Nonlinear effects and anomalous transport in RF plasmas

Francis F. Chen UCLA

2005 Workshop on Nonlocal, Collisionless Electron Transport in Plasmas Princeton PPL, August 2-4, 2005

Selected examples

1. Anomalous skin depth in ICPs

J.D. Evans and F.F. Chen, Phys. Rev. Lett. 86, 5502 (2001).

2. Anomalous transport in helicon discharges

M. Light, F.F. Chen, and P.L. Colestock, UCLA LTP-101 (January, 2001).
M. Light, F.F. Chen, and P.L. Colestock, Phys. Plasmas 8, 4675 (2001).
M. Light, F.F. Chen, and P.L. Colestock, Plasma Sources Sci. Technol. 11, 273 (2002).

3. Parametric instabilities in helicon discharges

- J.L. Kline and E.E. Scime, Phys. Plasmas **10**, 135 (2003).
- J.L. Kline et al., Phys. Plasmas 10, 2127 (2003).
- M. Krämer et al., Proc. EPS Conf. on Plasma Phys. and Control. Fusion, Montreux (2002) **26B**, O4.08.
- B. Lorenz, M. Krämer, V.L. Selenin, and Yu.M. Aliev, Plasma Sources Sci. Technol. 14, ??? (2005).

Three types of ICPs*

*ICP = Inductively Coupled Plasma

Density uniformity in a commercial ICP

UCLA

Data by John Evans

In the plane of the antenna, the density peaks well outside the classical skin layer

Thermal diffusion of fast electrons

Consider the nonlinear effect of the Lorentz force on the motion of an electron in an RF field E_{θ}

$$m\frac{d\mathbf{v}}{dt} = -e\left(\tilde{\mathbf{E}} + \mathbf{v} \times \tilde{\mathbf{B}}\right)$$

An electron trajectory over four RF cycles with and without the Lorentz force F_L

UCLA

The electron's energy is large only inside the skin, if the Lorentz force is neglected

The effect of the Lorentz force is to push the electrons in the radial direction, causing them to bounce off the wall at a steep angle, so that they reach the central region before losing their energy in the next half cycle.

Electron positions after 32,000 time steps

With no losses, the electron energy would just keep rising

Effects included in realistic calculations

• Elastic and inelastic collisions with neutrals (w. probability at given p_0 and local electron velocity)

Losses through the wall sheath (prescribed sheath drop)

• Regeneration of electrons at an arbitrary position with an arbitrary velocity according to a Maxwellian distribution at chosen KT_e.

• Exact skin layer field with collisions and cylindrical geometry included.

Neglected: Motions and gradients in the z direction

Density profile in four sectors of equal area

UCLA

The number of ionizing electrons is largest in the central region

- 1. Ionizing electrons are created throughout the discharge, even outside the classical skin layer
- 2. This population must be treated kinetically, including the nonlinear Lorentz force.
- 3. Density tends to peak on axis because of the long residence time of slow electrons created there.
- 4. To achieve uniform density,

UCLA

IT IS NOT NECESSARY TO HAVE ANTENNA ELEMENTS NEAR THE AXIS!

The "standing wave" effect

A detached current layer

The field of a detached current ring

The "standing wave" effect

Selected examples

1. Anomalous skin depth in ICPs

J.D. Evans and F.F. Chen, Phys. Rev. Lett. 86, 5502 (2001).

2. Anomalous transport in helicon discharges

M. Light, F.F. Chen, and P.L. Colestock, UCLA LTP-101 (January, 2001).
M. Light, F.F. Chen, and P.L. Colestock, Phys. Plasmas 8, 4675 (2001).
M. Light, F.F. Chen, and P.L. Colestock, Plasma Sources Sci. Technol. 11, 273 (2002).
G.R. Tynan et al, Plasma Phys. Control. Fusion 46, A373 (2004).

3. Parametric instabilities in helicon discharges

- J.L. Kline and E.E. Scime, Phys. Plasmas **10**, 135 (2003).
- J.L. Kline et al., Phys. Plasmas 10, 2127 (2003).
- M. Krämer et al., Proc. EPS Conf. on Plasma Phys. and Control. Fusion, Montreux (2002) **26B**, O4.08.
- B. Lorenz, M. Krämer, V.L. Selenin, and Yu.M. Aliev, Plasma Sources Sci. Technol. **14**, ??? (2005).

Max Light's helicon source at LANL

Density vs. B₀ for various gases

 $n(B_0)$ saturates or peaks at a critical field B_{crit} that increases with ion mass. Linear theory predicts n to grow linearly with B_0 .

Density saturates when instability starts

It is a combined drift and Kelvin-Helmholtz instability

Diagnostics

Triple probe for measuring \tilde{n} and \tilde{E}

Capacitance neutralization is used to float two probes for measuring potential oscillations. This is for getting the anomalous $\langle n\phi \rangle$ transport.

This is for neon.

The onset agrees with the maximum theor. growth rate.

But the radial <n∳> flux stops at high B₀.

The radial transport stops before reaching the edge

How does the plasma get out?

U(

Axial ion flow with a Mach probe

The plasma is oscillation-driven to the outside half, where it is then mainly lost by axial flow. This complicated loss mechanism is not entirely understood.

