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The Electron Diffusion Coefficient in Energy
in Bounded Collisional Plasmas

Lev D. Tsendin

Abstract—The electron energies in typical gas discharge plasmas
do not exceed significantly the first ionization potential. This being
the case, the momentum relaxation in collisions with neutrals is sig-
nificantly faster than the energy relaxation due to collisions. It fol-
lows that the main part of the electron distribution function (EDF)
is isotropic. So the interaction of an electron with an electric field
is predominantly stochastic random walk process and can be de-
scribed by a diffusion coefficient in energy . Both collisional and
stochastic heating mechanisms can be incorporated in it. By the
proper choice of variables, the electron Boltzmann equation can
be reduced to the standard diffusion one, both in space and in en-
ergy. This approach is very efficient in solution of the problems of
the electron kinetics in bounded nonuniform plasmas. Some para-
doxical effects, such as the formation of a cold electron population
in discharges with peripheral energy input, and nonmonotonic ra-
dial profiles of the excitation rates, are explained within this frame-
work. The expressions for in different discharges are presented.
The history of the EDF nonlocality concept is discussed for sta-
tionary gas discharges.

Index Terms—Electron kinetics, gas discharge, transport in
plasmas.

I. INTRODUCTION

THE CHARACTERISTIC electron energies in stationary
gas discharges with weakly ionized plasmas, generated by

electron impact ionization, are fixed by the plasma maintenance
condition at a level of several electronvolts. The reason lies in
the fact that for the stationary discharge maintenance during the
charged particle lifetime precisely one ionization event occurs.
In unmagnetized plasma, the lifetime is controlled by slow ion
motion; so during the lifetime, every electron undergoes con-
siderable number of collisions. Since the electron distribution
function (EDF) reproduces the average electron history, it fol-
lows that the EDF tail with kinetic energies above the ion-
ization energy contains relatively small fraction of the total
electron population. In atomic gases, as a rule, it holds for the
energies , too, where : the excitation energy of
the first atomic level. So the electrons with energies by several
electronvolts exceeding are usually practically absent. In this
energy range, the elastic collisions cross section 1–2 orders of
magnitude exceeds the excitation ones. It implies that the EDF
anisotropy is small: the momentum relaxation is considerably
faster than the energy relaxation. In the simplest and the most
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familiar case, when both these processes are due to the elastic
collisions, the ratio of the relaxation frequencies is extremely
small and equals to . At the EDF tail, this ratio
is , is small, too. Here, is the
(transport) collision frequency of the elastic collisions, and
is the inelastic collision frequency.

It implies that the EDF in this energy range is close to
isotropic, and the traditional two-term approximation (6) is
valid.

This fact remains valid in the free-flight regime , too, be-
cause the majority of the electrons are trapped by the ambipolar
electric field, and during its lifetime an electron undergoes many
elastic collisions.

In most practically important cases, the energy input occurs
by relatively small increments (in respect to the characteristic
EDF energy scale), too. So the typical scenario of EDF forma-
tion can be outlined as follows. An electron starts with a low
energy , and gains energy by small increments from the
applied electromagnetic field. If these small energy kicks are un-
correlated, this process cal be treated as a random walk along the
energy axis, i.e., as a diffusion with a diffusion coefficient .
The EDF body is formed by competition of this diffu-
sion in energy and of energy loss in collisions. Since the elastic
losses occur practically continuously, they can be described by
a downward-directed convective velocity in energy

(1)

In the molecular gases, the electronic energy levels are of the
order of , and the energies of the vibrational and rotational
levels are more than order of magnitude lower. So the colli-
sion integral for excitation of these levels can be reduced to the
Fokker–Planck form and approximated as action of an effec-
tive retarding force (1). For the EDF calculation, these quasi-
elastic collisions can be described by introducing the parameter

. It is to be noted that using the EDF calculation, the pa-
rameter , defined from the total electron energy balance, can
result in erroneous results.

