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It is shown that the influence of the nonlocal character of the EDF on the spatial profiles of of excitation rates is 
essential up to high gas pressures pR<100 cmTorr. A paradoxical effect related to the nonlocal character of the EDF 
revealed: the peaks of the profiles of the excitation rates shift from the discharge axis toward the periphery as the pressure 
increases. This effect cannot be understood from the hydrodynamic point of view and it is related to the nonlocal 
character of the electron distribution function. 

 
When simulating gas-discharge plasma, the electron distribution function (EDF) is usually 

calculated on the traditional local approximation [1,2]. This means that terms with both spatial 
gradients and the ambipolar electric field are omitted in the kinetic equation and the EDF is 
factorized as  

0
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In this approximation, the electron distribution over the kinetic energy  at a fixed point 2 / 2w m= v x  
depends on the local parameters; first of all, from the heating electric field intensity E. The 
inhomogeneity results in small corrections which determine particle and (if necessary) energy fluxes 
which are proportional to the relatively small gradients of these parameters. They  manifest 
themselves in the formation of fluxes of particles and energy which are proportional to these 
gradients. Such an approach is characteristic for the plasma transport theory (the so-called fluid 
approach, see for example [1-3]). In this approximation the direction of the differential fluxes (i.e. of 
the contributions of different EDF parts to the total particle and energy fluxes) coincide with the 
direction of the total fluxes. Correspondingly, the rates of electron collisions, f.e. impact excitation 
rates  
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of neutral levels k, which control plasmachemical reaction rates, plasma luminousity and 
composition, ionization, etc., is proportional to the electron density  [1,2]. In other words, the 
excitation frequencies 

( )en x
( / )k E pν  are determined by the local EDF 0

0f  which depends on the local 
values of  the heating electric field intensity and other parameters (the gas temperature, the density of 
excited particles, etc.). Consequently, in gas discharge plasmas this field is the dominant factor which 
controls spatial  profiles, and they are expected to reproduce the heating field and the electron 
density profiles. Therefore in a DC positive column plasmas, where electrons are heated by the 
uniform longitudional electric field , nobody to our knowledge can doubt, that all the excitation 
rates in a positive column are to be maximal at the tube axis, where the plasma density is maximal. 
Nevertheless, in simulations [9,10] of  the positive column (PC) in Ar, the surprizing phenomenon 
revealed, that excitation rates were maximal not at the tube axis, but somewhere  at  its periphery up 
to pressures 

( )kW x

zE

100pR cmTo= rr . Thereupon applicability of local approximation for EDF calculations 
requires careful inspection.  



 Traditional local approach to be applicable only when terms with spatial gradients can be 
omitted in the kinetic equation, i.e. the electron energy relaxation length ελ  is negligible quantity [4]. 
In the opposite case the EDF is of nonlocal nature; i.e., it depends on the values of the physical 
parameters (primarily on the field strength) in the region determined by the inequality ελ λ>>  
(where λ  is the electron mean free path), rather than on their values at a given point. At estimation of  
the ελ  it is necessary to take into account that the relation between the volume processes and the 
diffusion of electrons onto the walls can be different for different electron energy ranges.  

If the electron energy balance is determined by elastic collisions, then for atomic gases in the 
energy range *ε ε< - the threshold energy for inelastic processes, in which most electrons are 
concentrated, electron energy relaxation length is 
 /( ) / 100rDελ δν λ δ λ>      (3) 
(here, / 3rD Vλ=  - is the coefficient of spatial electron diffusion and  2 /m Mδ = ). When ελ > Λ  -
characteristic diffusion length, the EDF is nonlocal throughout the whole plasma volume. Length (3) 
is more than two orders of magnitude larger than the electron mean free path and inequality ελ > Λ is 
satisfied  up to relatively high pressures (5 10)p cmTorrΛ ≤ − .  

Since at ελ > Λ , the energy of an electron during its single pass across the discharge volume 
changes only slightly, the integral of motion of such electrons is the total energy (the kinetic energy 
plus the potential energy) 

2( ) / 2 ( )w e r m e rε ϕ= + = +v ϕ       (4) 
In the energy range *ε ε> , which corresponds to inelastic collisions, an electron diffuses on 

the distance corresponding electron energy relaxation length 
* ** / (3rDε 10)λ ν λλ= − λ       (5) 

over its characteristic lifetime (~1/ *ν ) (here, * 1/( )N *λ σ=  is the electron mean free path in inelastic 
processes). The length *

ελ  (5) is much shorter than ελ  that given by Eq. (3). 
Therefore, from the physical standpoint, the most appropriate arguments for describing a nonlocal 
EDF are the variables ε  and r  [3,4].  

