Kinetics of Non-Thermal Atmospheric Pressure Plasmas

Alexander Fridman

- Microdischarge Interaction and Structuring in Dielectric Barrier Discharges
- Kinetics of Blood Coagulation in Plasma
- Surface Wound Sterilization Kinetics

Princeton, 2005

Microdischarge Interaction and Structuring in Dielectric Barrier Discharges

Formation of Microdischarges in DBD

Avalanche =>

Streamer =>

Microdischarge

Duration	1-10 ns	Energy	10 ⁻⁷ 10 ⁻⁶ J
Radius	0.1 mm	Electron Energy	1-10 eV
Peak Current	0.1 A		
Current Density	10 ² -10 ³ A/cm2	Electron Density	10 ¹⁴ -10 ¹⁵ 1/cm3
Total Charge	10 ⁻¹⁰ 10 ⁻⁹ C		

Avalanche to Streamer Transition (2D)

System of PDEs that describes avalanches and streamers in DBD

$$\frac{\partial N_{e}}{\partial t} = S + N_{e}\alpha \cdot |W_{e}| - N_{e}\eta \cdot |W_{e}| - N_{e}N_{p}\beta + div (D \cdot grad(N_{e}) - N_{e}W_{e})$$

$$\frac{\partial N_{p}}{\partial t} = S + N_{e}\alpha \cdot |W_{e}| - N_{e}N_{p}\beta - N_{n}N_{p}\beta - div(N_{p}W_{p})$$

$$\frac{\partial N_{n}}{\partial t} = N_{e}\eta \cdot |W_{e}| - N_{n}N_{p}\beta - div(N_{n}W_{n})$$

$$\nabla^{2}\phi = -\frac{e}{\varepsilon}(N_{p} - N_{e} - N_{n})$$

$$E = -\nabla\phi$$

$$|E|$$

Ve

Microdischarge Interaction

Effect of streamer space charge.

- Decrease of |E| near Anode
- Increase of |E| near Cathode

Formation of nearby streamers is suppressed.

Microdischarge Interaction (1D)

Maximum Voltage: 18.4 kV Operating Frequency: 6.8 kHz Power Consumption: ~100 Watts

Area of DBD plasma region: ~104cm²

Quartz Capillary covers high voltage wire

30 frames per second

250 frames per second

High speed camera

Microdischarge Patterning (2D)

Discrete Fourier Transform (DFT) of Experimental Microdischarge Patterns

8

R24

R28

Microdischarge Patterning (2D)

Identified positions of the microdischarges

Voronoi Polyhedra constructed on identified microdischarges

R28 used here as an example, this procedure was applied to all images

Microdischarge Patterning (2D)

3D Non-Continuous Monte-Carlo Model of Avalanche:

Ionization and attachment are included in model, all other collisions are not Monte-Carlo considered.

Position of particle is calculated using displacement due to drift and random displacement due to diffusion.

Drift velocity and diffusion coefficient are function of local electric field. (local field approximation)

Model allows to simulates avalanche development in the discharge and measure statistical properties of avalanches.

$$r(n) = \sum_{i=1}^{n} \eta(i), \quad \eta(i) \text{ - stochastic variable} (normally distributed)$$

$$E[r^{2}(n)] = n \cdot \sigma_{\eta}^{2}$$

$$\sigma_{\eta}^{2} = 2 \cdot D \cdot \Delta t$$

Drift–Diffusion equation can be simulated be means of Wiener process.

Parameters of Wiener process are related to diffusion coefficient and mobility of the particle.

Brownian motion for clusters of many particles: σ^2

$$\sigma_{cluster}^2 = \frac{\sigma_{\eta}}{N}$$

Simulation of particle diffusion by Wiener process

3D Monte-Carlo simulation of series of 10 avalanches

'n

2

3

Standard deviation of the avalanche size from average is higher in the electronegative gas. Thus fluctuations of current are also higher.

