

Better Decisions, Better Products Through Simulation & Innovation

Simulation of Electron Kinetics in Gas Discharges

by

Vladimir Kolobov and Robert Arslanbekov

2005 Workshop on Nonlocal, Collisionless Electron Transport in Plasmas

Princeton, NJ August 4, 2005

CFD Research Corporation

www.cfdrc.com

215 Wynn Drive • Huntsville, Alabama 35805 • Tel: (256) 726-4800 • FAX: (256) 726-4806 • info@cfdrc.com

 An overview of basic models for simulations of electron kinetics in gas discharges

CFDRC

- Examples of simulations using CFD-ACE+
 - Inductively Coupled Plasmas
 - Capacitively Coupled Plasmas
 - Direct current glow discharges with different electrodes
 - Physical phenomena in Positive Column of rare gases
 - Ionization Waves (Striations) in rare gases
- Simulations using UFS collisionless effects with Vlasov & PIC codes

Hierarchy of transport models for electrons

6D : J Boltzman Ki	$f(\vec{v}, \vec{r}, t)$ netic equation
$\frac{\partial f}{\partial t} + div_r(\vec{u}f) + div_r$	$+ div_v(\vec{af}) = S(f)$
$vt > \lambda$	velocity correlation time
4D : f Fokker-Pla	$r_0(v,\vec{r},t)$ nck equation
$\frac{\partial f_o}{\partial t} + div$	$v\vec{\Gamma} = S_o(f_o)$
$\Gamma_{\alpha} = V_{\alpha} f_{\alpha} + D_{\alpha}$	$\beta \frac{\partial f_o}{\partial x_{\beta}} \qquad \alpha, \beta = 14$
$v_{l}t > \lambda_{u}$	energy correlation time
<i>3D :</i> Drift-Diffu	$n(\vec{r},t)$ usion model
$\frac{\partial n}{\partial t} + di \upsilon (\vec{\upsilon}$	$_{d}n - D\nabla n) = I$

Two-terms Spherical Harmonics Expansion

CFDRC

$$\mathbf{f}(\mathbf{r}, \mathbf{v}, t) = f_0(\mathbf{r}, v, t) + \frac{\mathbf{v}}{v} \cdot \mathbf{f}_1(\mathbf{r}, v, t)$$
$$\frac{\partial f_0}{\partial t} + \frac{v}{3} \operatorname{div}(\mathbf{f}_1) + \frac{1}{3v^2} \frac{\partial}{\partial v} \left(v^2 \frac{e\mathbf{E}}{m} \cdot \mathbf{f}_1 \right) = S_0[f_0]$$
$$\frac{\partial \mathbf{f}_1}{\partial t} + v_m \mathbf{f}_1 + \mathbf{f}_1 \times \mathbf{\omega}_B = -v \nabla f_0 - \frac{e\mathbf{E}}{m} \frac{\partial f_0}{\partial v}$$

momentum equation with a scalar pressure term

$$\frac{\partial n\mathbf{v}}{\partial t} + n(v_m\mathbf{v} + \mathbf{v} \times \mathbf{\omega}_B) = -\nabla(\frac{1}{3}nv^2) - \frac{ne\mathbf{E}}{m}$$

Limitation: in this approximation, the mean electron velocity is a *local* function of the electric field.

FPE for Electrons in Collisional Plasmas

$$\mathbf{v}\frac{\partial f_0}{\partial t} - \nabla \cdot \left[\chi \left(\nabla f_0 + \nabla \phi \frac{\partial f_0}{\partial u} \right) \right] -$$
(a)

$$\frac{\partial}{\partial u} \left[\chi \nabla \phi \cdot \left(\nabla \phi \frac{\partial f_0}{\partial u} + \nabla f_0 \right) + Y_{ee} \left(Cf_0 + D \frac{\partial f_0}{\partial u} \right) + vV_T f_0 + vD_E \frac{\partial f_0}{\partial u} \right] = vS$$
(b)
(c)
(d)
(e)
(f)

- a) Transport in Configuration Space
- b) Heating/Cooling by the Electrostatic Field
- c) Coulomb Collisions
- d) Quasi-elastic Collisions
- e) Heating by alternating electromagnetic fields
- f) Inelastic Collisions

$$\mathcal{E}=u-\phi(\mathbf{r},t)$$

$$\frac{\partial}{\partial t} (vf) - \frac{\partial \phi}{\partial t} \frac{\partial}{\partial \varepsilon} (vf) - \nabla \cdot \chi \nabla f - \frac{\partial}{\partial \varepsilon} \left[Y_{ee} \left(Cf + D \frac{\partial f}{\partial u} \right) + vV_T f + vD_E \frac{\partial f}{\partial u} \right] = vS$$