Because of the presence of two very different energy scales, the nonlocal character of the 
EDF manifests itself in different ways in its different parts. In terms of the total energy (4), the 
nonlocal EDF can be either dependent on or independent of the radius [4]. The most examined 
marginal case of low pressures  when  and as the body and so tail of the EDF at *

ελ > Λ weε ≤ Φ   
depend only on the total energy ε  [4-6] ( wΦ  is the potential difference between the discharge axis 
and the tube wall).  At higher pressure, when inequality *

εελ λ> Λ >  holds, the situation becomes 
more diverse [7-9]. In this case the EDF body at *ε ε<  remains a function on ε  only, but the EDF 
tail, at *ε ε> , depends both on ε  and x. This case begin to analyse only recently [7-11] and many 
surprising phenomena are discovered and expected. One of the most impressive is the case of 
paradoxical non-monotonic behavior of excitation rates spatial profiles in DC positive column 
plasmas [9-11]. 

In this paper we present the main results, their concise explaination and scalings for the 
excitation profiles in a PC at moderate and high pressures.  

The positive column (PC) plasma is the most studied object of the low-temperature plasma 
physics. Relative simplicity of its creation and diagnostics makes it traditional benchmark and testing 



field for vast majority of novel concepts and approaches. In [9,10] it was pointed out that above 
mentioned paradoxical phenomena of non-monotonic behavior of excitation rates spatial profiles are 
caused by the non-local electron kinetics [4] and in [11] was presented a kinetic analysis of the 
problem.  

The simulation code used in this work in described in detail in [12]. The code solves 
continuum equations for various plasma species coupled with Poisson equation for the electrostatic 
field. Heavy particles were described in the fluid model.The electron energy distribution function is 
calculated by solving the Boltzmann equation using two-term spherical harmonics expansion. For 
EEDF calculations, we have accounted for various processes including stepwise excitation and 
ionization, as well as the generation of energetic electrons in collisions of the second kind with 
metastables and Penning ionization between metastables. At the tube wall r=R, the loss-cone 
boundary condition has been used (see e.g., [6,7]). We consider six plasma species: Ar (ground state), 
Ar*, and Ar** (two metastable states with energies *ε =11.55 eV and **ε =13.2 eV, correspondingly), 
Arr * (resonance state), Ar+, and Ar2

+ (atomic and molecular ions). The argon chemistry mechanism 
is similar to that used in [13]. It includes conversion of atomic to molecular ions and so can be used 
in a wide range of gas pressures. The mechanism consists of 21 steps including various electron-
induced excitation and ionization steps, and radiation transitions from Ar** to Ar* states and from 
Arr * to Ar (radiation trapping is accounts for both Doppler and collisional line broadening). 
The calculated radial profiles of excitation rates R1 and R2 for the reactions Ar+e↔Ar*+e and 

Ar+e↔Ar**+e are shown in Fig. 1 for different gas pressures. Off-axis peaks of both excitation rates 

are observed for a pressure range 5<p<50 Torr. The R2 peaks (Fig. 1b) are more pronounced than the 
R1 peaks [Fig. 1(a)]. The nonmonotonic excitation rates result in nonmonotonic distributions of 
excited species. For example, Fig. 2 shows the radial profiles of Ar* density at different gas 
pressures. One can see that Ar* density is nonmonotonic at pressures from 5 to 50 Torr. The 
densities of other excited species have similar radial profiles. The electron density profiles are close 
to Bessel distributions with the maximum values varying from 1.6x109 cm−3 (at 1 Torr) to 1.5x1010 
cm−3 (at 100 Torr). The axial electric field Ez calculated self-consistently by the code has values 6.9, 
6.2, 12.1, 31.3, 64.9, and 131.7 V/cm for p=1, 5, 10, 25, 50, and 100 Torr, for the fixed discharge 
current of 1 mA. For such a low current, Coulomb collisions, volume recombination, and gas heating 
are not important. Thus, the observed effect cannot be understood from the hydrodynamic point of 
view and their understanding can be achieved by analysis of electron kinetics in PC at moderate gas 
pressures.  

