu-
lation of electron temperature for the ICP reactor [43] in Argon,
at gas pressure , RF frequency 450 kHz in three
different points , 5, and 1 cm along the discharge axis
from the coil location. It is seen that oscillations occur at the
second harmonic of the driving frequency, and there is a phase
shift between the oscillations at different points. The modulation
of EEPF occurs mainly in the tail and is more pronounced near
the coil where electron heating takes place. The knowledge of
the EEPF could be useful for the optical emission spectroscopy
of discharges [53], [54].
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Fig. 3. EEPFs at different points along the discharge axis at radial position
r = 4 cm (after [46]). (a) Measured. (b) Calculated. (Color version available
online at http://ieeexplore.ieee.org.)

Finally, in this section, we present an example of pulsed
power simulations for the same reactor in Argon gas, at 10
mtorr, 6.8 MHz, for a pulse-modulated coil current of 50–400
A. The pulse duration varied in the range 30 and 50 , the
repetition rate is 100 . Fig. 7 shows the time variation of

Fig. 4. Experimental (points) and simulated (lines) electron temperature and
plasma potential along the discharge axis at r = 4 cm.

Fig. 5. Calculated gas temperature in the center of plasma as a function of
absorbed power for different gas pressures. (Color version available online at
http://ieeexplore.ieee.org.)

Fig. 6. Time variation of the electron temperature at three locations along the
discharge axis at r = 4 cm.

the electron temperature, metastable density, and electron
density in the center of the discharge chamber. Fig. 8 shows
the time variation of the EEPF and the wall potential (vertical
lines). It is seen that a sharp increase of the electron temper-
ature at the beginning of the active phase results in excessive
production of metastable atoms during this phase. The electron
production during this time is mainly due to Penning ionization

In the afterglow, the EEPF body is Maxwellian and is depleted
at energies higher than the wall potential (see Fig. 8). A pro-
nounced peak at 12 eV is formed due to rapid electron pro-
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Fig. 7. Time variation of electron temperature, electron density (solid line), and
metastable density (dashed line) in pulsed ICP.

Fig. 8. Time variation of the EEPF and the wall potential (vertical lines) in
pulsed ICP. Times are shown relative to the beginning of the pulse.

duction in collisions of slow electrons with metastable atoms.
Such a behavior is typically observed in experiments for similar
ICP systems [55], [56]. The presence of energetic electrons can
dramatically effect the potential distribution and the wall poten-
tial in the low-pressure afterglow plasma [57].

B. CCP

Anatomy of capacitively coupled plasma (CCP) is described
in detail in [58] and [59]. The mechanism of electron heating in
CCP in weakly collisional regimes remains a subject of active
research [60]. Among other research topics are electron inertia
effects at ultra-high frequencies [61], [62] and standing wave
effects in large area CCP sources [63], [64] important for prac-
tical applications.

For simulations of CCP, we use total energy with instan-
taneous potential (TEIP) formulation. In this formulation,
electron heating in RF sheaths occurs due to interactions with
moving boundaries, defined by the equation .

Fig. 9. Electron heating by the RF sheath. Term with @�=@t in (7) is turned
off.

Figs. 9 and 10 illustrate the mechanism of electron heating by
the electrostatic potential in the form

(13)

where . A Maxwellian EEPF is assumed
at , the boundary condition of the type (8) is assumed at

. The collision cross sections for Argon are used and the
ionization is turned off. Figs. 9 and 10 show results of simula-
tion for , cm, cm, frequency 10
MHz, gas pressure for two different cases. For
the first case, the term with in (7) was turned off, for the
second case this term was included in the simulation. The com-
parison of these figures shows that the transient term in (7) plays
an important role in the heating process and the formation of the
EEPF. This term describes the “drift” of electrons along total en-
ergy by virtue of time varying potential. In other words, due to
time variation of potential energy, electrons are being “pushed”
up or down along the total-energy axis depending on the sign
of at a given point. This term simply compensates
the shift of the energy reference point. Indeed, if we shift by
some value , the particle’s positions and velocities remain un-
changed. Also the EEPF has to be the same, in the phase space

, shifted in new variables by . The term with
in the kinetic equation simply compensates for this shift of the
phase space. In general, the neglect of this term gives an error
since the kinetic equation in the total energy domain is alge-
braically wrong without this term.

The importance of spatial gradients in the kinetic equation is
illustrated in Figs. 11–14. These figures compare the results of
simulations using the local Boltzmann equation with the solu-
tion of the nonlocal equation (7) for a one-dimensional (1-D)
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Fig. 10. Electron heating by the RF sheath. Term with @�=@t in (7) is turned
on.