- using total energy as independent variable eliminates complicated cross-terms in FPE and facilitates numerical solution
- the price for this simplification is more complicated boundary conditions for the trapped electrons which have to be defined on the surface of zero *kinetic* energy $\mathcal{E}=-\phi(\mathbf{r},t)$
- the energy range may substantially increase to reflect the entire range of $\phi(\mathbf{r},t)$ variation in computational domain

Direct Current Glow Discharges

SPICE circuit

Ar gas at pressures of 3 and 6 Torr

 \triangleright Discharge current I = 1µA-1A, voltage U = 200-400 V

X

axis

Current Voltage Characteristics

Direct Current (DC) glow discharges have been studied for over a century. These discharges exist in different modes (Townsend, subnormal, normal, abnormal, etc). The transition between these modes is accompanied by redistribution of electric fields and spatial parameters of the plasma.

Subnormal Oscillations

CFDRC

Simulations of positive column in rare gases

Electron density, temperature & potential profiles: Ar, 1 mA

 \otimes *E*_z = 6.9, 6.2, 12.1, 31.3, 64.9, and 131.7 V/cm for *p* = 1, 5, 10, 25, 50 and 100 Torr.

- Electron density profiles resemble a Bessel distribution
- Electron temperature profiles become more flat as pressure increases.
- potential well depth increases with pressure

Simulations of positive column in rare gases

Density of excited species: Ar, 1 mA

- non-monotonic distribution is more pronounced for Ar* than for Ar_r*
- at pressures < 5 Torr and > 50 Torr, the density maximum is on axis potential well depth increases with pressure

Simulations of positive column in rare gases

Excitation rates: Ar, 1 mA

• Excitation rates have on axis maximum at p < 5 Torr and p > 50 Torr

R.Arslanbekov et al., Applied Physics Letters 85 (15), October (2004)

CFDRC

Moving Striations in Rare Gases

• Striations have been studied for more than a century. They were observed

- at pressures 10⁻³-10³ Torr and currents 10⁻⁴-10 A in almost all gases
- Striations as a test bead for advanced plasma models: accuracy of kinetic models of gas discharges can be checked versus experimental observations accumulated over a century of studies
- Striations as a research tool: detailed information about the high energy part of the EEDF can be obtained, cross section set can be verified
- Striations as nonlinear systems: ideal object for studies of nonlinear phenomena and self-organization.

Standing striations in Hydrogen

p=0.66 Torr, i=17 mA, R=2.5 cm

CFDRC

p=0.3 Torr, i=80 mA, R=2.75 cm

cathode is on the left

Different States of PC in Neon

Symbols denote experimental data for different R

•Curve 1: Low Current Boundary

•Curve 2: High Current (Pupp's) Boundary

•*Curve 3:* Low Pressure Boundary

•Area II: Current Constriction

•Area IV: Optical Constriction

•Area III: regular or chaotic striations (depending on tube length)

•Area V: Kinetic Striations (P, R, S types)

•Area VI: Hydrodynamic striations: ωk=const

2D Simulations of Striations in Argon

• 2 Torr, 100 mA, cylindrical tube of length L = 20 cm and radius R = 1 cm, cathode on the left, anode on the right. The tube wall is dielectric. Simulation takes about 30 hours on a 1 GHz computer.

• Negative-glow region near the cathode with a large plasma density, about 3-4 striations excited along the tube.

• Striations are self-excited; they initially appear near the cathode and propagate towards the anode, group velocity is directed from cathode to anode. The phase velocity is directed from the anode to the cathode ("backward waves")

Moving Striations in Dynamics

X-Axis

0.15

Y-Axis

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

1.2

1.1

0

0.05

0.1

Distributions of Various Parameters

Inductively Coupled Plasmas

Deterministic Boltzmann solver for electrons based on two-term SHE, coupled to continuum ICP model

- > Implicit Poisson solver and non-uniform mesh resolving sheath regions
- Drift-diffusion or momentum equation for ions
- Continuum model for neutral species, gas phase and surface reactions

Gas heating (in the entire reactor) with temperature jump conditions at plasma boundaries

Continuum gas flow model with slip wall boundary conditions, maintaining constant gas pressure in the reactor