Let us give a kinetic analysis of the problem for the excitation profiles in a PC. In order to 
clarify the underlying physics, here we would consider the model problem for the plane-parallel 
geometry with the gap spacing 2L.  

The kinetic equation in variables coordinate x and the total electron energy ε  (4) takes the 
form (see, for example, [4,11]): 

*

0 0
0

0 0
0

1

( )( ) ( ) ( ) ( ) ( )k
k

r eaE

m a ex
k k k k

k m

f fr wD w D V f
r r r

n g w ww w f w w f f
N g

ε ε

ν
0ν ε ν ε ε ε ε ε ε

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ ∂∂ ∂+ + =
∂ ∂ ∂ ∂

− + + + − −∑ ∑
(6) 



This equation accounts for both the longitudional  and transversal  electric fields. zE ' ( )x xE ϕ= − x
/ 3rD Vλ=  is the spatial diffusion coefficient, and 2( ) rED eE D=  is the diffusion coefficient along 

the energy axis, which relates to the Joule heating by the field. The energy loss in the elastic 
collisions results in the "velocity" along the energy axis eaV wδν= . The right-hand side of Eq. (6) 
includes sources and sinks due to inelastic processes. Here, kν  corresponds to the inelastic collisions 
with excitation of an atomic level k; the first term is nonzero only at the EDF tail, when 1w ε> ; (in 
the region III in Fig.3a); the second one, which desribes the electrons appearing after an inelastic 
collision with small energy; is important only at small energies (in the region I  in Fig. 3a); we would 
neglect it later on. The last one, which desribes the electrons appearing after an superelastic collisions 
of electrons with long-living metastable atoms  Ar * + e Ar + e, when  slow bulk electron additionally 
acquires the threshold  excitation energy   * and instantaneously becomes fast. These processes 
substantially influence the calculated values of the constants for the excitation reactions with high 
threshold energies and, accordingly, the densities of highly excited states (see [10] for details). exν  is 
the excitation frequency of the metastable level.  

The kinetic equation (6) is the 2D diffusion equation with with ε  and x, as arguments. It is 
reasonable to introduct the fluxes along the energy axis and along the transversal (radial) coordinate: 
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    At moderate and higher pressure, when *
εελ λ> Λ > , as it was already mentioned, the EDF body at 

*ε ε<  remains a function on ε  only, but the EDF tail, at *ε ε> , depends both on ε  and x. When 
kinetic energy *( )w e xε ϕ= − > ε  is enough for inelastic collision (region III  in Fig.3), the EDF 
decreases sharply, ; *~ exp( / )Tε− *~ exp( / )x ελ− , where  

* * 1/ 2( ) ( / ) zT D eE *
ε εε ν = λ

*T
       (8) 

is the electron “temperature in inelastic region. The electrons with  are practically 
missing. In the region IIb (see Fig.3a) inelastic collisions are absent and their influence results in 
intense inward directed differential spatial flux 

*w ε> +

( , )x xεΦ (the diffusive flux of electrons with given 
total energy) is formed in the region IIb (see Fig.3a) and zero condition for the EDF ("black wall" 
approximation) can be imposed at the boundary between the regions IIb and III, which is given as 
 *( ( ))e x *ϕ ε ε ε= −       (9) 

If  *L ελ>>  the expression (2) for the total excitation rate can be considerably simplified. The 
spatial differential flux , and the flux along the energy axis xΦ εΓ  are shown in Fig 3a. The 
excitations occur in the narrow ( ) strip in the (*~ T , xε ) plane (dotted in Fig.3b) Multiplying (6) by 
( ) and integrating it over the srip, which length ∆x satisfies conditions 24 V dVdxπ
 *L x ελ>> ∆ >>              (10) 
we obtain: 
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     The first term in the expression for the excitation rate (11) corresponds to the traditional 
mechanism of the Joule heating (diffuson along energy). It is maximal at the gap midplane. Since the 
EDF in the region IIb  (see Fig.3a)  decreases exponentially with energy, the corresponding 
contribution to the exitation rate (2) decreases towards the column periphery.  

