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Main Subject of the Talkj

Nonlocality and collisionless kinetic 
ff i l leffects in low-pressure plasmas.
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Nonlocality is important for many 
l li tiplasma applications
Electron energy mean free path is large, this  gy p g ,
allows remote plasma handling via nonlocal 
electron energy distribution function (EEDF).
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The treatment has to be kinetic!  (2/2)( )

Electron energyElectron energy 
distribution functions 
are non Maxwellian:are non-Maxwellian:
– Parts of the EEDF are 

very flexible and arevery flexible and are 
almost independent.

– An example of a 
capacitive discharge.
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capacitive discharge.

For more info: V. Godyak, IEEE TPS 34, 755 (2006).



2005 PPPL workshop on “Nonlocal, 
C lli i l El T i Pl ”Collisionless Electron Transport in Plasmas”

Special Issue of IEEE Trans. on Plasma 
Science vol.34, N3 (2006).
– Aimed at updating the research advances 

in this field.   

Talks and papers are available at        For more info:

http://w3.pppl.gov/~ikaganov/PPPL2005/
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Special Issue Topics:p p

Basic nonlocal, collisionless effects in plasmas

Probe diagnosticsProbe diagnostics

Electron transport phenomena in plasma propulsion p p p p p
devices

Non local electron kinetics in direct currentNon-local electron kinetics in direct current 
discharges
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Simulation of Electron Kinetics in Gas Discharges



Kinetic Effects in Hall Thruster

P=0 1-1mTorr the plasma inside
E , J

z z

B
r

H ~ 1cm
P 0.1 1mTorr, the plasma inside 
the thruster channel is 
collisionless, λec >> H.

J
e,�

B ~ 100G, E ~ 100V/cm, Te ~ 100eV. 

Artem Smirnov et al, CI2.00001: Experimental and 
theoretical studies of cylindrical Hall thrusters. 

For more info:
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Yevgeny  Raitses et al, VP1.00164: Experimental studies 
of wall material effects on the Hall thruster discharge.



Motivation: understanding of plasma-
ll i t ti i H ll th twall interactions in Hall thrusters

Large electron temperature and  
E JH~1cm

secondary electron emission result in 
large particle and wall losses to the 
wall
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Temperature saturation:
- Large quantitative 
di t ith fl id th i
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A fluid theory prediction
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From: Y. Raitses, et al., Phys. Plasmas 13, 014502 2006.



Plasma potential relative to wall: 
fl id t t tfluid treatment                          
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Relies on the assumption of a Maxwellian 
electron energy distribution function.



Wall losses strongly increases due to 
d l t i isecondary electron emission.
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If γ →1: The walls act as an effective energy 
sink and limit Te to  18eV, where γ (Te)=1.



Kinetic studies: high-energy electrons 
i kl l d d l t th EVDFquickly leave and deplete the EVDF.

Most electrons are trapped in theMost electrons are trapped in the 
potential well.

Electrons with ε > eφw leave.

weε φ>

φw

=> Plasma potential relative to the 
wall is smaller.

-eφ(x)

Existing kinetic studies predict an 
isotropic electron velocity 
di t ib ti f ti (EVDF)

f

distribution function (EVDF).

=> No source of high-energy 
electrons to induce SEE
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electrons to induce SEE.
εpeφ

But is it so?
Tsendin, L.D., Sov. Phys. JETP 39, 805 (1974).



Depletion of fast electrons due to wall 
l i ECR di hlosses in ECR discharge

The EEDF as a function of the parallel energy at various coordinates. 
S lid li th th ti l ti t t 1 T L 10 12 4 VSolid lines - the theoretical estimate at p=1mTorr, L=10cm, ϕp=12.4eV.

The EEDF is obtained in particle-in-cell simulations at given total 
energy 1 5ϕ
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Kaganovich, I.D., et al, Phys. Rev. E. 61, 1875 (2000).For more info:



Depletion of fast electrons due to wall 
l i H ll th t h llosses in a Hall thruster channel
Ez=200 V/cm,  Bx=100G

Tex=12eV, Φw =19.4eV !
Not 5Te

Solid: red – bulk electrons, SEE;
green – SEE beam;
blue no SEE

2/xxx vmvw =

blue – no SEE.

Dashed: red – plasma potential, Φw =19.4 V, SEE;

blue – plasma potential, Φw =25.3 V, no SEE;
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p p , w , ;
magenta – Maxwellian, TX = 12.1 eV 



EVDF over velocity parallel to the 
llwalls

•λ >> H ⇒ EVDF is not depleted in the E- field directionλec >> H, ⇒ EVDF is not depleted in the E field direction.

• ⇒ There is a supply of high energy electrons, w >eΦw !

eΦw-eΦw

Bulk electrons with SEE
Bulk electrons with no SEE
M lli EVDF T 36 7 V
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Maxwellian EVDF, Tz = 36.7 eV



3D view of EVDF
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Ez=200 V/cm
Bx=100G

Tx = 12.1 eV

Tz = 36.7 eV
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D. Sydorenko et al, Phys. Plasmas, 13, 014501 (2006).For more info:



The loss cone concept is the key to  
ki ti “d ” f d t diopen kinetic “door” of understanding 

The green circle : particles with energy w > eΦ in theThe green circle : particles with energy w > eΦw in the 
two-dimensional velocity space (vx, vz ). 
The red section of the circle is the loss cone. 