Fig. 11. Electron density distribution for CCP at 100 mtorr calculated using
nonlocal model (solid line) and local model (dashed line).

Fig. 12. Electron temperature distribution for CCP at 100 mtorr calculated
using nonlocal model (solid line) and local model (dashed line).

13.56-MHz CCP discharge at pressures of 100 and 400 mtorr.

The model reproduces the results of PIC simulations for
simple benchmark cases and for more complicated hydro-
carbon plasma simulations (see [37]). It could be applied to

Fig. 13. Electron density distribution for CCP at 400 mtorr calculated using
nonlocal model (solid line) and local model (dashed line).

Fig. 14. Electron temperature distribution for CCP at 400 mtorr calculated
using nonlocal model (solid line) and local model (dashed line).

multidimensional simulations of industrial multi-frequency
CCP reactors used in modern semiconductor manufacturing.

C. Positive Column

Positive column of dc discharges is a classical object of
gas discharge physics [65] having important applications for
light sources [66] and gas lasers. Kinetic models based on
Monte Carlo simulations and solutions of Boltzmann equation
for electrons have been frequently used in studies of positive
column (see, for instance, [67]–[72] and the references therein).
Below, we illustrate some results of recent simulations of
positive column of rare gases performed for a wide range of
discharge parameters (gas pressures 0.1–100 torr, and currents

) [73].
For simulation of positive column of dc discharges, the radial

electrostatic potential can be included in the total energy and
the axial electric field regarded as an electron heating source
described by the diffusion coefficient in energy

(14)

Using a self-consistent model of plasma including nonlocal
Boltzmann solver and Poisson solver, we have simulated the
positive column plasma for a wide range of pressures (0.1–100
torr) and currents (mA-0.1 A) in Ar and He gases. The axial
electric field was found self-consistently for a given dis-
charge current . Fig. 15(a) shows the dependence of on
discharge current and power in Argon for torr cm.
Fig. 15(b) shows results of similar calculations for Neon [9]
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Fig. 15. (a) Axial electric field E in argon PC as function of discharge cur-
rent and absorbed power for pR = 100 torr cm. (b) Same for neon at pR =

96 torr cm [9]. Curve 1 with account for gas heating and neglect of Coulomb
collisions. Curve 2 with neglect of gas heating. Curve 3 with account for both
factors.

using different physical models. The observed hysteresis is due
to current constriction described below.

An interesting phenomenon was discovered in these simu-
lations at moderate pressures in Argon. The model included
six plasma species [74]: Ar (ground state), and (two
metastable states with energies and

, correspondingly), (resonance state), and
(atomic and molecular ions). The chemistry mechanism similar
to [75] consisted of 21 reactions including conversion of atomic
to molecular ions, various electron-induced excitation and ion-
ization steps, radiation transitions from to states (rate
constant ) and from to Ar. Radiation trap-
ping was calculated according to [76], with accounts for both
Doppler and collisional line broadening. At pressures in the
range of torr and low discharge currents of the
order of 1 mA, nonmonotonic radial distributions of excitation
rates and metastable density profiles have been observed [77].
This surprising effect, first observed in the numerical simula-
tions (see Fig. 16), later found a theoretical interpretation in [78]
based on specifics of nonlocal electron kinetics.

At high pressures, the current constriction towards the dis-
charge axis was observed in simulations with an increasing dis-

Fig. 16. Radial distribution of electron density in positive column of radius
R = 1 cm for discharge current I = 1 mA.

Fig. 17. Radial distribution of charged particle densities and gas temperature
in the constricted positive column of radius R = 1 cm for discharge current
I = 25 mA.

charge current (see Fig. 15). The current constriction takes place
at about 10-mA discharge current and is accompanied by the for-
mation of a narrow current channel near the axis (see Fig. 17).
The width of the channel is determined by the volume recombi-
nation [79]. When this width becomes comparable to the energy
relaxation length, nonlocal effects become important, as illus-
trated in Fig. 18.

As discussed in detail in [9] and [80], gas heating plays an im-
portant but not decisive role during PC constriction in rare gases,
except Helium. The main effect is caused by the non-linear de-
pendence of atomic excitation rate on electron density caused
by the Maxwellization of the EEPF due to Coulomb interactions
among electrons (see later). In Helium, the constriction occurs
in the form of an “optical constriction,” i.e., localization of exci-
tation rates towards the axis (see [9] for more details). Fig. 15(b)
illustrates the effects of different factors on the current-voltage
characteristics of PC in Neon.