The second term relates to the spatial diffusive differential flux XΦ that is inward-directed in 
the region IIb  (see Fig.3a). Since this flux describes the diffusion with ε  conservation, the kinetic 
energy of the electrons in the range *ε ε<  increases. In other words, these electrons are "heated" by 
the radial electric field. It is to be noted that in our approximation the total electron transversal flux 
equals zero (the flux εΦ  in IIa is outward directed, Fig.3a, and compensates the inward-directed flux 
in IIb). That is why this effect cannot be treated in the conventional terms of the fluid approximation 
(see [7] for details). This spatial term is proportional to 
 xeE xε∆ = ∆         (12) 
and equals zero both at x=0 and at x L→ ; the peripherically peaked  profiles arise, if this 
term dominates. 
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 At Lελ >  the term Vε  in (6) mostly can be neglected in the region IIb. So we have an estimate for 
the excitation rate profile 
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We performed estimates of the rate profile (13) using the WKB solution for the EDF in the region IIb 
that was formulated in [7]. This solution satisfies zero boundary conditions for the function 0f  at 

*( )x x ε=   (9), and for its spatial derivative at x L= , and is exponentially decreasing with ε   [7] 
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The first term in the numerator in (13) decreases with x  due to EDF decrease along the boundary 
between the regions III and IIb. On the contrary, the second one is zero at . It rises at small 0x = x  
values due to the  rise. At larger ( )xE x x  values the exponential decrease of the EDF 

0 1( , ( ))f x e xε ε φ= +  (see (14) overcomes this factor, and so this term has a maximum at some 0x ≠ . 
The estimate of (13) yields 
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The effect can be interpreted in terms of an electrostatic analogy (Fig. 4). At  and 
neglecting the last term in the right-hand side of (6), in the absorbing wall approximation, the 
problem is to find the Laplace equation solution, with the EDF 

0Vε →

0 ( , )f xε  analogous to the electrostatic 
"potential" which is created by the uniformly charged plane at 0ε = , the boundary between III and 
IIb is analogous to the conducting surface, and the excitation rate is analogous to the surface charge 
per unit length along the x axis σ(x). The boundary condition of zero flux at the vessel wall can be 
interpreted as the periodicity condition along x. So, it is obvious that if some parts of the conducting 



surface are normal to x, the surface charge per unit length along the x axis tends to infinity there. On 
the contrary, if the conducting urface is smooth enough, the surface charge on the conductor per unit 
length along x is maximal at the points where ε  at the conductor surface is minimal.  

If ambipolar potential is approximated, as 
   ,       (16) 1( ) ( / ) /ne x a x L nφ ε= −
it is easy to derive the algebraic equation for maximum position 0x  of  (15). If 1 /( ) 1ZA eE Lε=  
then value of 0x  can be estimated as: 

   0 /( )nx n Aaπ=         (17) 
    The formulated considerations are illustrated for the model problem for the plane-parallel 
geometry with 2L=2 cm . For ( )xφ  we had used approximation (16) with n = 2,3.   

The spatial profiles of the excitation rate  (2) are presented in Fig. 5 for ( )exW x /ZE p const=  
and different pressures p  [11]. It can be seen that at low pressure, when the whole EDF is nonlocal, 
the total excitation rate is peaked at the plasma center (curve A). In contrast at moderate pressure the 
peak of the  (curves B, C) is substantially displaced from the PC axis. The ( )exW x 0x  position for 
curves B and C obtained from (15), (16) are 0.33 and 0.38 accordingly; These values are in 
agreement with numerical results (Fig.4): 0.41 and 0.55. At higher pL  values Lελ <  and EDF in the 
whole region II becomes local. Nevertheless, the nonlocal effects still exist at distance ελ  from the 
wall, if the potential profile ( )xφ  in the wall vicinity is steep enough. It can be seen from curve D 
that the  profiles in the central vessel part are maximal at ( )exW x 0x = , but at the distance from the 

wall of the order of /M mελ λ= , where the EDF is non-local, the satellite maximum remains. If 
the ( )xφ  profile is more smooth (say, for n=3/2 in (15)), the satellite maximum disappears.  

