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Effectiveness of electron-cyclotron and transmission resonant heating
in inductively coupled plasmas
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The electron-cyclotron and transmission resonances in magnetically enhanced low-pressure
one-dimensional uniform inductively coupled plasmas are studied analytically within a simple
model of two driving electrodes. The results of our approach are also applicable to the case of one
grounded electrode. It is shown that, for a high rf, the plasma resistance is greatly enhanced at
electron-cyclotron and transmission resonances, but normally does not exhibit a sharp peak at the
electron-cyclotron resonance �ECR� condition. For a low rf, the ECR heating is not effective.
Conditions of strong transmission resonances are identified. A transition from a bounded to
semi-infinite plasma with overlapping of transmission resonances is also considered. © 2005
American Institute of Physics. �DOI: 10.1063/1.2034407�

Low-pressure, radio-frequency inductively coupled plas-
mas �ICP� find applications in semiconductor manufacturing
and lighting.1 The need for optimization of ICP discharges
has prompted intensive research on basic plasma phenomena
in collisionless plasmas, as described in reviews.2–6

Operating a magnetically enhanced ICP with a magnetic
field near or above the electron-cyclotron resonance �ECR�
condition �c�� �where �c=eB /mc is the electron-
cyclotron frequency and � is the discharge frequency� can
lead to a considerable increase in power coupling due to
efficient electron-wave interaction for �c�� and enhanced
rf field penetration into the plasma for �c��.1,2,7–11 Mea-
surements of plasma characteristics of magnetized ICP dis-
charges presented in Refs. 9 and 11 show the growth of
power coupling and plasma surface resistance with increas-
ing magnetic field, until the discharge becomes unstable.11

However, a sharp maximum in the plasma surface resistance
at the ECR condition, typical of plasma heating in the giga-
hertz range of frequencies, was not observed in the mega-
hertz range for commonly employed discharge parameters.11

In this work, the efficiency of electron-cyclotron and trans-
mission resonant heating is investigated using a kinetic warm
plasma approach for uniformly bounded and semi-infinite
plasmas.

The inductive rf electric field driven by an external rf
current I exp�−i�t� can be determined from Faraday’s and
Ampere’s laws. Their combination gives the amplitude of the
rf field Ey exp�−i�t�

d2Ey

dx2 +
�2

c2 Ey = −
4�i�

c2 �j�x� + I��x� − I��x − L�� . �1�

Here, I is the amplitude of the current at plasma boundaries
�x=0 and x=L�. The current at x=L is flowing in the oppo-
site direction to that at x=0 �shifted in phase by ��. The

one-dimensional slab geometry system of two surface cur-
rents flowing in opposite directions provides a good descrip-
tion of a solenoidal discharge with diameter D=L and also
describes approximately a “pancake” geometry with one coil
at x=0 and a grounded electrode at x=L /2 �corresponding to
the boundary condition Ey =0 at x=L /2�.10,12,13 If the effec-
tive mean free path �eff=VT /���−�c�2+�2 is small com-
pared with the discharge gap �eff	L, then two antennas act
independently and the total deposited power into the plasma
can be viewed as the sum of two halves, which is the same
for one antenna at one plasma side and for the grounded
electrode �E=0� at another plasma side. In Fig. 1 the plasma
surface resistance is calculated using the formalism of Ref.
14 for one grounded electrode with plasma length L /2 and
utilizing the much simpler formalism of the two driving an-
tennas with plasma length L for typical plasma parameters.
Apparently, the agreement between the two cases is very
good, if not excellent. In this article, we chose the one-
dimensional slab geometry of two surface currents because
the analytical solution in this case is much simpler and easier
to analyze, while the results are similar to the just-mentioned
configurations for typical plasma parameters.

In the presence of an external static magnetic field per-
pendicular to the plasma boundary, the rf electric field splits
into left-polarized �El=Ez+ iEy� and right-polarized �Er=Ez

− iEy� waves. The electron conductivity for each component
is given by

jk
l,r =

e2n

im�k�VT
ZM�� ± �c + i�

�k�VT
	Ek

l,r, �2�

where ZM�
� is the plasma dispersion function see Ref. 15.
The substitution of �→�±�c accounts for the electron gy-
ration in the magnetic field �see Ref. 2� The electric-field
profile is given by the inverse Fourier transform of Eq. �1�,
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El,r�x� =
8�i�I

c2L

�

s=0

�
cos�ksx�

ks
2 − �2/c2 − ZM�� ± �c + i�/ksVT�/ks�a

3 . �3�

Here, s is an integer, ks= �2s+1�� /L, and we introduced the
anomalous skin depth �a= �c2VT / ��pe

2 ���1/3, where �pe

= �4�e2n /m�1/2 is the electron plasma frequency. The surface
impedance is given by the ratio of the electric field to the rf
magnetic field or applied current at the plasma boundary Z
= ��−2E / I��x=0.