Maxwell solver for vector magnetic potential in time and frequency domains

Chemistry & Cross Section Data

No.	Reaction	Notes	Af	nf	pf	(E/R)f
1	E+AR->AR+E	Mom. Transfer	0	0	0	0
2	AR+E->AR*+E	Ar* excitation	0	0	0	0
3	AR+E->AR**+E	Ar** excitation	0	0	0	0
4	AR+E->AR++2E	Direct Ionization	0	0	0	0
5	AR*+E->AR++2E	stepwise ionization 1	0	0	0	0
6	AR*+E->AR+E	superelastic 1	0	0	0	0
7	AR*+E->AR**+E	excitation	0	0	0	0
8	AR**+E->AR+E	superelastic 2	0	0	0	0
9	AR**+E->AR++2E	stepwise ionization 2	0	0	0	0
10	AR**+E->AR*+E	de-excitation	0	0	0	0
11	2AR*->AR++AR+E	Penning Ionization	1E-015	0	0	0
12	2AR**->AR++AR+E	Penning Ionization	1E-015	0	0	0
13	AR**+AR*->AR++AR+E	Penning Ionization	1E-015	0	0	0
14	AR**->AR*	Penning Ionization	100000	0	0	0

Reaction mechanism and electron collision cross section data are from Vasenkov & Kushner, Phys. Rev. E 66, 66411 (2002)

Ar* denotes Ar(4s) with excitation threshold 11.6 eV Ar** denotes Ar(4p)

The simulated Osram Sylvania ICP

CFDRC

• Spatially resolved experimental EEPF measurements are performed on the axis of the reactor and at r=4 cm

Effect of Ion Inertia

-CFDRC

ICP in Argon, 0.3 mTorr, 100W

Solving momentum equations for ions allows simulations of plasma sources at very low gas pressures

Ion inertia becomes crucial at gas pressures below 10 mTorr

15-

10-

5-

5.5-

5-0-

EEPF depends solely on total electron energy, no explicit dependence on spatial position

10mT, 6.8 MHz

no gas heating

Motivation:

 Time (RF cycle) resolved data are important for insight into ICP reactor operation. For example, recent time resolved light emission data show interesting behavior in (2D) space and time

Simulation reactor and operation conditions:

- Osram-Sylvania ICP reactor: Ar gas, 10 mTorr
- RF frequency from 450 kHz to 13.6 MHz. Simulations are presented for frequency of 450 kHz.
- Coil currents up to 200 A and RF powers 50 400 W

Pulsed ICP Simulations

- Osram-Sylvania ICP reactor: Ar gas, 10 mTorr, 6.8 MHz
- Pulsed (square) coil current: 50-400 A
- Pulse length: 30 and 50 μs
- Repetition rate : 100 μs
- fluid model for heavy particles (ions and neutrals)
- Boltzmann solver (2D space and 1D energy) for electrons. Total energy formulation is used.

NO.	Reaction	Notes	Af	nf	pf	(E/R)1
	E+AR->AR+E	Mom. Transfer	0	0	0	0
2	AR+E->AR++2E	Direct Ionization	0	0	0	0
\$	AR+E<->AR*+E	metastable excitation	0	0	0	0
	AR+E->AR+E	elec. excitation	0	0	0	0
5	AR*+E->AR++2E	stepwise ionization	0	0	0	0
5	2AR*-≻AR++AR+E	Penning Ionization	6.2E-16	0	0	0
1						
		Add Step Delete St	ep			
Eq	uation: E+AR->AR+E	Name:		Notes:	Mom. Tra	insfer
Eq	uation: E+AR->AR+E	Name:	_	Notes:	Mom. Tra	insfer

- 5-step mechanism with Ar ions and metastables.
- simulations take 1-2 days of computational time on 1 GHz processor

50 µs pulse, low coil current: time evolution

 small "ripples" on Te are numerical due to finite energy resolution in the Boltzmann solver

CFDR

 I=100A, low current operation: plasma does not reach steady state during active phase

50 μ s pulse, low coil current: power on

50 μ s pulse, low coil current: power off

EEDF @ different locations

- EEDF body is Maxwellian in afterglow
- EEDF is depleted at energies higher wall potential (~4.5 V)
- There is a well pronounced peak @ ~12eV due to fast electron production in collisions of slow electrons with metastables

Hybrid kinetic/fluid simulation of ICP in Argon have performed in a wide range of discharge conditions to investigate the importance of different model assumptions on plasma properties

The key features of the model include:

deterministic Boltzmann solver for electrons non-uniform grid to resolve potential drops in the sheaths ion inertia effects gas heating with velocity slip and temperature jumps at the walls gas flow to maintain constant pressure in the reactor