The quick test for existence of  nonmonotonic profiles and maximum position is the 
exceeding the value of radial field  compeare to external (axial) field  (see (13,15). Therefore 
for effect presence the profile of radial potential should be rather steep. In Fig. 6 the excitation rate 
spatial profiles  are presented in dependence of . In the absence of the transversal electric 

field the dependence of total excitation frequency 

xE zE

( )exW x xE

( ) ( )exW x const x= . At low  it is maximal at 
; at higher  the maximum is shifted towards to the periphery.  

xE
0x = xE

Since the destruction rate of metastable atoms (which is determined by the mixing to a 
neighboring resonance level) is a smooth function of x, the nonmonotonic behavior of the production 
rate of these atoms leads to nonmonotonic Nm(x) profiles (see Fig.2) [9-11]. 

The excitation rates of individual levels ( )kW x  with the excitation energies kε  can be divided 
roughly into two groups.  

The excitation rates for the levels with the low kε , for which the excitation threshold satisfies 
condition , i.e. lies within the dotted strip in the Fig.3b, the excitation rates behave, 
roughly speaking, in a similar way, as in (15).  

*
k Tε ε< + *

The spatial profiles of the higher levels excitation rates with the threshold is given by  
(Fig.7) are considerably more depend on EDF in region III. Electrons in the axial region cannot gain 
energy 

*
k Tε >

kε ε> in the electric field if they previously did not undergo inelastic collisions with lower 
levels because *k T *ε ε− > . On the other hand, they cannot reach the axis due to radial diffusion 



because * Rελ << . In other words, an electron with energy ε  can most easily reach the region with 

kw ε>  as follows: First, the electron diffuses over energy up to kε ε>  at the periphery of the plasma 
column, where the kinetic energy is low ( ) *e rε ϕ ε− <  and the electron does not undergo inelastic 
collisions. Then, this electron diffuses in the radial direction toward the axis over a distance *~ ελ . 
For this reason, the maximum excitation rate (and the corresponding rate constant) of the level kε  is 
shifted from the curve ( )kr r ε=  (where ( ( ))k ke rε ϕ ε ε− = ) by *

ελ  toward the axis.  
The values of  depend most crucially on the exponentially small probability to 

overcome the absorbing region between the curves 
( )exW x

*( )x ε  and * ( )kx ε  in Fig.7. In order to estimate this 
probability, note that in the dimensionless units 
     * / /x x D x *

εν λ= = ,  (18) 

 * */ /D Tεε ε ν ε= = , 

assuming , Dv Dεv , *νv to be velocity-independent, we have for kinetic equation (6) in the region 
III: 
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The excitation rates  are maximal at the points ( )kW x 1x x= , where the "absorbing barrier" between 

the curves *( )x x ε= , and * ( )kx x ε=  is most transparent. The "distance" l  between the curves 
*( )x x ε= , and * ( )kx x ε=  along the normal is minimal. Its "transparency" can be estimated as 

. exp[ ( )]l x−∼
Since the curve * ( )kx x ε=  is shifted by kε  along the ε  axis in respect of *( )x x ε= , this 

distance is maximal and equals 1kε ε−  at 0x = , and decreases monotonously from discharge center 
towards its periphery. For a concave potential profile of the type of (15), this rise occurs up to the 
distance from the wall *( )L x ελ− ≥  where the EDF decrease in the region IIb compensates the barrier 
transparency. Accordingly, the  maxima are to be rather sharp and situated in the wall vicinity. 
It illustrates (Fig. 8a) which shows the normed radial profiles of different Ar atoms states  at p = 6 
torr, R = 1 cm, and and I = 3 mA.  

( )kW x

It follows from the above discussion that the higher the level, the larger the shift of the peak 
of the excitation rate profile toward the periphery caused by concerned here effects of EDF 
nonlocality. But usually the metastable atom density Nm  is fairly high and stepwise excitation could 
be more effective than above considered direct excitation from the ground state. In such situation this 
shift is superimposed by the little known effect of the replication of the slow (nonlocal) part of the 
EDF in its fast part [9].  In the superelastic collisions with metastable atoms, a slow bulk electron 
participating in the reaction *Ar e Ar e+ → +  additionally acquires the threshold excitation energy 

*ε  and instantaneously becomes fast. These processes substantially enhance population of the fast 
component of the EDF and influence the calculated values of the constants for the excitation 
reactions with high threshold energies and, accordingly, the densities of highly excited states as it 
illustrates Fig. 9 (see [9] for details). As was shown in [9] and also can be seen from Fig. 9, the fast 
components of the EDF ( *ε ε> ) can be represented as a sum 0 0 0t hf f f= + . If the density  of mN



metastable atoms is high enough, then, the part of the EDF that corresponds to  and sharply 
decreases at energies above the threshold energy (