The flux density along is

The zero flux corresponds to the Druyveteyn–Davydov’s
isotropic EDF
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The characteristic energy scale (and the average energy ) of
such an EDF, which takes place at low energy input level, can be
estimated as the diffusive displacement against the convective
velocity (1)

(2)

Such EDFs correspond to the situation when the energy bal-
ance is controlled by the elastic collisions. They are traditionally
used as a benchmark in the electron kinetics of discharges. They
were thoroughly investigated by Druyvesteyn [1], Allis [2], and
Davydov [3]; a detailed review can be found in [4].

As inealstic collisions result in considerably faster energy
loss, than elastic ones, the characteristic frequencies usually
satisfy

So, the EDF tail decreases considerably faster as
energy increases than the EDF body; its energy scale in most
cases of interest is

(3)

In other words, an electron undergoes an inelastic collision
practically at the same moment as it gains enough energy from
the field; it corresponds to the widely known black (absorbing)
wall approximation of diffusion theory. In this case
the main EDF part at is determined by elastic collisions.
The influence of the inelastic collisions on the EDF “body”

is small. It is considerable on the EDF tail only in close
vicinity of the threshold . The EDF “body” at , and
the diffusive electron flux (along the energy axis!) in the ze-
roth in approximation, can be found by imposing the
boundary condition

(4)

For the existence of the Druyvesteyn–Davydov’s EDFs in
EDF body , it is necessary that the average energy given
by the expression (2), is to be lower than the threshold of in-
elastic collisions . In this case, it decreases exponentially in
the interval . As the EDF tail decreases exponentially with
a steeper slope (3), the probability of an electron to reach the ion-
ization energy is extremely small. It is proportional to product
of exponentially small probability to gain energy , multipled
to the exponentially small probability to overcome the interval

. On the other hand, the lifetime of the charged particles
decreases at low and medium pressure, and in order to maintain
a stationary plasma, a rather high energy input is necessary. It
means that at low values of the energy losses in the elastic
collisions become negligible and the energy balance becomes
controlled by inelastic collisions. The EDF in this case is anal-
ogous to a “pipeline:” electrons after an inelastic collision are
continuously heated due to the diffusion in energy up to the mo-
ment when they reach the threshold energy . This boundary

lies for the noble gases, in the interval (1–10) torr cm. The

corresponding values for molecular gases are an order of mag-
nitude lower than for noble gases.

The concept of electron diffusion in energy turns out to be
highly efficient for the analysis of gas discharge plasmas, espe-
cially at low and medium pressures.

II. KINETIC EQUATION

The electron Boltzmann equation (for simplicity, without
taking into account a magnetic field) is of the form

(5)

The two-term EDF expansion is

(6)

where are angles in the velocity space, are the first-
order (vectorial) spherical harmonics. The equation for the vec-

torial EDF part is

(7)

where is the electron–neutral transport collision frequency.
Here, we have used the expression

(8)

The self-consistent electric field in the vast majority
of the discharge situations can be subdivided into two compo-
nents. One of them is generated by the plasma inhomogeniety.
Roughly speaking, this part of the electric field maintains the
plasma quasi-neutrality. Because the plasma density profile is
controlled by slow (with respect to the EDF formation charac-
teristic times) generation-recombination processes, this part of
the electric field variation is slow and it can be described by
the electrostatic potential . In stationary discharges, this
field is time-independent

(9)

Introducing the total electron energy

(10)

(7) takes the form

(11)

where is the gradient to be calculated at fixed . On the other
hand, if the frequencies of radio-frequency (RF) or microwave
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fields , which maintain a discharge, exceed the energy
relaxation frequency , the isotropic EDF part is
too inertial to follow the heating field variation and the kinetic
equation can be averaged over the fast field oscillations. Substi-
tuting (11) and the standard expression for the zeroth collision
integral spherical harmonic to (5) and performing the averaging
over the fast oscillations, we obtain an equation for the EDF