Known limitations of the electron kinetic model:

no magnetic field effect on electron kinetics no stochastic heating and anomalous skin effect

Kinetic simulations of capacitively coupled plasmas with external circuit

Ar, 400 mTorr, 400 V

> higher pressures \Rightarrow the plasma density profile is broader

The average electron temperature decreases from the plasma center towards the RF sheathes, and then increases in the sheathes

CFDRC

The temporal evolution of the EDF is small during one RF cycle

Electron Distribution Function: CCP, 100 mTorr Discharge Center @ 3 time moments

nonlocal Boltzmann equation for electrons

CFDRC

> The low-energy peak of the EDF is responsible for the $\langle u \rangle$ profile: low $\langle u \rangle$ in center is indication of nonlocal regime

The bulk EDF shows almost no time evolution, the high energy tail oscillates significantly

Results for CH₄ CCP Discharges

Discharge gap 3 cm, gas pressure 140 mTorr, RF voltages 50-400 V

> Compare results with Ivanov *et al* paper

[1] V. Ivanov, O. Proshina, T. Rakhimova, A. Rakhimov, D. Herrebout and A. Bogaerts, "Comparison of a one-dimensional particle-in-cell– Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge," J. Appl. Phys. **91**, 6296 (2002).

54-step reaction mechanism with 33 species

📄 Reactio	on Manager ASMA		м	echanism Name: methane-hy	drogen Notes: Cros	s sections are ta	ken from JIL.	A database	a, University o	if Colorado	C cgs @
wethane-hydrogen		м	Mechanism Type: Finite-Rate (Species fraction approach) - General Rates C Mass Action								
			N	o. Reaction	Notes	Af	nf	pf	(E/R)f	Ab r	nb p
			2	CH4+E->CH4+E CH4+E->CH4+E	vibrational excitat vibr deexcitation	tion O O	0	0	0		
			3	CH4+E->CH4+E	vibr 0.361	0	ů	ñ	ů		
			4	CH4+E->CH3+H+E	101 0.001	n n	ñ	ñ	ñ		
			5	CH4+E->CH2+2H+E		0	ů	0	ů		
			6	H2+E->H2+E	vibr	ů.	0	0	Ū.		
			7	H2+E->H2+E	vibr	0	0	0	0		
			8	H2+E->H2+E	vibr	0	0	0	0		
			9	H2+E->2H+E	dissociation	0	0	0	0		
Collisio	n Cross Sec	tion	× 1	0 C2H6+E->C2H6+E	vibr	0	0	0	0		
mber of P	airs: 46	OK Import	1	1 C2H6+E->C2H6+E	vibr	0	0	0	0		
			1	2 C2H6+E->C2H6+E	vibr	0	0	0	0		
E	nergy(eV)C-S(A	Angstrom^2) 🛓	1	3 C2H6+E->C2H5+H+E		0	0	0	0		
1	0	0	1.	4 C3H8+E->C3H8+E	vibr	0	0	0	0		
2	0.162	0.1	1	5 C3H8+E->C3H8+E	vibr	0	0	0	0		
3	0.18	0.3	1	6 C3H8+E->C2H4+CH4+E		0	0	0	0		
4	0.2	0.4	1	7 C2H4+E->C2H4+E	vibr	0	0	0	0		
5	0.25	0.4	1	8 C2H4+E->C2H4+E	vibr	0	0	0	0		
0	0.20	0.7	1	9 C2H4+E->C2H2+2H+E		0	0	0	0		
-	0.20	0.72	2	0 C2H2+E->C2H2+E	vibr	0	0	0	0		
1	0.3	0.7	2	1 C2H2+E->C2H2+E	vibr	0	0	0	0		
8	0.35	0.6	2	2 C2H2+E->C2H2+E	vibr	0	0	0	0		
9	0.4	0.45	2	3 CH4+E->CH4++2E		0	0	0	0		
0	0.45	0.4	2.	4 CH4+E->CH3++H+2E		0	0	0	0		
1	0.5	0.35	2	5 H2+E->H2++2E		0	0	0	0		
2	0.6	0.3	2	6 C2H6+E->C2H4++H2+2E		0	0	0	0		
3	0.7	0.28	2	7 C2H4+E->C2H4++2E		0	0	0	0		
4	0.8	0.27	2	8 C2H2+E->C2H2++2E		0	0	0	0		
5	0.9	0.26	1			4 55 45	<u>^</u>	<u> </u>	<u> </u>]
- 6	1	0.25				Add Step Del	ete Step				
7	13	0.25									
' 8	1.0	0.20						- Name	F .		
0	1.0	0.25		=quation: CH4+E->CH4+E				Name:	lel	Notes: vib	rational exc
3	2	0.27	-	C Arrhenius 💿 Collision Cros	s Section T Backward F			Define Thi	rd Body Effici	encies Energ	v Loss: Tr
								e elline IIII	in boxy-cillor	energy - inorg	<u>F</u>
		Close	J I L	Forward Reaction Rates (Kmol	m K. s / Plasma: m ev s) - ,						
				Define Collision Cross Section							
				1							_
		81									