The surface impedance of a one-dimensional, bounded,
uniform plasma of length L, with a Maxwellian electron en-
ergy distribution function �EEDF�, inductively driven by two
current sheets with an applied external static magnetic field
is Z= �Zl+Zr� /2, �see Ref. 13�, where

Zl,r =
16�i�

c2L


s=0

�
1

ks
2 − �2/c2 − ZM�� ± �c + i�/ksVT�/ks�a

3 .

�4�

In the limit of a semi-infinite uniform plasma, L→�, the
summation turns into an integral with dk→2� /L and Eq. �4�
yields

Z�
l,r =

8i�

c2 �
0

�

dk
1

k2 − �2/c2 − ZM�� ± �c + i�/kVT�/k�a
3 .

�5�

The power P deposited in the plasma per unit area is related
to the real part of the surface impedance R=Re�Z� �surface
resistance� as P=2I2R.

At the relatively high frequency of 29 MHz, the plasma
skin effect is normal—the skin depth of width c /�pe is larger
than the nonlocality length VT /�. Under these conditions the
power dissipation without an applied magnetic field is small
and depends on both collisional and collisionless effects �cf.
Figs. 2�a� and 2�b��. The plasma surface resistance initially
increases with magnetic field as the cyclotron frequency ap-

proaches the wave frequency. Note that all curves for differ-
ent plasma lengths coincide in the region below the ECR
condition �BBc�10 G, where Bc=mc� /e is the magnetic
field corresponding to ECR�, because in all cases the skin
depth is much smaller than the plasma half-length and the
two skin layers on the opposite plasma boundaries are inde-
pendent of each other ��eff	L�. It should be noted that the
surface resistance does not exhibit a sharp maximum at the
electron-cyclotron resonance condition �Bc�10 G for
29 MHz�, and this differs strikingly from the case of interac-
tion of a magnetized electron with a prescribed rf wave. At
the exact condition of the electron-cyclotron resonance �c

=�, the surface resistance of a collisionless plasma �	�,
with a plasma slab length much larger than the anomalous
skin depth �a, can be calculated from Eq. �5� �taking into
account that at ECR Re ZM�0�=0 and Im ZM�0�=��, �see
Ref. 16��. For the right-hand polarized wave it yields

ZECR
r =

8�5/6

3 �i +
1
�3

	��a

c2 . �6�

Equation �6� predicts a larger plasma surface resistance at the
electron-cyclotron resonance with increasing rf field fre-
quency � and rf field penetration depth �see also Ref. 10�.
The latter can occur either due to an increase in electron
temperature or a decrease in plasma density. Under the ECR
condition �Bc�10 G� the electron interaction with the rf
electric field is similar to heating in a dc electric field and the
nonlocality length increases up to the mean free path VT /�,
determined by the collision frequency �. The plasma surface
resistance at the ECR condition, �−�c	VT /�a, is identical
to the plasma surface resistance at the condition of the
anomalous skin effect, �	VT /�a. Consequently, for low dis-
charge frequencies, for which the condition of the anomalous
skin effect is satisfied, the application of a magnetic field
does not enhance the plasma surface resistance at the ECR,
as shown in Fig. 3, where the ECR condition occurs at B
=0.3 G. Increasing the external magnetic field above the
ECR condition �B�Bc�10 G for 29 MHz� leads to the fur-

FIG. 1. �Color online� Surface resistance as a function of a normalized
electron-cyclotron frequency. The solid lines correspond to Shaing formal-
ism for one grounded electrode with plasma length L /2 and the dotted lines
correspond to the case of two driving electrodes with plasma length L.
Shown: rf driving frequencies 29 and 13.56 MHz, electron temperature Te

=4 eV, and electron collision frequency �=1.2�107 s−1.

FIG. 2. �Color online� Surface resistance of semi-infinite and bounded plas-
mas of different lengths as a function of the applied magnetic field for a
uniform plasma with a Maxwellian EEDF. The discharge frequency is
29 MHz, the plasma density ne=1011 cm−3, and the electron collision fre-
quency �=1.2�107 s−1. �a� Warm plasma with the electron temperature
Te=4 eV and �b� cold plasma with the electron temperature Te→0 �local
approximation for electron current�.
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ther growth of the plasma surface resistance, as evident in
Figs. 2 and 3. This is due to propagation of the right-hand
polarized wave into the plasma see Refs. 7, 8, and 10. Analy-
sis of the wave propagation is especially convenient in the
cold plasma approximation. In the limit of high magnetic
field, warm plasma effects are not important if �c−�
�VTks. Substituting the cold plasma limit of the dielectric
function ZM���→−�−1 for �→� gives the poles of the elec-
tric field in Eq. �3� as c2kp

2 =�2−�pe
2 / �1±�c /��. For a typi-

cal magnetically enhanced ICP � ,�c	�pe and propagating
modes exist only for the right-hand polarized wave with a
wave vector kp=�pe/ �c��c /�−1�. Therefore, the conditions
of existence of transmission resonances are