(12)

where is the excitation cross section of the th atomic
level, the diffusion coefficient in space

(13)

and is the diffusion coefficient in energy. For example, for
a monochromatic uniform oscillatory field with amplitude
we have

(14)

As a result, the Boltzmann equation is reduced to the phys-
ically transparent form of a two-dimensional (2-D) diffusion
equation in space and energy. The flux density along the energy
axis is

(15)

and the differential spatial flux (i.e., the flux density of electrons
with energy per unit energy range)

(16)

In low-pressure discharges, the electron energy balance is
typically controlled by the inelastic collisions. So we neglect
the second term in the right-hand side of (15).

The expression (14) for the diffusion coefficient in energy can
be interpreted as follows. As the EDF is almost isotropic, the

directed electron velocity is small. It satisfies

After a collision, this velocity component is transformed into
the chaotic velocity. So, this equation can be interpreted as if
every collision results in a directed velocity kick

The energy kick is

where is the scattering angle. So, (14) can be interpreted in a
standard form of the average product of squared random walk
step to the step frequency

(17)

the factor 1/6 resulting from averaging over RF oscillations and
over .

III. DC POSITIVE COLUMN

In the case of cylindrical longitudinally homogeneous posi-
tive column, it is more convenient to include in the total energy
(10) only the radial potential , and to define the diffusion
coefficient in energy as

(18)

where is the longitudinal field, is an electron mean free
path. The solution of the problem of the trapped electrons in
a direct current (dc) positive column was formulated first by
Bernstein and Holstein in 1954 in [5], but remained unnoticed
for two decades to be rediscovered in [6].

If the column radius is small with respect to the energy
relaxation length, the distribution function must have the form

with small coordinate-dependent corrections responsible
for the origin of spatial differential fluxes (16). Since electron
displacement occurs faster than energy relaxation, the spatial
fluxes are practically independent of each other at different
and they cannot be described in terms of the conventional fluid
approach; at different values, they can even be oppositely
directed [7], [28], [29]. The dominant spatial terms in (5) can be
eliminated by averaging over the available region. So, (5) and
(12) can be reduced to the conventional one-dimensional (1-D)
form by replacing the kinetic energy with the total energy . A
procedure for solving (5) for this case was proposed in [5] and [6].

Within the traditional local approach, which is valid at large
, the simplification of the kinetic equation has been achieved

by neglecting terms resulting from spatial nonuniformity in (5).
This is certainly not permitted for low pressure for which a
rather simple method which relies on three main ideas exists.

1) It is assumed that the whole electron kinetics within dis-
charge plasma is described by a unique EDF of the total
electron energy.

2) This EDF of the total energy can be derived from a
spatially averaged kinetic equation, which is a one-
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Fig. 1. Energetic conditions for trapped electrons. Accessible region for the
trapped electrons in ("; r) plane is bounded by " � �e'(r). In the dashed
part r < r ("), they have w > " , and are capable to undergo the inelastic
collisions with excitation of neutrals. Turning point r (") is defined as " =
�e'(r ). Arrows correspond to the differential fluxes.

dimensional ordinary differential equation, no matter
how many spatial dimensions are considered!

3) The spatially resolved EDF of the kinetic energy and
coordinate is obtained by a cutting procedure from the
EDF of the total energy. This “generalized Boltzmann
relation” for a non-Maxwellian EDF was described in
[8] and [30].

Collisions, heating and transport result in a small coordinate-
dependent correction

(19)

The main simplification within the nonlocal approach is made
by the spatial averaging of the kinetic equation over the part of
the discharge cross section accessible to electrons with a certain
total energy (see Fig. 1). An arbitrary average quantity is then
defined by

(20)

Here, represents the total discharge volume. The acces-
sible volume is defined by

(21)

The boundary (21) is thus given by . The
diffusion term in (12) can be shown to cancel by applying the
Gaussian law

(22)

The second integral vanishes, since the kinetic energy and the
velocity are zero at the boundary. Thus the integrand, which
represents the spatial flux of electrons, vanishes at the available
region boundary. With this result, neglecting the energy loss in
the quasielastic collisions and accounting for (20), the averaged
kinetic (12) becomes

(23)

In the right-hand side, the following terms are included:

(24)

with

The last averaging is performed over the region where the th
excitation is possible. This region is marked as the “excitation
region” in Fig. 1.