D. Striations

Standing and/or moving striations in the positive column of
dc discharges have been studied for over a century. Striations
were observed in a wide range of pressures torr



KOLOBOV AND ARSLANBEKOV: SIMULATION OF ELECTRON KINETICS IN GAS DISCHARGES 903

Fig. 18. Radial distributions of electron temperature and electrostatic potential
in the constricted positive column for discharge current I = 25mA: solid lines
show results of the nonlocal model and the dashed lines those of the local model.

and currents in almost all gases. Standing stria-
tions are seen by the naked eye in molecular gases ( , , and
mixtures of molecular and rare gases). Moving striations (in rare
gases) are more difficult to observe due to their high velocity
(10–1000 m/s) and frequency (1–1000 kHz). Dispersion char-
acteristics of striations are rather interesting and different for
different types of striations. The phase velocity is usually
directed from anode to cathode, the group velocity can
be either directed towards the cathode (direct waves) or towards
the anode (reverse waves). Several types of striations have been
identified in rare gases depending on gas pressure and discharge
currents. Latest reviews can be found in [9], [10], and [81].

Moving striations have been obtained in computer simula-
tions in Argon at low gas pressure and high discharge current
[82] (near the so-called Pupp limit). The procedure of simula-
tion was the following. First, a spatially homogeneous kinetic
equation for EEPF (7) was solved with account of Coulomb col-
lisions for a range of and and look up tables (LUT) were
created for the transport coefficients and ionization rates as func-
tions of mean kinetic energy and electron density . The
EEPF Maxwellization due to Coulomb collisions among elec-
trons results in a strong dependence of inelastic collision rates
on electron density (Fig. 19). This effect is most pronounced
for the elastic energy balance of electrons (low ). Fig. 20
shows an example of LUT for the electron temperature

as a function of reduced electric field and electron
density.

Having obtained the LUTs, continuum equations for elec-
tron density and mean kinetic energy were solved together with
the Poisson equation using the electron transport coefficients
and reaction rates from the LUTs. The boundary conditions for
electrons at the cathode were defined taking into account either
thermal or secondary emission. An external resistance–capaci-
tance ( ) circuit was also used similar to [83]. The ion trans-
port was calculated using a fluid model with drift-diffusion ap-
proximation for the ion flux.

In such a way, moving striations have been obtained in simu-
lations for 1-D and 2-D settings. The computations reproduced
all the main features of striations in Argon PC observed at low
pressures and high currents (near the Pupp limit). The compu-
tational model could simulate nonlinear waves, near-electrode

Fig. 19. Rate of inelastic collisions as a function of electric field and electron
density.

Fig. 20. Electron temperature as a function of electric field and electron den-
sity.

phenomena, and external circuit effects on the striation be-
havior.

Fig. 21 shows an example of 2-D simulations for Argon pres-
sure 2 torr, the discharge current 100 mA, cylindrical tube of
length cm and radius cm, planar cathode on the
left and a planar anode on the right . The tube
wall (at ) is assumed to be dielectric; its (local) potential
is calculated by time integrating fluxes of electrons and ions to
the wall surface. The simulation runs about 30 h on a 1-GHz
desktop computer.

It is seen in Fig. 21 that the electron temperature is shifted
towards the cathode with respect to electron density. This shift
is responsible for the shift of ionization rate and the motion of
the striations towards the cathode. It is also seen that the elec-
tric field changes sign along the striations. This electric field re-
versal results in trapping of slow electrons in the potential well.
At high currents, the trapping does not lead to dramatic conse-
quences since Coulomb collisions provide effective energy ex-
change between trapped and free electrons.

Fig. 22 shows the results of a scan over the discharge cur-
rent for these conditions: the density modulation amplitude is
shown as a function of discharge current. One can see in Fig. 22
that at low currents, the discharge is striation-free due to low
electron density values (and high electric fields) and the ab-
sence of nonlinearity of the ionization rate with electron den-
sity. The discharge is striation-free at high currents as well due
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Fig. 21. Two-dimensional distribution of plasma density (each contour line
corresponds to density variation of about 10 cm ) and axial distributions
of electron density, electron temperature and axial electric field in striations at
p = 2 torr and I = 100 mA.