FDF
CH_4 , 140 mTorr, 400 V

in the model in Ivanov *et al.*

FIG. 3. EEDF at different distances between the electrodes at a pressure of 0.14 Torr and an input power of 25 W, calculated with the PIC–MC model (solid lines) and as a result of solving the homogeneous Boltzmann equation in the two-term approximation, used in the fluid model (dashed line) at an average electron energy of 5 eV.

Unified Flow Solver

Unified Flow Solver

low pressure

high pressure

density

Kinetic region

UFS extensions for plasma simulations

• We have added to UFS a Poisson solver that has the automatic mesh refinement etc. The figure below shows the solutions of the Poisson equation with a fixed BC at the left boundary = 100 V, and the rest BCs are zero BCs

• We have implemented a simple plasma model, which includes Poisson equation + 3-momentum equations for electrons + 1st momentum for ions:

- ions are assumed to be frozen.

- energy equation for electrons is not solved: constant Te = 1 eV is assumed and

ionization is calculated as a function of local E/N.

Simulations of collisionless effects

Vlasov equation is solved numerically

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} - \frac{eE(x,t)}{m} \frac{\partial f}{\partial v_x} = 0$$

• Simple model of collisionless sheath is considered: electric field is

CFDRC

• Particles are injected from one (left) side with a given distribution function:

Electrons: half-Gaussian, n=1 and T=1, lons: Maxwellian (Gaussian) shifted by Bohm velocity

CFDRC

density vs time

Grid adaptation in physical space based on density gradient

Frequency dependence of electron distribution function

Electron distribution function (continued)

Ion distributions in the sheath

• CFD-ACE+PLASMA has been used for simulations of different plasma devices and processes. The Plasma Technologies Branch at CFDRC continues to develop advanced plasma models and customize CFD-ACE for user's needs

CFDRC

- There are several limitations of the physical model and numerical algorithms implemented in CFD-ACE
 - Rarefied Gas Dynamics effects can not be calculated
 - Solution Adaptive Grid capabilities
 - Collisionless phenomena and fast plasma processes related to electron inertia effects can not be simulated
 - Rarefied Gas Dynamics
- We have started R&D work to expand our Unified Flow Solver for Plasma Simulations

- Drs N.Zhou, A.Vasenkov, D.Sengupta at CFDRC
- Drs A.Kudriavtsev, E.Bogdanov & Mr E.Toinov at St Petersburg University, and Prof Lev Tsendin at St Petersburg Technical Uni.
- Prof Mark Kushner at the University of Illinois
- Prof Mounir Laroussi at the Old Dominion University
- National Science Foundation
- Air Force Office of Scientific Research
- The Next Step to Market Program of the US Dept. of Commerce
- The SABIT Program of the US Dept. of Commerce
- A number of industrial companies supported plasma development at CFDRC

10mT, 6.8 MHz

CFDRC

100mT, 6.8 MHz

100

0.1

1 mT, 100 W, With Gas Heating

Gas Temperature

There is strong temperature jump (slip wall)

Temperature at outlet is = room temperature Outlet is important for maintaining constant

Outlet is important for maintaining constant pressure

Electron density

10 mT, 100 W, With Gas Heating

Gas Temperature

Temperature jump is smaller than @ 1mTorr

Temperature at outlet is room temperature

Electron density

Electron temperature

100 mT, 200 W, With Gas Heating

Gas Temperature

Temperature jump is small at this pressure

Electron density

Electron temperature

Summary of Results with Gas Heating

Gas heating is maximum at higher pressures

Electron density agrees rather well with experiments

Plasma potential is larger at lower pressures

- fluid model for heavy particles (ions and neutrals)
- Boltzmann solver (2D space and 1D energy) for electrons. Total energy formulation is used.
 Instantaneous RF heating (energy diffusion coefficient) is used in order to resolve electron kinetics during RF cycle
- Electromagnetic Module both in frequency and time domains