It should be stressed again that the averaging (23) and (24)
of the kinetic (12) is nothing other than the mathematical for-
mulation of the physical fact that spatial diffusion is a much
faster process than diffusion in the energy space. Thus, the en-
ergy gained from the electric field is redistributed over the whole
accessible cross section via rapid spatial motion. This, however,
means that every point of the cross section contributes to the
formation of the total energy EDF, which is equivalent to the
averaging procedure employed.

In the low-pressure discharges contribution of the elastic col-
lisions to the electron energy balance is, as a rule, negligible,
and the second term in the left-hand side of (23) can be omitted.
It corresponds to the “pipeline” EDF, which transports electrons
via the diffusion in energy to the EDF tail, where the inelastic
collisions occur. At in the absorbing wall
approximation the pipeline EDF is of the form

(25)
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The boundary between the EDF tail and the body in the non-
local case corresponds to the total energy (Fig. 1). The
steep decrease of the EDF starts at instead of in
the local case. It seems paradoxical that on the plasma periphery
(see Fig. 1) the EDF decreases due to inelastic collisions in the
regions of the phase space where these collisions do not occur,
namely at with . The reason is that at these
values the inelastic collisions occur mainly in the central region
and the small correction term corresponds to an in-
ward flux of particles and energy.

Since the available area expands with , the differential flux
at is outward directed. On the other hand, the electrons
with can escape to a vessel wall ( is the wall po-
tential). It means that the differential flux of these electrons at
the plasma periphery is to be outward-directed, too. The diver-
gence of all these fluxes in low-pressure discharges is consider-
able even though is a small correction.

It is obvious that this complex pattern cannot be described
in terms of the fluid approach of a small ambipolar outward-di-
rected particle flux. This situation cannot be improved by ac-
counting of the thermal diffusion.

An attempt to describe the electron energy flux results in sim-
ilar paradoxes. Neglecting the net particle flux of the trapped
electrons, the energy flux in the fluid approximation is due
only to thermal conductivity. Since there is no particle flux for
trapped electrons, the energy flux in this approximation is due
only to thermal conductivity. The local “electron temperature”
profile is determined by the EDF body at . So,
the gradient, which is responsible for the energy flux,
depends on the and functions. This may result in
a physically meaningless conclusion about an outward energy
flux.

It is surely one of the most interesting aspects of the nonlocal
approach that the spatially resolved EDF of kinetic energy can
be found from the EDF of the total energy. At first glance, it
seems paradoxical that spatially resolved information should be
gained from a spatially averaged kinetic equation. However, if
the single EDF of the total energy has been found, the kinetic
energy EDF at every position can be calculated unambiguously
via the ambipolar space charge potential. With a simple back-
substitution, one obtains the kinetic energy EDF

(26)

The physical interpretation of (26) is simple (cf. Fig. 2).
At any position , the space charge potential determines

the minimum total energy needed for an electron to reach this
position. Electrons with a lower total energy are confined to re-
gions of lower potential energy. The total energy EDF is thus
cut off at , and only the part with
forms the EDF of the kinetic energy at . This relation repre-
sents, in a sense, a generalized Boltzmann relation [8], [30] for
a non-Maxwellian EDF. For the electron density we have

(27)

Fig. 2. Scheme for finding the EDF of kinetic energy f (w; r) from the EDF
of total energy f (") and the ambipolar potential '(r).

In the case of a Maxwellian EDF, the expression (27) corre-
sponds to the traditional Boltzmann relation.