VT/��c − �� 	
L

�2s + 1��
, �7�

�2s + 1��
L

=
�pe

c��c/� − 1
. �8�

Equation �7� shows that warm plasma effects can be ne-
glected for not very high resonance numbers s, for which the
nonlocality length is less than the wavelength, and Eq. �8�
shows that for a bounded plasma, transmission resonance
occurs if an odd number of half-waves equals the plasma
slab length kp=ks �see also Ref. 10, where similar conditions
were obtained�. Strong transmission resonances at the values
of the magnetic field predicted by Eq. �8� are evident in Figs.
2 and 3. Note that the transmission resonances occur at dif-
ferent values of the magnetic field for different plasma slab
lengths. When Eq. �7� is satisfied, the surface resistance of
cold plasma is the same as that of warm plasma, �cf Figs.
2�a� and 2�b��. In the opposite case, transmission resonances
are less pronounced due to wave damping �cf Figs. 3�a� and
3�b��. The maximum value of the plasma surface resistance
and the width of the transmission resonances are determined
by a small dissipation, either due to collisional or collision-
less damping described by Im�ZM�. Note that a right-hand

polarized wave is reflected from a plasma-vacuum interface
with a reflection coefficient R=1−2� /ckp. Since � /ckp	1,
R�1 and the wave is trapped inside the plasma.

Let us now estimate the condition on plasma parameters
for the existence of transmission resonances. Substitution of
�c−� from Eq. �8� into Eq. �7� yields

L � ��a, �9�

or the plasma length L must be larger than the anomalous
skin depth �a. For short plasmas or low plasma densities Eq.
�9� is not satisfied and the transmission resonances are not
observed as it is shown in Fig. 4 for the electron density ne

1010 cm−3. As a result, the plasma surface resistance de-
creases with increasing applied magnetic field B�Bc. In ad-
dition, Eq. �9� gives the maximum value of the wave vector
kp for a pronounced transmission resonance kp	1/�a. That
is, the wavelength should be much longer than the anoma-
lous skin effect length. This condition provides that the col-
lisionless damping of the wave is small. Substitution of ks

from Eq. �8� into Eq. �7� results in

�c − � � �VT�pe�
1/2/c�2/3, �10�

which gives the minimum value of �c−� for a pronounced
transmission resonance for a given plasma density. Note that
for a fixed plasma length, Eq. �10� is applicable only for
plasma densities satisfying Eq. �9�. The huge variation of the
surface resistance at strong transmission resonances may
cause difficulty in coupling power to the plasma through a
matching network, as was reported in Ref. 11 for magnetic
fields B�20 G.

As evident in Figs. 2 and 3 increasing the length of a
bounded plasma leads to a larger number of transmission
resonance peaks. For large L, these peaks overlap and the
plasma surface resistance of a bounded plasma reaches its
asymptotic curve given by the surface resistance of the semi-
infinite plasma. Substituting the cold plasma limit for the
dielectric function ZM���→−�−1 as �→� and integrating Eq.
�5� over the poles of the electric field, k=kp, yield the
asymptotic value of the plasma surface resistance for large
magnetic fields B�Bc,

FIG. 3. �Color online� Surface resistance of semi-infinite and bounded plas-
mas of different lengths as a function of the applied magnetic field for a
uniform plasma with a Maxwellian EEDF. The discharge frequency is
1 MHz, the plasma density ne=1011 cm−3, and the electron collision fre-
quency �=1.2�105 s−1. �a� Warm plasma with the electron temperature
Te=4 eV and �b� cold plasma with the electron temperature of Te→0 �local
approximation for electron current�.

FIG. 4. �Color online� Surface resistance of warm bounded uniform Max-
wellian plasmas for different electron densities as a function of the applied
magnetic field. Discharge parameters: rf field frequency � /2�=29 MHz,
electron temperature Te=4 eV, electron collision frequency �=1.2
�107 s−1, and the plasma half-length L /2=10.5 cm.
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Z�
r =

4�

c�pe

����c − �� . �11�

The condition on plasma length for applicability of the limit
of a semi-infinite plasma is given by

L � Lmax =
4�kp

2�a
3

Im ZM�� ± �c + i�/ksVT�
. �12�

It can be derived taking into account that for overlapping of
the transmission resonances, the resonance width �k
=Im ZM���±�c+ i�� / �kpVT�� / �2kp

2�a
3� must be larger than

the distance between them dk=2� /L, or �k�dk, as it fol-
lows from Eq. �4�. This condition corresponds to strong
dumping of the propagating wave on distance Lmax �see Ref.
18�.

In conclusion, application of a static magnetic field can
considerably enhance the plasma surface resistance and effi-
ciency of power deposition under the conditions of electron-
cyclotron and transmission resonances �see Refs. 10, 17, and
18�. The plasma surface resistance at the ECR condition is
similar to that of a very low discharge frequency without an
applied magnetic field described by the theory of anomalous
skin effect ��−�c	VT /�a�. For short and not very dense
plasmas, when L��a, the maximum of plasma resistance
occurs at the ECR condition. For sufficiently long and dense
plasmas, when L���a, the plasma surface resistance is
higher for eB /mc�� due to a deeper wave penetration into
the plasma and the maximum resistance occurs at transmis-
sion resonances due to standing wave or cavity effects.
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