Fig. 22. Electron density modulation amplitude versus discharge current in
Argon at p = 1 torr.

to large electron densities and the resulting saturation of the ion-
ization rate with electron density. The discharge parameters are
strongly modulated at currents between several 10 mAs and sev-
eral amperes, as seen in Fig. 22. These results are in agreement
with experimental observations near the Pupp limit.

No self-consistent simulation of kinetic striations observed at
low currents has been reported so far. Electron kinetics in spa-
tially uniform and spatially periodic striation-like fields have
been extensively studied by Golubovskii and Winkler groups
(see [11], [84], and the references therein). The numerical ex-
periments confirmed the resonance character of electron interac-
tion with spatially periodic fields predicted by analytical models
[85]–[87] and previously simulated by Shveigert [88]. Recently,
a new resonance has been uncovered for large modulation of the
field and attributed to striations observed in experiments (see
[84]).

Fig. 23. (a) Modulation amplitude of electron density, (b) electron temperature,
and (c) excitation rate as function of the field period L=L for � = 0:9 (from
[84]).

Fig. 1 can be used to illustrate typical features of the EEPF
formation in a spatially modulated static electric field. The elec-
trons are injected from the left boundary and accelerated
by the electric field

(15)

The field amplitude and modulation depth can be varied
in these simulations. The spatial relaxation of the EEPF in rare
gases occurs due to energy loss in elastic collisions, excitation
of several atomic levels with different energy quantum and
Coulomb interactions among electrons [88], [89]. Near the
boundary, damping oscillations are formed with a spatial period

corresponding to the averaged value of the electric field,
. Here, , is the first excitation

potential and depends on specifics of the relaxation
process. Far from the boundary, the period of oscillations is
determined by the period of the field and the amplitude of
oscillations has resonance character (see Fig. 23).

The maximum modulation of electron density , elec-
tron temperature , and excitation rate occurs at

, and . The first type of
resonance was predicted by the linear theory (see [85]), the
second type was observed in [84] only for substantial modula-
tion of the electric field. The resonance corresponds to
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striations, the resonance corresponds to striations,
and the resonance was attributed to striations
observed in experiments.

E. Effect of Static Magnetic Field

In the presence of a static magnetic field, the spatial diffu-
sion coefficient in the kinetic (7) becomes a tensor. The
component along the magnetic field is not affected by the field,
the component orthogonal to the field is suppressed. When the
magnetic field is orthogonal to the electric field, its effect can be
described in terms of the effective collision frequency

(16)

where is the electron cyclotron frequency and is equivalent
to an increase in gas pressure. This effect explains the impact
of magnetic fields on spatial relaxation of electrons [90] and
specifics of electron kinetics in magnetron discharges between
coaxial electrodes [91].

More interesting phenomena take place in a positive column
submerged in an axial magnetic field. The electric field in the
positive column has both axial and radial components. The ra-
dial diffusion of the electrons is suppressed by the axial mag-
netic field whereas the electron heating de-
scribed by the energy diffusion remains unchanged. As a
result, the increase of the magnetic field is accompanied by the
transition from nonlocal to local mode and exhibits a maximum
of the axial electric field sustaining the plasma [92].

IV. COLLISIONLESS EFFECTS

A number of interesting phenomena have been observed in
the near-collisionless regime, when the electron mean free path
is comparable or larger than discharge dimensions, In classical
dc discharges, among these phenomena are the Langmuir
paradox [93], ion-sound and ionization waves [94], etc. In RF
discharges, the well known are stochastic electron heating and
anomalous skin effect. Classical works on the anomalous skin
effect in bounded plasmas were reviewed in [95] and [96].
Recently, collisionless effects in inductively coupled plasmas
have been studied in a series of experimental papers by Godyak
et al. (see [7] and the references therein), and theoretical pa-
pers by Turner [97], Vahedi et al. [98], Cohen and Rognlien
[99], Shaing [100], Yoon et al. [101]–[104], Seo et al. [105],
Tushetsky et al. [106], Kaganovich et al. [107]–[111] and
the references therein. Results of these studies are partially
reflected in the second edition of the book [8]. Stochastic
electron heating and anomalous skin effect observed in radio
frequency discharges at low gas pressures are of practical im-
portance for plasma reactors currently used for semiconductor
manufacturing.

When the electron mean free path is comparable or larger than
discharge dimensions, the EEPF of trapped electrons depends
solely on total electron energy. Solutions of spatially inhomoge-
neous kinetic (7) confirm this statement with high accuracy (see
Fig. 24). In this regime, electron collisions with plasma bound-
aries dominate over collisions with atoms. Strictly speaking,
the two-term SHE is not valid under these conditions, and the

Fig. 24. (a) Experimental and (b) calculated EEPFs in Argon ICP at different
points along the discharge axis at r = 0 (from [46]).