The simplifications of modeling the electron kinetics in the
nonlocal approach are enormous. Regardless of the number of
spatial dimensions which are included in an electron kinetic
model, the EDF is determined by a 1-D ordinary differential
equation. This kind of equation can be solved by various ef-
ficient and well-tested algorithms. Of course, the number of
spatial dimensions is still included in the definition of the av-
eraged coefficients of this differential equation. Nevertheless,
the computation of multidimensional integrals can be performed
much more effectively than the solution of a partial differential
equation.

It should be mentioned that much evidence has been found
for the validity of the nonlocal approach. The first experimental
demonstration was given by Wiesemann in 1969 in [9], but un-
fortunately this finding has not been widely recognized. A con-
vincing demonstration of the nonlocality of the EDF was re-
ported by Godyak and Piejak [10] in a capacitive RF discharge
and by Kortshagen [11] in a surface wave plasma.

The applicability of the nonlocal approach at the EDF tail is
restricted by

(28)

where is the vessel size, , are the mean free paths with
respect to the elastic and inelastic collisions. It should be em-
phasized that if the energy input in the nonlocal situation above
is eccentric such that the coefficient varies with the coordi-
nate, the (23) for contains only the averaged values of .
Even if the energy input is strongly asymmetrical, the resulting
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Fig. 3. Second derivatives of the probe current in different points of the dis-
charge gap [9]. Discharge inXe at 0.1 torr, and I = 2mA. Coincidence of the
left parts of the curves corresponds to the EDF dependence on the full energy ".

plasma density distribution will remain symmetric with respect
to the vessel center. The self-consistent ion (plasma) density
profile and the potential profile are symmetric with a maximum
at the vessel center, whereas the asymmetry in the energy input

can manifest itself only as a small shift of the resulting pro-
files, of the order of the nonlocality violation).

There are many situations, in which the oscillatory heating
field has a sharp localized maximum, so the energy gain by an
electron occurs in the form of occasional energy kicks during its
passage through this zone. The most common is the case of sto-
chastic electron heating in capacitively coupled plasma (CCP)
and inductively coupled plasma (ICP) RF discharges [20], [24],
[33], [35]. It is possible also to derive a simple expression for
the diffusion coefficient in energy for the nonlocal EDF.

The nonlocal EDF is defined by the space-averaged dif-
fusion coefficient in energy with defined by (14),
(17), (18). The averaging is performed according to (20). For a
cylindrical dc positive column of radius , homogeneous along
the axis, we have

(29)

where satisfies . The expression (29) can
be interpreted as the product of the averaged squared energy
kick by the kick frequency . It follows that
the contribution of this mechanism to the averaged diffusion co-
efficient equals the product of the average squared
kick in energy, which an electron gains from the field and the fre-
quency of electron interaction with the field localization region.

One of the first experimental observations of the EDF nonlo-
cality [9] is presented in Fig. 3. The second derivatives of the
probe current, which are proportional to the isotropic part of the
EDF , for the nonlocal case, coincide with each other every-
where in the discharge volume.

Convincing evidence of the EDF nonlocality in a positive
column can be seen in Fig. 4. Here, the dependence of the self
consistent longitudinal electric field as a function of the ex-
ternally applied magnetic field is shown [12]. Since the elec-
tric field is determined by the discharge maintenance con-
dition, it rises as the charged particle lifetime decreases. As a
magnetic field suppresses the transversal charged particle trans-
port and increases the lifetime, the falling branch of the

Fig. 4. Dependence E (B ) in Ne at I=R = 1 mA=cm [12]. Numbers at
the curves are the (Rp) values: 1, 1.3, 2.0, 2.1, 3, 3.0, 4, 7.3.

dependence seems quite natural. As the ambipolar lifetime de-
creases with , the lower ionization rate becomes necessary for
the plasma stationary maintenance. It demands the lower field

