


Igor Kaganovich Princeton Plasma Physics Laboratory

10/10/2005



## Organizational Comments (1/3)

- Open Public meeting. Visitors should stay in the open areas of the Laboratory (MBG Auditorium, Spitzer Lobby, Cafeteria).
- US citizens and foreigners who completed the UFNV&A form can be escorted elsewhere during the meeting.
- Visitors from sensitive countries (Israel, Russia, Ukraine) have to be escorted by US citizens.

## **PPPL Cafeteria**

#### Hours of Operation

Breakfast 7:00 - 10:00 AM
Continental Breakfast 10:00 -11:30 AM
Lunch 11:30 AM - 1:30 PM
Snack Service until 2:30 PM

Organizational Comments (2/3)

Meeting is sponsored by volunteers of PS&T Department.

Please contribute \$10 to cover the cost of refreshments.

US Universities are sponsored by PPL-University collaboration program, special thanks to Stewart Zweben.

## Organizational Comments (3/3)

- The main goal of the workshop is to facilitate discussion on nonlocal, collisionless phenomena in low-pressure plasmas.
  - ask questions during talks.
- Many informal discussions are planned to bridge
  - high- and low-temperature plasma communities,
  - DOE lab and Universities.

# Introduction into the Workshop Topic

#### Nonlocal, Collisionless Electron Transport in Plasmas.

#### What is nonlocal?

## What is Nonlocal?

 Electron energy mean free path is large, this allows remote plasma handling via nonlocal electron energy distribution function.



## The treatment has to be kinetic!

Most remote from thermodynamic equilibrium:

- T<sub>e</sub> differs from T<sub>i</sub>

| 3eV                   | 3 10 <sup>-2</sup> eV | glow discharges |
|-----------------------|-----------------------|-----------------|
| 3 10 <sup>-3</sup> eV | 3 10 <sup>-2</sup> eV | afterglow       |
| 10keV                 | 1eV                   | ECR ion sources |

Electron energy distribution functions are nonMaxwellian:

Parts of the EDF are very flexible and almost independent.

## 50 Years of History

#### 1954 - I. Bernstein and T. Holstein

#### Positive column of dc discharge

• This results in higher specific ionization rate but effect is not so great....

#### 1974 - L. Tsendin

- Positive column of dc discharge
- Striations in dc discharge

#### 1990 - Germany, Italy, Russia, USA

RF discharges, anode and cathode regions of dc discharges

# Applications of Low-temperature Plasmas

- Plasma processing of materials
- Lighting
- Gas discharge lasers
- Plasmas for electric propulsion
- Plasmas for pollution control and reduction
- Plasma isotope separation

# Diagnostic and Simulation Advances

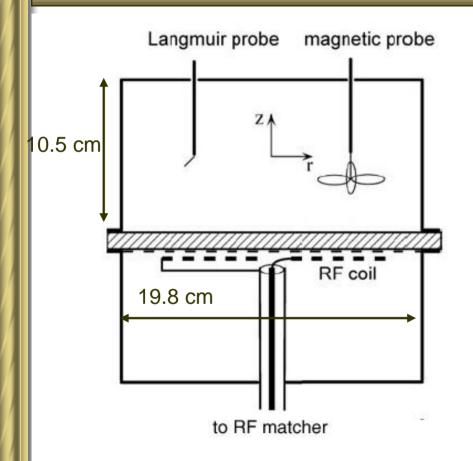



Figure 1. Experimental discharge chamber.

#### Measurements: – EDF, n<sub>e</sub>, T<sub>e</sub>, E, B, φ, u<sub>i</sub>, Γ<sub>e</sub>, Γ<sub>i</sub>, LIF/spectroscopy

Simulations: PIC Boltzmann

# Is it challenging/ interesting/ wellunderstood?

Is it challenging / interesting/ wellunderstood?

Plasma is highly

- Nonlinear
- Nonlocal
- Collisionless

Results are often unexpected and surprising



Non-monotonic EEDF yields **Negative Plasma Conductivity!** EDF afterglow Ar:NF<sub>3</sub> E/N=2 10<sup>-17</sup> Vcm<sup>2</sup> 0, 0.25, 1, 3, 5, 10 ns. N.A. Dyatko, et al., Plasma Phys. Rep. 1998  $\mu = -\frac{2e}{3m} \int u^{1/2} \lambda \frac{df(u)}{du} du < 0$  $f(u, t), eV^{-3/2}$ 10  $10^{0}$ 4, 5, 6 10-1  $10^{-2}$ 5,6 10-3  $10^{-4}$ E  $10^{-5}$  $10^{-6}$ 10-7  $10^{-8}$ Total electron flux is directed 12 14 2 10 8 6 u, eV

opposite to the electric field<sup>15</sup>

# Workshop Program Logic: informal discussion on experiments, theory, simulations:

| August 2                                  | August 3           | August 4                            |
|-------------------------------------------|--------------------|-------------------------------------|
| Link to high-<br>temperature<br>plasmas   | Diagnostics        | Simulations                         |
| Magnetized low-<br>temperature<br>plasmas | Theory             | Theory,<br>Link to laser<br>plasmas |
| Poster session                            | Modeling<br>Dinner | High- pressure<br>discharges        |