Ν٥.	Reaction	Notes	Af	nf	pť	(E/R)f
	E+AR->AR+E	Mom. Transfer	0	0	0	0
	AR+E->AR++2E	Direct Ionization	0	0	0	0
	AR+E<->AR*+E	metastable excitation	0	0	0	0
	AR+E->AR+E	elec. excitation	0	0	0	0
5	AR*+E->AR++2E	stepwise ionization	0	0	0	0
5	2AR*->AR++AR+E	Penning Ionization	6.2E-16	0	0	0
1		Add Step Delete St	ep			2
Eq	uation: E+AR->AR+E	Name:		Notes:	Mom. Tra	ansfer

- 5-step mechanism with Ar ions and metastables.
- simulations take 1-2 days of computational time on 1 GHz processor

Boltzmann Equation with Time-Dependent RF Heating

$$\frac{\partial}{\partial t} \begin{pmatrix} a \\ vf \end{pmatrix} - \frac{\partial \phi}{\partial t} \begin{pmatrix} b \\ \partial}{\partial \varepsilon} \begin{pmatrix} vf \end{pmatrix} - \nabla \cdot \chi \nabla f - \frac{\partial}{\partial \varepsilon} \begin{bmatrix} Y_{ee} \begin{pmatrix} d \\ Cf + D \frac{\partial f}{\partial u} \end{bmatrix} + v \begin{bmatrix} e \\ V_T f + v \end{bmatrix} = v \begin{bmatrix} g \\ \partial u \end{bmatrix} = v S$$

- a) Transient
- b) Convection due to time-varying electrostatic potential
- c) Transport in configuration space
- d) Coulomb collisions
- e) Quasi-elastic collisions
- f) Heating by alternating electromagnetic fields
- g) Inelastic Collisions

Total Energy Formulation

$$\varepsilon = u - \phi(\vec{r}, t)$$

Energy Diffusion Coefficient Due to instantaneous RF field:

$$D_E = \frac{1}{6} \frac{\tilde{E}_{rf}^2(\vec{r})}{1 + (\omega/\nu)^2} \frac{\nu^2}{\nu} \left[1 + \cos(2\omega t) + \frac{\omega}{\nu} \sin(2\omega t) \right]$$

 $ilde{E}_{r\!f}(ec{r})$ - amplitude of RF field (real+imaginary)

Time resolved ICP: time evolutions

CFDRC

 modulation of ne and Te takes place at second harmonic of main frequency 450 kHz

Time resolved ICP: EEDFs

reactor center

near coil

- modulation of EEDF mainly in the tail portion
- modulation of EEDF stronger near coils

Time resolved ICP: 2D instantaneous profiles in RF cycle

modulation of electrostatic potential follows that of Te

Modeling of DC Micro Discharges

t = 0.00018s

N e(1/m**3)

3E+17-

☐ Used in various applications such as MEMS technology

⊠ p=1-10 Torr, U =300-500V, d = 1-10mm

🖂 gas air, pure nitrogen

Experimental results \Rightarrow

🖂 modeling shows similar picture

electron density

4 Torr, 450 V, N₂

6 Torr, 450 V, N₂

Micro Discharge: Calculation of the EDF

☑ predicted EDF shows typical behavior in DC glow discharge i tail of EDF formed by progeny electrons ejected from cathode body of EDF formed by elastically scattered electrons

DC Discharge with Ring Anode

Simulations by E.Toinov using CFD-ACE

CFDRC

Xenon, P=100Torr, Gap=250micron, R=375micron Initial voltage =400V, gas heating, Gamma=0.002

Experimentally observed cathode spots arranged in concentric circles have been obtained in two-dimensional simulations of high-pressure DC micro discharges with ring anode in Xenon

Plasma Display Simulations

Fujitsu Unveils New Type of Plasma Technology for 100-Inch-Plus Flat-Screen Displays

CFD-ACE+ simulations by E.Toinov

Discharge conditions: Helium, P=400torr, Pulse 6kV/50ns, R=0.5mm

This technology has the following features:

- 1. Ultra-lightweight, flexible screen size & shape
- 2. High luminous efficiency
- 3. Low-cost production

CFDRC

- We have first discovered a paradoxial non-monotonic distribution of excitation rates and excited species densities in simulations
- This effect has been later understood and confirmed by theoretical analysis and there is some experimental evidence
- Further experimental studies are required to observe this effect in real systems
- The effect has its origin in the kinetics of electrons and gives another evidence of the importance of electron kinetics in gas discharges
- Simulations become a predictive tool for studies of plasma systems

Dielectric Barrier Discharges

Plasma Optimization for Efficient Generation of UV Radiation and Active Radicals

Pulsed power DBD in atmospheric pressure:.pulse frequency is 1kHz, the pulse width is 400ns, and the amplitude is 8kV (experiments by M.Laroussi)

The **goal of this project** is to optimize the pulsed-power atmospheric pressure non-equilibrium plasma sources for efficient generation of UV radiation and active radicals using a combination of experimental studies and advanced plasma simulations to explore whether the added complexity of fast risetime pulsed circuits has a payoff in terms of UV radiation output and overall chemicalprocessing efficiency

Measured current and voltage curves without (left) and with (right) the presence of plasma.