, which creates the EDF with lower electron fraction in the
EDF tail. Far more surprising was the ascending branch of the

dependence. It was observed at rather weak magnetic
field, when the plasma lifetime, which was controlled by ions,
remained practically unaffected by . The estimates show that
the maxima of the dependences corresponded to the
transition from the local to the nonlocal EDF. As in the nonlocal
case the EDF depends from the total energy (10), the steep EDF
decrease starts at . At the plasma periphery it corresponds
to the kinetic energy , which is considerably
lower than . So the excitation and ionization processes are
substantionally suppressed at the plasma periphery. It follows
that the plasma generation rate is more strongly peaked at the
plasma center, than the plasma density profile. In other words,
the average distance between the generation place and the tube
wall, where the charged particles recombine, decreases as the
transition from the nonlocal to the local case occurs. It means
that the average lifetime decreases, too. So, the necessary for
stationary discharge maintenance value increases with .
In the self-consistent simulations [13], this concept was clearly
demonstrated.

Convincing manifestations of EDF nonlocality can be found
among phenomena of plasma luminosity. The transition from
the local to the nonlocal EDFs can be seen in behavior of dis-
charge luminosity with pressure reduction in discharges with pe-
ripheral energy input. At high pressure, when the EDF is local,
the luminosity is maximal at the peripheral region, where the
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Fig. 5. Spatial profiles [16], [32] of the excitation rate for E = 5 V=cm,
p = 3 torr, and�e'(x) = a" (x=R) for different a: 0 (dotted line); 0.25(1);
1(2); 1.5(3).

energy input is maximal. In CCP, for example, Joule heating
is maximal in the peripheral region, since the electron conduc-
tivity current, which is practically equal to the total current, is
uniform in a plasma, and the plasma density is low here. In ICP
the skin-effect leads to a similar result. On the other hand, since
the nonlocal EDF depends on the total energy , and the am-
bipolar potential is maximal at the vessel center, the frac-
tion of the fast electrons, and the discharge luminosity, shift to
the discharge center. This effect was observed in [14] and [31].

An interesting exception from the rule that at low pressure
the luminosity is to be maximal at the plasma center, can be
seen in a spherical discharge vessel for which [15].
In this case, the isotropic EDF depends on two variables:
the total energy , and the angular momentum . In the vessel
center, only the electrons with small are present. On the other
hand, these electrons with small fall to the vessel wall almost
normally. So, the electrons with , where is the
floating potential of dielectric wall, can escape to it, and are to
be practically absent. As a result, the radiation of the lines with
upper level energies exceeding from a central discharge
region is to be strongly suppressed.

At higher pressure, the EDF depends only from the total en-
ergy , and the excitation rates become maximal at the discharge
center, independently from the vessel form. Since the energy re-
laxation time at the EDF tail is considerably shorter, than
the relaxation time of the EDF body, the with the pressure rise
the nonlocality condition is violated first at the EDF tail, and the
EDF here becomes coordinate- and -dependent. As a result,
in the intermediate pressure range, when the EDF tail is local,
and the EDF body is nonlocal, the excitation rates profiles be-
come nonmonotonic [16], [32], see Fig. 5.

IV. RFC DISCHARGES

The electric field in RF capacitively coupled (RFC) dis-
charges in the usual parameter range is a potential one and
can be subdivided into several strikingly distinct parts. The
central part of a discharge is filled by quasi-neutral plasma. The
electric field here consists of a (quasi-)stationary ambipolar
part with a potential component , responsible for trapping

Fig. 6. Sketch of the parameters profiles in a EFC discharge [15].

electrons in the discharge center, and of an oscillatory RF
component , which maintains the RF electron current.
The strong electric field in the ion space charge region consists
of stationary and of RF components, too. As the thickness of
the transition layer between the plasma and the space charge
regions is thin—of the order of the Debye radius—it can be
treated as infinitely thin (with respect to the sheath thickness

in Fig. 6) oscillating surface [17], which reflects electrons.
If these reflections can be treated as statistically independent,
they result in stochastic electron kicks and in electron diffusion
in energy—as the supplementary electron heating mechanism,
called stochastic electron heating, which replaces the tradi-
tional Joule collisional heating at low pressures [18]. We would
restrict here by the simple model. In detail this, problem was
discussed in [19] and [21].

