

Electron transport in closed E×B drift devices

Michael Keidar University of Michigan

Isak I Beilis Tel Aviv University

Acknowledgement: Iain D. Boyd, I.G. Levchenko Support: NASA, AFOSR, Aerojet

Princeton, August 2005

Outline

- Plasma devices with E×B drift
 - PIII with magnetic control
 - Magnetrons
 - Hall thruster
- Electron transport issues overview
- Electron transport model
 - near wall conductivity
- Summary

Plasma immersion ion implantation

Electron drift

To control sheath (breakdown vs expansion)

Keidar et al. Appl. Phys. Lett, 2002

Magnetrons

Appl. Phys. Lett, 2004

Magnetrons

$$\frac{\partial \varepsilon_e}{\partial r} = E - \psi_e \varepsilon_i$$

$$\mu_{et.B} = \frac{1}{\alpha B}$$

$$\frac{\partial f_i}{\partial r} + \frac{eE}{m_i V_i} \frac{\partial f_i}{\partial V_i} = \frac{n_a}{V_0 V_i} \int_0^\infty \sigma_i V_e f_e dV_e$$

$$j_e(r) = e \cdot n_e \cdot \mu_{et.B} E = \frac{e \cdot n_e \cdot E}{\alpha B}$$

E from experiment

Levchenko et al. submitted Phys. Plasmas

Hall thruster

B~0.01 T E~10⁴ V/m $n_e \sim 10^{17} m^{-3}$ h~1 cm

Plasma flow modeling approach in Hall thrusters

- $\partial (nV_z)/\partial z + \partial (nV_r)/\partial r + nV_r/r = \beta n_i n_a$
- $V_z \partial V_z \partial z = -V_r \partial V_z \partial r + e/mE_z \beta V_a n_a$
- $V_z \partial V_r \partial z = V_r \partial V_r \partial r + E_r$
- $j_{er}=0;$ ϕ $T_e lnn = const$
- $j_{ez} = en\mu/(1+(\omega v)^2) (E_z + \partial T_e/\partial z + T_e\partial lnn/\partial z)$
- $3/2\partial (j_e T_e)/\partial z = Q_j Q_w Q_{ion}$

2D part

1D part

Electron collisions

Neutrals
$$v_{en} = n_a \sigma_{ea} V^e_{th}$$

Bohm $v_B = \alpha \omega_e$
 $(\alpha \sim 1/16)$
wall $v_{ew} \sim V^e_{th}/h$

- Bohm-type:
 - Ahedo: 1/80
 - Fife: 1/100
 - Keidar: 1/40
- NWC:
 - Garrigues: 0.2e7 s⁻¹
 - Koo: (0.2-0.3)e7 s⁻¹

Various models were developed PIC, hybrid, hydrodynamic All relay on some anomalous coefficient

Density & velocity distribution

density

Keidar et al. Phys. Plasmas, 2001

Thruster with Anode Layer

Keidar et al. Phys. Plasmas, 2004

Modeling assumptions State-of-the- art

- Electron conductivity mechanism
 - Bohm (plasma turbulence)
 - Near wall conductivity
- Current (potential) distribution
 - "thermalized" potential
 - Uniform current

Non-uniform electron transport in HT

current conservation

$$j_{r} = \sigma(-\frac{\partial \varphi}{\partial r} + \frac{\partial T_{e}}{\partial r} + T_{e}\frac{\partial \ln n}{dr})$$
$$j_{z} = \frac{\sigma}{(1+\beta^{2})}(-\frac{\partial \varphi}{\partial z} + \frac{\partial T_{e}}{\partial z} + T_{e}\frac{\partial \ln n}{\partial z})$$

Keidar et al. Appl. Phys. Lett, 2004

Plasma oscillations

- May be in support of Bohm anomalous mobility
- Experimental evidence in Hall thruster
 - Dependent on mass flow rate, discharge voltage, facility, magnetic field, cathode

2D PIC-MCC

Oscillations

B~0.01 T E~10⁴ V/m $n_e \sim 10^{17} m^{-3}$ h~1 cm

Band	Nature	conditions	Experiment	Simulations
1-20 kHz	Discharge oscillations (contour) Ionization "breathing mode"	PPU	yes	yes
5-25 kHz	Rotating spoke azimuthal	Ionization process	yes	
20-60 Hz	Gradient induced	dB/dz<0	yes	Theory (Morozov)
20-100 kHz	Azimuthal waves	Gradient- driven or ionization	yes	
70-500 kHz	Transient-time Axial electrostatic wave	U _i /L	yes	Hybrid code
0.5-5 MHz	Azimuthal, 5-8 MHz	Rayleigh	yes	Theory (Litvak et al) Gradient magnetic field, density, electron drift velocity

Choueiri, Phys. Plasmas, 2001

Oscillations

- Drift-dissipative
 - $\omega_d = k \left(\frac{T_e}{B}\right) \frac{\langle n \rangle}{n}$

• Diffusion

$$D \sim \lambda_{\perp}^2 \gamma$$

- $D \sim T_e/B$
- Maximum increment

$$\gamma \sim \omega_d \sim \left(\frac{T_e}{B}\right) \frac{\langle n \rangle}{n}$$

$$D = \frac{1}{16} \cdot \frac{T_e}{B} \qquad \text{Bohm}$$

Alcock & Keen, 1970 Afterglow plasmas Conditions similar to Hall thrusters

Near wall conductivity

Original model Morozov, 1968-2000 Bugrova, 1985 (experiment)

Recent Ivanov & Bacal (neutralization) Barral (sheath effect)

Mean free path:~1 mDistance between wall:~1 cm

Near wall current

X

Ζ

e

Characteristics

 $\frac{dV_x}{dt} = -\omega V_z$

1τ 2

У▲

Collisionless kinetic equation

$$\frac{\partial f}{\partial t} + V \frac{\partial f}{\partial r} - \frac{e}{m} (E + V \times B) \frac{\partial f}{\partial v} = 0$$

Emitted electrons

$$f(v) = n_0 \left(\frac{m}{2\pi kT_w}\right)^{3/2} \exp(-\frac{mV^2}{2kT_w})$$

Electron dynamics

Near wall current

Axial electric field effect on SEE

In sheath: $E_z \sim 10^4 \text{ V/m}$; $E_r \sim 10^5 \text{ V/m}$

Axial E-field. Current enhancement

space charge saturated sheath

Summary

- PIII, magnetrons, Hall thrusters have similar physics, ExB drift. This leads to efficient ionization and high electric field in the quasi-neutral plasma region
- Electron transport is largely determined by properties of the drift region (walls, plasma oscillation)
- Anomalous transport mechanism is needed to explain electron current in most cases (Bohm, NWC)
- Conditions for both mechanisms are different and required further evaluation for each specific device