Cumulative distribution function of avalanche sizes.

size of avalanche/average size

7

8

6

5

Influence of Microdischarge Interaction on Avalanche-to-Streamer Transition (Meek Condition)

Influence of Microdischarge Interaction on Avalanche-to-Streamer Transition (Modified Meek Condition)

Modified Meek condition for streamer formation: interacting avalanches

$$\frac{-2(R/L)}{-R/L)^2} \approx 1 - (R/L)^2$$

Modified Meek Condition:

 $\alpha d - (R/L)^2 \approx 15.7$

Using pre-ionization density:

Non-Thermal Plasma Blood Coagulation and Sterilization of Surface Wounds

Plasma Medicine

Treatment of Surface Wounds & Skin Diseases (Cutaneous Leishmaniasis)

Wound Sterilization

DBD: 12 KHz, 22KV, 1W/cm², Atmospheric air

In-Vitro Blood Coagulation

Gross/Visual examination:

Normal whole blood treated for 15 seconds completely coagulates in 2 minutes.

Untreated sample coagulates in 13 minutes

In-Vitro Blood Coagulation

Prothrombin Time (PT) analysis:

Prothrombin (Factor II) time of residual blood increases 3 times after 120 seconds of DBD treatment.

- (1) IX+TF-VIIa $\xrightarrow{k_{1}}$ IX-TF-VIIa $\xrightarrow{k_{1}}$ TF-VIIa+IXa
- (2) X+TF-VIIa $\xrightarrow{k_{5}}$ X-TF-VIIa $\xrightarrow{k_{12}}$ TF-VIIa+Xa
- (3) X+VIIIA-IXa $\xrightarrow{k_{5}}$ X-VIIIa-IXa $\xrightarrow{k_{1}}$ VIIIa-IXa+Xa
- (4) $IX+Xa \xrightarrow{k_{15}} Xa+IXa$
- (5) V+Xa $\xrightarrow{k_1}$ Xa+Va
- (6) VIII+Xa $\xrightarrow{k_1}$ Xa+VIIIa
- (7) V+IIa $\xrightarrow{k_2}$ IIa+Va
- (8) VIII+IIa $\xrightarrow{k_1}$ IIa+VIIIa
- (9) II+Va-Xa $\xrightarrow{k_{a}}$ II-Va-Xa $\xrightarrow{k_{u}}$ Va-Xa+mIIa
- (10) mIIa+Va-Xa $\xrightarrow{k_6}$ Va-Xa+IIa
- (11) VIIIa+IXa $\xrightarrow{k_1}_{k_2}$ VIIIa-IXa
- (12) Va+Xa $\xrightarrow{k_{a}}$ Va-Xa

$$\begin{bmatrix} Ca^{2+}R^{2-} \end{bmatrix} + H^{+}_{(B_{1}C)} - \frac{k_{0}}{k_{0}} + Ca^{2+}_{(B_{1}C)} + Ca^{2+}_{(B_{1}C)} + Ca^{2+}_{(B_{1}C)} \\ - \frac{k_{0}}{k_{0}} + H_{1}O^{-}_{(B_{1}C)} + H_{2}O^{+}_{(B_{1}C)} + H_{2}O^{$$

 $\mathbf{N}_{2}^{+} + \mathbf{H}_{2}^{-} \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} + \mathbf{H}_{2}^{-} \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} + \mathbf{H}_{2}^{+} \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} + \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} + \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{+} \mathbf{O}_{\mathbf{P}_{2},\mathbf{Q}}^{$

$$G_{N_{1}^{e}} = 0.3 \frac{1}{100eV}$$

$$\Phi_{N_{1}^{e}} = G \cdot P = \left(0.3 \frac{1}{100eV}\right) \cdot \left(1 \frac{W}{cm^{2}}\right) =$$

$$= \left(0.3 \frac{1}{100eV}\right) \cdot \left(\frac{1}{1.6 \cdot 10^{-19}} \frac{eV}{cm^{2} \cdot sec}\right) \approx 2 \cdot 10^{16} \frac{N_{2}^{+} \text{ ions}}{cm^{2} \cdot sec}$$

$$OH + PHH \xrightarrow{k_{2}^{e}} H_{2}O + PI \cdot$$

$$Phospholipid oxidation$$

"In-Vivo" Blood Coagulation

DBD Treatment of Spleen (cadaver tissue).

"In-Vivo" Blood Coagulation

DBD Treatment of Placenta (explanted tissue).