If a discharge gap exceeds the electron mean free path , an
energy kick, which an electron receives in a collision with the
moving reflecting potential wall of the space charge field, will
obviously be transformed into the chaotic energy due to a col-
lision with a neutral molecule. If , the subsequent kicks
can be considered as statistically independent, if the Chirikov’s
criterion [20], [33] is fulfilled

(30)

where is the velocity kick, is the driving frequency, or col-
lisions are frequent enough , see [19].
The kick is equal to the directed electron velocity at the
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plasma-space charge interface, which is small with respect to the
chaotic electron velocity, if (6) is fulfilled. So, if condition (30)
holds, stochastic heating can be described as diffusion in energy,
too. Analogously to (17), the expression for the stochastic dif-
fusion coefficient in energy can be written as

where is the bounce frequency of an electron with total
energy . The averaging is to be performed over the RF period
and over the electron velocity angles.

If a discharge width is small with respect to the energy
relaxation length (28), and both the applied field and the
electron bounce frequencies are higher than the inverse energy
relaxation time, the EDF form, according to (23), depends only
on averaged in space and time function of the total energy

. This function can be interpreted as a sum of
squares of the energy kicks, which occur per second over the
whole available for an electron with energy volume. So the
EDF satisfies the averaged kinetic (23) with replacement of

, (29) for sum of two terms: collisional

and stochastic

Here, is the plasma–space charge interface velocity [17],
is the boundary of the available area, and is the

phase during which an electron with energy can reach this in-
terface, . Here, the simple model
expression (17) for was used. Of course, the general def-
inition of an energy kick remains rather delicate problem; for
more detail see [20] and [33].

The scenario of the electron heating in a RFC discharge is pre-
sented in Fig. 6 [22], [23], [34]. Since the electron density profile
is bell-shaped, Fig. 6(a), the RF field , which heats electrons,
is minimal at the gap center, and maximal in the RF sheath,
Fig. 6(c). As the ambipolar potential , Fig. 6(b), traps the
electrons with low in the central region, where the field is
minimal, the regions with high are unavailable for these elec-
trons, and the averaged value of , which, according to
(25), determines the EDF slope, is minimal for them, Fig. 6(d).
This effect explains the EDF formation, which contains a con-
siderable population of the slow electrons, Fig. 6(e), in dis-
charges with a peripheral energy input [15], as it was observed in
[10]. In [23] and [34], it was shown that the transition to the dis-
charge mode with abundant slow electrons can proceed abruptly
analogously to a thermal explosion. It is to be noted that both the
stochastic and the collisional mechanisms, which are both max-
imal at the discharge periphery, contribute to this phenomenon.
So to distinguish between them from experimental data remains

a rather complicated problem. It needs detailed calculation and
knowledge of power balance.

The collisionless stochastic electron heating in low pressure
inductively coupled discharges was discussed in detail in [24]
and [35].

The similar phenomena arise in the vicinity of the resonance
region in a microwave field [25], [27].

V. CATHODE REGION OF A DC DISCHARGE

The complex self-consistent nonlocal phenomena in a
cathode region of a dc glow discharge are traditionally classi-
fied phenomenologically by its visual properties. So the cathode
region is subdivided into the cathode dark space, negative glow,
and Faraday dark space, which contacts with a homogeneous
or stratified positive column. Nevertheless, the optical plasma
characteristics result from a rather complicated self-consistent
sequence of processes, and in order to clarify the underlying
physics, it seems more convenient to choose as fundamental
the electrodynamic and kinetic plasma parameters [26].