Total emitted UV power versus pulse frequency. The pulse width is 500ns, background gas N_2 , applied voltage 9kV, and gap distance 1.7mm.

M.Laroussi et al., J. Appl. Phys. 96, 3028 (2004)

Plasma Optimization for Efficient Generation of UV Radiation and Active Radicals

x 10⁻⁷

time (s)

Simulations of pulsed DBD in He-N2-Air Mixtures

Discharge voltage and current for 9 kV, 500ns pulses

Electron density and temperature during active pulse of DBD plasma with 9 kV pulses

0.5

distance x (m)

0 6

2

x 10⁻³

Simulation of pulsed dielectric barrier discharge xenon excimer lamp

Breakdown stage

Excimer lamps are efficient sources of non-coherent ultraviolet (UV) or vacuum ultraviolet (VUV) radiation generated by rare gas dimers and rare gas halides.

The dielectric barrier discharges (DBD) are ideally suited to induce excimer formation

To understand qualitatively the increased efficiency in the pulsed operating regime, a comprehensive numerical model of pulsed DBD for excimer lamps has been developed

Spatial distributions of electron and ion densities and electric field at different times during gas breakdown stage

E.Bogdanov et al., J. Phys. D 37, October (2004)

Simulation of pulsed dielectric barrier discharge xenon excimer lamp

Afterglow stage

Plasma decay during the afterglow defines the breakdown dynamics which depends significantly on whether the gas is initially ionized or not. .

High over-voltages applied on non-ionized gas result in streamers, whereas the discharge development of initially ionized gas can take place under uniform conditions.

It is hence very important to model correctly the whole discharge pulse including both the breakdown and the afterglow stages.

Spatial distributions of electron and ion densities and electrostatic potential at different times in the afterglow.

It is seen that plasma remains quasi-neutral during the afterglow stage (ion and electron densities have the same values) with except of the sheath areas.

E.Bogdanov et al., J. Phys. D 37, October (2004)

• Simulations helped us to understand the important features of DBD operation in pulsed power regime and clarify optimization scenarios for improvements of plasma sources for generation of active radicals and UV output.

• Two distinct stages. In the first, fast stage, the power deposition takes place over a short time period of the order of several 10s ns. This phase is the most crucial for DBD optimization. By tailoring the electron spectrum one can affect the efficiency.

• The "afterglow" stage defines the plasma composition, determines how the next current pulse will occur.

• Simulations have confirmed that electron emission at dielectric surfaces plays minor role in the discharge dynamics - distinguish it from traditional (slow) breakdown that occurs in DBDs driven by low frequency RF sources

- CFD-ACE+PLASMA has reached the state of maturity and has been used for simulations of different plasma devices and processes
- The Plasma Technologies Branch at CFDRC continues to develop advanced plasma models and customize CFD-ACE for user's needs
- Potential Research and Development areas include (but not limited to)
 - Radiation Transport in Plasma Sources
 - Microwave Plasmas
 - Multi Scale Simulations for Nano-Technologies
 - Rarefied Gas Dynamics

$$\frac{\partial f}{\partial t} + \nabla \cdot \left[D_r \nabla f + \mathbf{V}_r f \right] + \frac{1}{\chi(u)} \frac{\partial}{\partial u} \left(\chi(u) \left[D_u \frac{\partial f}{\partial u} + V_u f \right] \right) = S$$

Operator splitting technique

$$\frac{\partial f}{\partial t} = \mathbf{F}_{\mathbf{r}} + \mathbf{F}_{\mathbf{u}}$$

CFDRC

introduce a residual function $R(f) = F_r + F_u - \frac{\partial f}{\partial t}$ and use the iterative method

To find the value of fⁿ⁺¹ for the next iteration, we first solve for f* in physical space

$$\left(\frac{1}{\Delta t} - \theta(1 + \beta \delta_{ij}) \mathbf{F}_{\mathbf{r}}\right) f' = \mathbf{R}(f^{(n)}) \qquad f^* = f^{(n)} + \alpha f'$$