"In-Vivo" Blood Coagulation

$$\overline{R}_{p}^{\Sigma} = \frac{i}{C_{p}\omega} + R_{p}$$

$$R_{p}^{\Sigma} = \sqrt{\left(\frac{1}{C_{p}\omega}\right)^{2} + \left(R_{p}\right)^{2}}$$

$$R_{h}^{\Sigma} = \sqrt{\left(\frac{1}{C_{h}\omega}\right)^{2} + \left(R_{h}\right)^{2}}$$

$$\sqrt{\left(\frac{1}{C_{p}\omega}\right)^{2} + \left(R_{p}\right)^{2}} >> \sqrt{\left(\frac{1}{C_{h}\omega}\right)^{2} + \left(R_{p}\right)^{2}}$$

Human: C_h =50 pF; R_h =1 MOhm; Plasma: C_p =50 pF; R_p = 5 MOhm

Total Resistance of a human: 1.9 MOhm Total Resistance of DBD: 5-10 MOhm

 $\left(R_{h}\right)^{2}$

Tissue Sterilization Setup

Tissue treatment setup

Tissue treatment by DBD plasma

Tissue Sterilization

Before DBD Treatment

After 1-minute DBD Treatment

Complete sterilization in 4 seconds of DBD treatment from skin flora:

Streptococcus (spherical gram-positive bacteria occurring in pairs or chains; cause e.g. scarlet fever and tonsillitis) **Staphylococcus** (spherical gram-positive parasitic bacteria that tend to form irregular colonies; some cause boils or septicemia or infections)

Yeast (common name for an artificial assemblage of higher fungi which have temporarily or permanently abandoned the use of hyphal thalli; they are unicellular, and vegetative reproduction is generally by budding or fission)

No gross (visible) or microscopic tissue damage in up to 5 minutes of DBD treatment

Tissue sources: cadaver abdomen, leg, and arm skin, plastic surgery discards, wound tissue, and other tissue samples.

Tissue Damage Assessment

Tissue Source: cadaver abdomen (stomach)

CONTROL

15 SECONDS

5 MINUTES

min DBD

Sterilization Kinetic Modeling

Ozone Reactions with various bacteria	Inactivation Rate Coefficient in <u>Air</u> (cm ³ /sec)	Inactivation Rate Coefficient in <u>Water</u> (cm ³ /sec)
O ₃ + Ecoli Inactivated Ecoli	6·10 ⁻¹⁷	2 ⋅10 ⁻¹⁷
O ₃ + Staphylococcus aureus (SA) Inactivated SA	2·10 ⁻¹⁷	2·10 ^{-17*}
O ₃ + Fusarium oxysporum (FO) Inactivated FO	1.10 ⁻¹⁶	1⋅10 ^{-16*}
O ₃ + S. Epidermis (SE) Inactivated SE	1.10 ⁻¹⁵	1.10 ^{-15*}
O ₃ + Streptococcus salivarius (SSI) Inactivated SSI	4 ⋅10 ⁻¹⁷	4 ⋅10 ^{-17*}
O ₃ + Rhizopus stolonifer (RS) Inactivated RS	2 ⋅10 ⁻¹⁷	2 ⋅10 ^{-17*}
O ₃ + Serratia spp. (SS) Inactivated SS	1.10 ⁻¹⁷	1.10 ^{-17*}
O ₃ + Proteus Inactivated Proteus	1.10 ⁻¹⁷	1⋅10 ^{-17*}
O ₃ + Bacillus Megaterium (BM) Inactivated BM	2.10 ⁻¹⁵ *	2⋅10 ⁻¹⁵
O ₃ + Mycobacterium fortuitum (MF) Inactivated MF	3·10 ⁻¹⁵ *	3⋅10 ⁻¹⁵
O ₃ + Leuconostoc Mesenteroides (LMs) Inactivated LMs	4 ⋅10 ⁻¹⁵ *	4 ⋅10 ⁻¹⁵
O ₃ + Listeria Monocytogenes (LM) Inactivated LM	7.10 ⁻¹⁵ *	7 ⋅10 ⁻¹⁵
AVERAGE	~10 ⁻¹⁶	~10 ⁻¹⁶

Sterilization Kinetic Modeling

Streptococcus inactivation by Plasma Ozone (8*10¹⁵ cm⁻³)

Sterilization Kinetic Modeling

Drexel Plasma Institute