First of all, the cathode region consists of quasineutral plasma
domain, and of the cathode ion space charge sheath. At the
cathode surface a current is transported mainly by ions;
the electron and the ion current densities satisfy

where is the electron-ion secondary emission coefficient.
The electric field in the sheath is rather strong [Fig. 7(a)]; the
electrons, emitted by the cathode surface or born in the sheath,
are accelerated rapidly by this strong field, and the EDF of these
fast electrons is nonlocal. It is determined not by the local
value, but by the upstream potential profile. The current of these
fast electrons increases exponentially in the sheath, and is max-
imal at the plasma–sheath interface. The fast electrons pene-
trate to the plasma region and produce the nonlocal ionization
there. Electrons born close to this interface, where the field de-
creases, have small range, and are stopped fast; the electrons,
which were born close to the cathode surface, penetrate deeper.
So the current of the fast electrons, which produce ionization
and excitation [the curve El1 in Fig. 7(d)], is maximal at the
plasma–sheath interface. It means that the luminosity is max-
imal here, too [Fig. 7(c)]. Note, that this paradigm totally con-
tradicts to the traditional local approach, which predicts zero
ionization and excitation rates at this interface. The length of
the negative glow is determined by the range of the most ener-
getic electrons which were emitted by cathode. So the negative
glow consists of two distinct regions: of the space charge part,
and of the plasma part, luminosity (and the ionization rate) being
maximal at the boundary between them. In other words, a con-
siderable part of the ionization occurs in the plasma.

The traditional Townsend’s condition of stationary discharge
maintenance states that the multiplication of a cathode-emitted
electron, which equals to the number of ions born by it, is to be
equal to . In other words, the ions, generated both in the
space charge and in the plasma sections of the negative glow, are
to be returned to the cathode. The ions from the sheath section
of the negative glow are easily transported to the cathode by the
strong field in the sheath. In the plasma part, the only mechanism
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Fig. 7. Sketch of the parameters profiles in a dc cathode fall [26]; the upper curve in Fig. 7(a) satisfies " = �e'(z (")) + " .

which is able to deliver the plasma-born ions to the cathode is
the feeble mechanism of ambipolar diffusion. It means a large
plasma density gradient and a plasma density peak arises in the
plasma part of the negative glow, with density in it far (more,
than order of magnitude) exceeding the density value in the pos-
itive column [Fig. 7(b)]. On the other hand, the electron diffu-
sive current towards the anode far exceeds the total current, and
a potential profile arises, which suppresses the electron diffusion
towards the anode. So the potential well for electrons is formed
[Fig. 7(a)], and the electrons can be separated into three groups
with clearly defined boundaries between them. The first of them
consists of the fast electrons, which are emitted by the cathode,
or generated in the sheath; their energies far exceed the char-

acteristic atomic excitation and ionization energies. The second
group consists of the trapped electrons. The electrons trapped
in the potential well do not participate in a current transport.
Since the Joule heating of these electrons is absent, they have
a Maxwell–Boltzmann distribution with an electron tempera-
ture of the order of the room temperature. Their full energy lies
between the potential minimum and maximum [Fig. 7(a)]. The
third electron group consists of the intermediate electrons, with
the energy , which exceeds the potential maximum [Fig. 7(a)],
and is slightly (by the potential well depth) lower, than the first
excitation energy . Since in the Faraday dark space only the
trapped and the intermediate electrons are present, the interme-
diate electrons are transporting the electron current here. Ne-
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glecting the energy loss in the elastic collisions, their EDF at
can be written analogously to (25), as

From Fig. 7(a), it is seen that in the Faraday dark space the
excitation rate is totally absent, because the electrons with the
full energy more than by exceeding the potential well bottom,
are absent here.

VI. CONCLUSION

The concept of the electron diffusion coefficient in energy
turns out to be very useful and efficient in various problems of
gas discharge plasma kinetics. Using it, the physical meaning
of numerous important and interesting problems can be made
more transparent and clear.
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