The EVDF in the loss cone is: 
– replenished due to the elasticreplenished due to the elastic 

scattering (from outside of the 
loss cone), 

– emptied by the free flight tow
al

l
emptied by the free flight to 
the walls with the rate 
determined by the transit time
( H/v )

w
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(~ H/vx).



Electron scattering due to elastic collisions with 
atoms and ions governs the electron wall fluxesatoms and ions governs the electron wall fluxes

8TH ⎛ ⎞Φ8 exp
8

ez
e e

c ez

TH n
m Tλ π

⎛ ⎞Φ
Γ = −⎜ ⎟

⎝ ⎠

w
al

l
w

The wall electron flux is reduced by a factor of H/ λc
compared with the calculation assuming an isotropiccompared with the calculation assuming an isotropic 
EVDF.
For typical thruster conditions H/ λc ~ 10-1-10-2.
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Due to the low electron flux to the wall, the 
wall potential is smallwall potential is small
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Since H/λ ~ 10-2, the wall potential decreases from 5Te to 1Te
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Since H/λc  10 , the wall potential decreases from 5Te to 1Te



In self-sustained discharges the EVDF 
i l t i t i !is almost isotropic!

Self-sustained => νiτ=1Self-sustained => νiτ=1
• Ionization balances the wall losses.

Elastic cross sections are large: νen >> νi
=> ν τ>>1=> νen τ>>1.

EVDF i l i t i iEVDF is nearly isotropic, i.e., vT>>vc .
• Thermal velocity, vT is large compared with 

mean velocity v associated with a current

19

mean velocity, vc, associated with a current.

I.D. Kaganovich and L.D. Tsendin, IEEE TPS 20, 66, (1992).For more info:



The reasons for the EVDF anisotropypy

E =200 V/cm B =100G1 ν τ~1 – an electron suffers Ez=200 V/cm,  Bx=100G  
Tx = 12.1 eV, Tz = 36.7 eV

1. νenτ~1 an electron suffers 
several collisions before 
escaping to the walls.

2. νi ~ νen  - Xenon inelastic cross 
sections are large.

3. Consequence: Tx < Tz and vT~ud.

The wall potential in Hall thrusters is small, Φw ~Te => 
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p , w e. 
Most electrons leave plasma and scatter with the same 
frequency.



Secondary electron emission affects 
l tiplasma properties 

Channel wall Secondary electrons emitted 

Γion Γpe

SEEsheath

Ez

Br

Channel wall y
from opposite channel walls form 
counter-streaming beams.

SEEsheath

z

Channel wall
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D. Sydorenko et. al, IEEE Trans. Plasma Sci. 34, 815 (2006).For more info:



The balance of the SEE fluxes from the opposite 
walls affects the wall potentialwalls affects the wall potential.
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SEE coefficients: 
γp ≡Γ2p / Γ1p - SEE due to plasma electrons
γb ≡Γ2b / Γ1b - SEE due to beam electrons 
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⎜
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γb 2b 1b
α ≡Γ1b / Γ2 - penetration coefficient of the SEE beams



If the SEE flux fully penetrates from a wall to the 
opposite wall the SEE currents cancel each otheropposite wall, the SEE currents cancel each other.
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( )pip / γ−Γ=Γ 11If α = 0

pi 1Γ=ΓIf α = 1 The SEE contribution to the 
current balance is canceled.
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E. Ahedo and F.I. Parra,  Phys. Plasmas 12, 073503, (2005). 

I.D. Kaganovich, et al.,  submitted to Phys. Plasmas (2006).
For more info:



The two-stream instability
of secondary electron beams m
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decrease of the SEE fluxes
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For more info:
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D. Sydorenko, et al, VP1.00163
Thursday 2 pm.
To be published in Physics of Plasmas (2006).



The beams of secondary electrons contribute 
to the electron cross field currentto the electron cross-field current.
The large flux in the z direction created by the secondary electrons results in
additional conductivity in the Hall thruster channel.
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The SEE beams electrons contribute to 
reduction of the electric field in the channelreduction of the electric field in the channel.

T Eγ An additional current due to SEE
21

p ex z
bz e

b x

T EmJ n
H M B

γ
γ

≈
−

An additional current due to SEE 
electrons results in low electric field and, 
hence, lower electron temperature. 
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JZ,SEE BEAM [A/m2], PIC 2.3 58.4

JZ SEE BEAM [A/m2], estimated 3.2 68.1
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Conclusions

The Kinetic calculations give values of the electron flux of a fewThe Kinetic calculations give values of the electron flux of a few
orders of magnitude smaller than the values obtained from the
fluid models.

Th ll l t fl i d t i d b th l ti tt i fThe wall electron flux is determined by the elastic scattering of
electrons due to collisions with atoms and Coulomb collisions.

The EVDF is found to be strongly anisotropic: T / T > 2The EVDF is found to be strongly anisotropic: Tez / Tex > 2.

The secondary electron emission (SEE) affects the electron
cross-field transport, but not the wall potential. The electronp , p
energy losses to the walls are almost insensitive to the SEE, in
contrast to conventional wisdom.

Simplified anal tical form las for the plasma potential the all
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Simplified analytical formulas for the plasma potential, the wall
electron flux, and the electron temperatures of the Hall thruster
are derived.
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