Similar effects were also seen by Tynan et al.*

*J. George, Ph.D. Thesis, UCSD, G.R. Tynan et al, Plasma Phys. Control. Fusion **46**, A373 (2004). M.J. Burin, G.R. Tynan, G.Y. Antar, N.A. Crocker, and C. Holland, Phys. Plasmas **12**, 052320 (2005)

UCSD

A region of large electric field shear

UCSD

Fluctuations do not extend to radial wall

Selected examples

1. Anomalous skin depth in ICPs

J.D. Evans and F.F. Chen, Phys. Rev. Lett. 86, 5502 (2001).

2. Anomalous transport in helicon discharges

M. Light, F.F. Chen, and P.L. Colestock, UCLA LTP-101 (January, 2001).
M. Light, F.F. Chen, and P.L. Colestock, Phys. Plasmas 8, 4675 (2001).
M. Light, F.F. Chen, and P.L. Colestock, Plasma Sources Sci. Technol. 11, 273 (2002).

3. Parametric instabilities in helicon discharges

- J.L. Kline and E.E. Scime, Phys. Plasmas **10**, 135 (2003).
- J.L. Kline et al., Phys. Plasmas 10, 2127 (2003).
- M. Krämer et al., Proc. EPS Conf. on Plasma Phys. and Control. Fusion, Montreux (2002) **26B**, O4.08.
- B. Lorenz, M. Krämer, V.L. Selenin, and Yu.M. Aliev, Plasma Sources Sci. Technol. **14**, ??? (2005).

Introduction to energy coupling in helicons

Detection of parametric instabilities in helicons

Scime's helicon machine at West Virginia

J.L. Kline and E.E. Scime, Phys. Plasmas 10, 135 (2003).

Fluctuation spectra downstream

Electrostatic signal

Magnetic signal

 $f_0 = 11 \text{ MHz}, \quad f_{LH} \approx 9 \text{ MHz}, \quad f_{LF} \approx 1 \text{ MHz}$

Relation to the lower hybrid frequency

 k_{θ} (\blacksquare) and k_{z} (\bullet) of LF wave

Amplitudes of the lower and upper sideband waves

Something happens just above the LH frequency

Other data

The waves are located near the axis

Amplitude of the sideband (○)
grows linearly with the pump (●).
This shows that the sideband is
NOT from parametric decay.

Relation to anomalous ion T₁'s

Parametric excitation of LH waves could cause the high ion T_{\perp} 's. This happens for pump frequency BELOW ω_{LH} at center, but near ω_{LH} at the edge.

Bottom line

The Kline-Scime experiment was the first to detect daughter waves from some sort of parametric decay, but their interpretation of the data was probably wrong. A wave near the LH frequency was seen, but it did not fit into a parametric decay scheme.

Sidebands were seen in the VASIMR space thruster

The B-field was very non-uniform, so no definite conclusions were possible.

Boswell, Sutherland, Charles, Squire, Chang-Diaz, Glover, Jacobson, Chavers, Bengtson, Bering, Goulding, and Light, Phys. Plasmas **11**, 5125 (2004).

Decay into ion cyclotron waves

20

40

60

80 Magnetic Field (Gauss)

100

120

140

16(

O. Sutherland, M. Giles, and R. Boswell, Phys. Rev. Lett. 94, 205002 (2005).

A more definitive experiment on parametric instabilities in helicon discharges

Lorenz, Krämer, Selenin, and Aliev* used:

- 1. Test waves in a pre-formed plasma
- 2. An electrostatic probe array for ion oscillations
- 3. Capacitive probes for potential oscillations
- 4. Microwave backscatter on fluctuations
- 5. Correlation techniques to bring data out of noise

*B. Lorenz, M. Krämer, V.L. Selenin, and Yu.M. Aliev, Plasma Sources Sci.Technol. 14 (2005).

Krämer's machine

A helicon wave at one instant of time

Note that the scales are very different!

Damping rate in the helicon afterglow

The damping rate increases with P_{rf}, showing the existence of a nonlinear damping mechanism.

Excitation of a low-frequency wave

The LF wave is larger with the e.s. probe than with the capacitive probe, showing that the wave is electrostatic. As P_{rf} is raised, the sidebands get larger due to the growth of the LF wave.

UCI

Oscillations are localized in radius and B-field

The fluctuation power and the helicon damping rate both increase nonlinearly with rf power.

UCL

Proposed parametric matching conditions

Evidence for m = 1 ion acoustic wave

The cross phase between two azimuthal probes reverses on opposite sides of the plasma.

 k_{θ} is larger than $k_{r},$ and both increase linearly with frequency.

From the slope one can calculate the ion acoustic velocity, which yields $T_e = 2.8 \text{ eV}$, agreeing with 3 eV from probe measurements.

With a test pulse, the growth rate can be seen directly

From probe data

From µwave backscatter

Growth rate vs. power

Growth rate vs. power

Conclusion on parametric instabilities

Kramer et al. showed definitively that damping of helicon waves by parametric decay occurs near the axis. They identified the decay waves, checked the energy balance, and even checked the calculated instability threshold and growth rate.

However, this process is too small to be the major source of energy transfer from the antenna to the plasma. It is still unknown what happens under the antenna, where it is difficult to measure. It could be that the waves observed were actually created under the antenna but measured downstream.

Conclusion on nonlinear effects in lowtemperature plasma physics

We have given three examples of interesting, fundamental plasma physics problems that occur in partially ionized plasmas. Connection is made with concepts learned from high-temperature, fusion-type plasmas. Low-temperature plasma physics does not have to be dirty science; there are clean, challenging problems to be solved.

UC Irvine, March 11, 2003