0mN =
*ε ε> ), 

0 exp( ) / *)(nttf c Tε ε−       (20) 
is supplemented with a gently sloping pedestal 

0
0

( ) ( *)m a
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m
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N g
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replicating the shape of the slow component (the body) of the EDF (here,  is the density of atoms 
in the ground state). Because of the low effective temperature of the fast electrons  (8) the EDF 

0N
*T

0tf  (20) falls rapidly at higher energies and, as early as at energies of a few electronvolts above the 
threshold *ε , it is considerably less than the EDF ohf  (21) (Fig. 9). Thus, excitation of  higher levels 
can be given by sum of two terms  

( ) ( ) ( )d st
k k kW x W x W x= +       (22) 

(direct and stepwise).  
Since energy dependence of ohf  is close to that of the EDF of slow electrons ( *ε ε< ), the spatial 
profiles of the frequencies and rates of the processes that are determined by these parts of the EDF 
can also be close to one another [9]. Therefore, when the density Nm is fairly high, the shift on Fig.7a 
is superimposed by the effect of the replication of the slow (nonlocal) part of the EDF in its fast part 
(see [9] and Fig. 8b). Therefore, for energies hε ε> , at which the EDF 0hf  (21) is larger than 0tf  
(20), the effect of the shift of the peak of the excitation rate profile disappears and it should be 
approach to position of metastable profile maximum. This is illustrated by Fig. 8b.  For comparison, 
Fig. 10 demonstrates the position of the coordinate  corresponding to the peak of the excitation rate 
profile for  the k-th level as a function of the energy 

0r
kε  of this level. The EDF was calculated with 

(curve A) and without (curve B) allowance for impacts of the second kind. It can be seen that curve B 
increases monotonically, while in curve A, the effect of  the high level peak shift  is disappeared 
because of the increase in the tail of the EDF due to superelastic collisions at high energies. In such 
situation  the high level spatial profiles start to repeat the metastable atoms profile. In other words, 
for high energy levels direct and stepwise excitations are the two different reasons for nonmonotonic 
behavior of spatial profiles of excitation rates which superimposed each other (see below Fig.11 and 
to compear the  curves A and F). In one's turn, to change in practice comparative part one or another 
it can control the spatial profiles of excitation rates. 

In a real situation, some additional affecting factors which were not accounted in kinetic 
equation (6) can mask the presented effects caused by EDF nonlocality. At increasing the discharge 
current should be expected the influence of gas temperature heating resulting to decreasing of normal 
atoms density and electron-electron collisions maxwelliazise EDF. To illustrate their comparative part 
on Figs.11-15) are shown the simulation results at p = 7 torr, R = 1 cm and  I = 30 mA for different 
energy excitation: 11.55 eV (a), 12.91 eV (b) and 13.98 eV (c). The Fig.11a corresponds the 
metastable level and Fig.11b, corresponds intermediate excited state and Fig.11c corresponds the 
high energy level. The changing of the corresponding EDF and the profiles of metastable atom 
densities are presented on Fig.12 and 13. In accordance with made above, superelastic collision don’t 
affect on maximum position of metastable states (see Fig.11a, curves A,F), whereas it influences on 
position of high energy levels (Fig.11c, curves A,F).  

When electron-electron collisions are accounted (curves B on Fig.11-16), for low excited 
levels the nonmonotonic effect disappears (see Fig.11a, curves B and E). It connected as to change 



the profiles of the density and mean energy of the electrons (see Fig.14,15) and, as consequence,  
decreasing of the ambipolar field (see Fig.16) so the increasing of the EDF tail (see Figs.12). But for 
higher levels which excitation can be given by sum of two terms (22) (direct and stepwise); therefore  
at strong electron-electron collisions disappears only stepwise component , whereas direct 

component  can create the nonmonotonic profiles (see Fig.11c, curves B and E ).  
( )st

kW x

( )d
kW x

Gas temperature heating results to decreasing of normal atoms density in the central part of 
discharge volume. Due to increasing E/N parameter, the diffusion on energy in the central part of 
discharge volume is increasing (the first item in (13,15). Increasing of respectiv energy scale (8) and 
lengh (5) also play destructive role  for existence of being investigated nonmonotonic effect (see 
Fig.11, curves C and D).  