Then we solve for f^{**} in the energy space

$$\left(\frac{1}{\Delta t} - \theta(1 + \beta \delta_{ij}) \mathbf{F}_{\mathbf{u}}\right) f^{**} = \mathbf{R}(f^{*}) \qquad f^{(n+1)} = f^{*} + \alpha f^{**}$$

Here α is a linear relaxation parameter (0< α <1), and β is the inertial relaxation parameter
Visualization of Simulation Data

10

S = 0

at u=10

Coupling electron kinetics and electro-magnetics

CFDRC

• Having solved FPE for electron energy distribution function, we calculate macroscopic properties of electrons (mobility and diffusion coefficients) and rates of electron induced chemical reactions

- We solve the electron density balance together with the kinetic equation using the electron production rate and electron flux provided by the kinetic module.
- The electron number density calculated in such a way is used in Poisson and Maxwell equations for calculation of electrostatic and electromagnetic fields.

 f_0

•*Fluid models:* Conservation of density, momentum and energy for electrons, ions and neutral species

•<u>Kinetic models:</u> Solving Boltzmann equation for the particle distribution function

•<u>Hybrid models:</u> Fluid model for heavy species and kinetic model for electrons

> predicted current density is about 0.8 mA/cm² for these conditions

> The central electron density predicted by CFD-ACE+Plasma is about 5.6×10^8 cm⁻³.

CFDRC

> data in Ref. [1]: electron density varies from 4.5×10^8 cm⁻³ to 1.6×10^9 cm⁻³ for different models

> T_e varies from 2.4 to 6.7 eV in Ref. [1]. CFD-ACE+Plasma predicts the (effective) electron temperature of 5.5 eV.

EEDF Maxwellization & Reaction Rates

- EEDF Maxwellization due to Coulomb collisions among electrons results in a strong dependence of inelastic collision rates on electron density
- This effect is most pronounced for the elastic energy balance of electrons

50 μs pulse, high coil current: time evolution

Electron density, reactor center

Electron temperature, reactor center

- small "ripples" on Te are numerical due to finite energy resolution in the Boltzmann solver
- high current operation: plasma reaches steady state during active phase

30 μ s pulse, low coil current: time evolution

Electron density, reactor center 1.0×10^{18} 8.0×10^{17} 4.0×10^{17} 2.0×10^{17} 0.0001 0.0002time (m-3)

Electron temperature, reactor center

• small "ripples" on Te are numerical due to finite energy resolution in the Boltzmann solver

 short-length pulse operation: plasma does not reach steady state during active phase

PC was simulated in a wide range of pressures (0.1-100 Torr) and currents $\mu\text{A-0.1A}$ in Ar and He gases

• The predicted flux of electrons shown schematically by arrows is directed towards the discharge center. The electron flux to boundary 2 (where $u = u^*$) defines the rates of inelastic processes.

• The increased radial flux of electrons at this boundary is responsible for the enhancement of inelastic collision rates at the discharge periphery.

R.Arslanbekov et al., Applied Physics Letters 85 (15), October (2004)

Non-monotonic excitation profiles explained

140 mTorr and 50 V RF voltage

FIG. 4. Stationary state spatial distributions of: (a) the electron density and (b) the electron energy at a pressure of 0.14 Torr and an input power of 0.5 W, averaged over a rf cycle, calculated with the PIC-MC model (sold lines) and the fluid model (dashed lines).

P-8244-1/8

electron temperature profile is drastically different from that obtained in the high current density case (with 400 V RF voltage)

discharge current density predicted by CFD-ACE+Plasma is about 0.25 mA/cm² (0.22 mA/cm² in Ivanov *et al.*).

charged-particle's profiles, as well as the (effective) electron temperature profiles are close to those obtained in Ivanov *et al.*

CFDRC

> current density predicted by CFD-ACE+Plasma is about 2 mA/cm², which agrees well with that of 2.2 mA/cm² obtained in Ivanov *et al*

 \succ the charged-particle's profiles, as well as the (effective) electron temperature profiles are close to those obtained in Ivanov *et al*

 \succ the electron energy profiles feature a strong dip in the plasma center due to the cold peak on the EDF.

The electron density predicted by CFD-ACE+Plasma is lower than in Ivanov *et al* (~ 10^{10} cm⁻ ³ vs ~ 3×10^{10} cm⁻³), which most likely due to different ion mobilities used in the two codes.