EEPF can be found from a kinetic equation averaged over the
discharge volume [107], [112]. The energy diffusion coefficient
and the heating rate are determined by integration over electron
trajectories.

Until recently, mostly analytical models and PIC simulations
have been used for studies of collisionless effects in gas dis-
charge plasmas. Stochastic electron heating was commonly ob-
served in PIC simulations of CCP (see [8]). Some of the col-
lisionless effects have been observed in ICP simulations using
Monte Carlo models for electron kinetics [45], [113].

Vlasov solvers developed for the collisionless plasma can be
adapted to studies of low-pressure gas discharges. Fig. 25 shows
results obtained with our 6-D Vlasov solver for electron accel-
eration by an oscillating RF sheath. In these simulations, the
electric field was specified in the form

(17)
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Fig. 25. Distribution function f versus V velocity at the sheath edge for two
RF frequencies. f is shown at five times for a full cycle at ! = 0:01 and for a
half-cycle at ! = 1.

where . Electrons are injected from one
(right) side with a given distribution function (half-Gaussian
with normalized density and temperature ). The
electron velocity is normalized to thermal velocity , the char-
acteristic frequency of the system is . Fig. 25 shows
the temporal behavior of the distribution function at the sheath
edge for two driving frequencies,
and 1. One can see that the distribution function of electrons
moving out of the sheath is strongly modulated at

and only slightly modulated at . At
low frequencies, electrons are being accelerated by the moving
sheath boundary and at high frequencies they do not respond to
the field oscillations. It should be noted that electron plasma fre-
quency does not appear in this analysis since Poisson equation
is not solved and the field profile is prescribed a priori by (17).

Among a variety of hot plasma effects observed in ICP
[114] are nonmonotonic distributions of electric and magnetic
fields, generation of electrostatic potential perturbation in the
skin layer, collisionless electron heating, etc. Fig. 26 shows an
example of recent simulation of these effects using a Vlasov
solver [115].

In [115], a set of Vlasov equations for electrons and ions was
solved together with Maxwell equations for the electric field

, and magnetic field , and Poisson equation for the elec-
tric field in a 1-D case, for the wave frequencies 13.56 and
6.78 MHz. The results of analytical model [99] were confirmed
in these simulations. The fields and decay exponentially
from the plasma boundary at within the skin layer. Owing
to large difference of electron and ion mass, an electrostatic
field is created in the skin layer by the Lorentz forces at the
second harmonic of the applied electric field (see Fig. 26). Since
the skin depth is much larger than Debye length and the wave
frequency is much smaller than electron plasma frequency, the
plasma remains quasi-neutral in the skin layer. Solving Poisson
equation requires a high accuracy under these conditions since
small charge separation of the order of creates noticeable
fields in the plasma. The use of low noise Vlasov code is cru-
cial in this case because the noise level of particle codes cannot
allow required accuracy.

Fig. 26. Longitudinal electric field in the skin layer (from [115]).

V. CONCLUSION

Numerous phenomena in gas discharge physics cannot be
properly understood without kinetic analysis of electrons. We
have reviewed the recent progress in the numerical solution of
the Boltzmann equation for simulation of electron kinetics in
gas discharge plasmas. The reduction of the 6-D Boltzmann
equation to a four-dimensional FPE using two-term spherical
harmonics expansion enables efficient and accurate simulation
of the electron distribution function in collisional gas discharge
plasmas. This approach has also been successfully used for sim-
ulation of electron transport in semiconductor devices [116],
[117] and collisionless electron transport in plasma thrusters
[118]. It covers a niche between the particle simulation methods
and semi-analytical discharge models. The two-term approxi-
mation, called diffusion approximation in mathematical litera-
ture, works unexpectedly well even beyond its range of validity.

Simulations of weakly-collisional plasmas have been tradi-
tionally performed by PIC codes. Recently, Vlasov codes have
been also applied to analysis of collisionless effects in gas dis-
charges. We believe, with further development of the numerical
methods and computing power, these methods will offer a viable
alternative to statistical methods for certain classes of problems.
Among promising methods for increasing efficiency of the de-
terministic kinetic solvers is adaptive mesh refinement in phase
space [119]. The adaptive mesh refinement technologies have
already been used with fluid discharge models [120] and are
being actively developed now for simulation of streamer dis-
charges.
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