In more complex systems, such as molecular gases, gas mixtures, DC and RF discharges of 
more complex geometry, in magnetic field, far more diverse kinetic formation scenaria of the spatial 
profiles of the excitation rates, as well, as of the luminosity and plasma composition, are to be 
expected. 

    In summary, the influence of the nonlocal character of the EDF on the spatial profiles of of 
excitation rates is essential. A paradoxical effect of shift of the excitation rates, it concise 
explaination and scalings in a PC at moderate and high pressures are presented.  
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Figures 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 1. Radial profiles of excitation rates of Ar* (a) and Ar** (b) at different pressures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Radial profiles of excited Ar* species at different pressures. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3: a: Formation scheme of the spatial differential fluxes ( , )xε εΦ , and of the flux along the 
energy axis ( , )xε εΓ . The dashed arrows relate to the electrons which have lost energy in the inelastic 
collisions. b. The integration domain of (6) in the (x,ε ) plane. 
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Fig.5. Spatial profiles of the excitation rate for Ez/p=0.65V/cm  and eϕ(x)=ε1(x/L)³ for different 
p=0.5(A),5(B), 10(C) and 100(D) Torr. 
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Fig.6. Spatial profiles of the excitation rate for Ez=5V/cm, p=3Torr  and eϕ(x)=ε1(x/L)³ for different 
a: 0 (dotted line); 0.25(1); 1(2); 1.5(3). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Formation scheme of excitation spatial profiles for high energy levels. 
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b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Profiles of the excitation rates (normalized to their maximum values) of different levels of 
argon atoms k = (1) 1, (2) 3, (3) 5, (4) 17, and (5) 25 with energies of εk = 11.55, 11.72, 12.91, 14.01, 
and 15.2 eV, respectively, calculated (a) without and (b) with allowance for impacts of the second 
kind; r0 is the coordinate of the peak of the excitation rate profile. 
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Fig. 9. EDFs at different radii r as functions of the total energy ε :  
r = (1) 0, (2) 0.2R, (3) 0.4R, (4) 0.6R, and (5) 0.8R. 
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Fig. 10. Coordinate r0 of the peak of the excitation rate profile for the kth level as a function of the 
energy kε  of this level. Curves A and B show the results of calculations with and without allowance 
for impacts of the second kind, respectively. The dotted line corresponds to the energy of the 
metastable state. 
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c)         
 
 
Fig. 11(a-c). Radial excitation rate profiles (normalised on maximal value) for several energy terms 
of  Argon (with k = 1, 5,16).  P = 7 Torr, R = 1cm, I=30mA. 
 

A) without account of Coulomb collisions and gas heating; 
B) with account of Coulomb collisions, but without account of gas heating; 
C) with account gas heating, but without account of Coulomb collisions; 
D) with account of Coulomb collisions and gas heating; 
E) same as B, but without account of superelastic collisions and Penning ionization processes; 
F) without account of Coulomb collisions, gas heating and superelastic collisions. 
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Fig. 12.  EEDF on the tube axis. The sense of symbols A, B, C, D, E, F and physical conditions (P, R, 
I)  are same as in Fig.11. 
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Fig.13. The spatial profiles of the of metastable atoms densities. The sense of symbols A, B, C, D, E, 
F and physical conditions (P, R, I)  are same as in Fig.11. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.14. Spatial profiles of the electron density. The sense of symbols A, B, C, D, E, F and physical 
conditions (P, R, I)  are same as in Fig.11. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Spatial profiles of the electric potential. The sense of symbols A, B, C, D, E, F and physical 
conditions (P, R, I)  are same as in Fig.11. 
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Fig 16. Normalized to  profiles of radial electric field . The sense of symbols A, B, C, D, E, F 
and physical conditions (P, R, I) on Figs 2-5 are same as in Fig.1. Curves E and F do not presented 
on Figs 2-4 because curve E almost same with curve B and curve F almost same with curve A.   
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The table of  values presented bellow: zE

# A B C D E F 
Ez  (V/cm) 8.19 8.02 6.34 6.07 8.02 8.21 
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