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Motivation

To develop the fast self-consistent   kinetic 
model of low-collisional ICP (the alternative 
to PIC-MCC),

I.D. Kaganovich and O.V. Polomarov, Phys. Rev. E 68, 026411 (2003).

Generalize the “non-local approach” to 
include kinetic and resonant effects.

I.D. Kaganovich, O.V. Polomarov and C.E. Theodosiou, Phys. Plasmas 11, 2399 (2004).

To study the effects of resonances, plasma 
non-uniformity and self-consistency in non-
magnetized and magnetized ICP plasmas.

O.V. Polomarov, C.E. Theodosiou,  and I.D. Kaganovich, accepted, PoP, August (2005). 
O. V. Polomarov, C. E. Theodosiou,  and I. D. Kaganovich, accepted, PoP, September, (2005). 
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ICP – the discharge supported by an 
electromagnetic wave

"Coil on top" "Cylindrical"
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The Low Pressure Inductively Coupled 
Discharges Produce Quiet, Stable Plasmas

Discharge frequency f=0.45-29 MHz 

Argon gas pressures of 0.3-10 mTorr

Plasma density n = 109 - 1013 cm-3

Electron temperature Te = few eV

RF power dissipation in the plasma 
6-400 W.

Plasma size  L~10 cm
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1-D Plasma Slab Of Width L

Ey Plasma
ne=niIcoil

Estat Estat

a) The plasma is driven by  coil 
current Icoil , that produces the 
transverse wave with Ey that 
excites plasma,

b) Estat is produced by the  
ambipolar potential            ,

c) Reflection from the walls is 
specular,

d) One electrode can be 
grounded.
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Characteristic  features of low-
pressure, inductive plasma

Non-Maxwellian Electron Energy    
Distribution Function (EEDF)

Collisionless heating

Anomalous skin effect
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Electron Distribution Function 
is not Maxwellian

Measured EDF shows departure from a Maxwellian: 
a) Depopulated by high-energy electrons - inelastic collisions.
b) Enriched by low-energy electrons - cold electrons are trapped in 

a small rf electric field.
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Electron Heating Is Collisionless

The ratio of the total measured power Sexp to collisional Scol power 
dissipation at 100W.

col colS j E=< >
2

( )col
e nEj

m iω ν
=

− +
ν is the collision frequency
ω is the rf field frequency

The enhanced power dissipation 
is due to resonant wave-particle 
interaction
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Collisionless Heating is 
Analogous to Landau Damping

Collisionless (Landau) plasma wave damping is larger than 
collisional damping for ν << ω

Analogy: a  particle sits on the crest of the wave

Inhomogeneous rf field => E(k)  = > ω=> ω-vk 

Due to resonance ω=vk  
j(k) > jcol
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Typical profile of rf electric field shows 
anomalous skin effect
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Rf electric field for different lengths
for full self consistent simulation
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Overview of Kinetic Model for 
Discharge Simulations
Calculate nonlocal conductivity in non-
uniform plasma.

Find a non-Maxwellian electron energy 
distribution function driven by collisionless 
heating of resonant electrons.

What to expect: self-consistent system for 
kinetic treatment of collisionless and 
nonlocal phenomena in inductive discharge.
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The Model Consists Of 3 Blocks:

The rf electric field using Maxwell’s equations and 
the non-local conductivity operator,

The electron distribution function (EEDF)
using the averaged over fast electron motions 
kinetic equation,

The electrostatic potential using quasi-
neutrality condition and the fluid equations for 
ion density and ion momentum.
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Sketch of the non-local approach
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The Boltzmann equations splits in 2 equations:

1) for the main isotropic part, or ( ), which gives density : ( )
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1) The transverse RF Electric Field
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1a) Current Density
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can be effectively computed using Fast Fourier Transform (FFT).

The generalized dispersion function:

The non-local conductivity operator:
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2) Kinetic Equation Is Averaged over Fast 
Electron Bouncing in Potential Well

Dee Vee are from the electron-electron collision integral, 
ν*   is inelastic collision frequency and upper bar denotes space 

averaging with constant total energy.
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Energy diffusion De coefficient is a function of 
the rf electric field Ey and the plasma potential ϕ(x).
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3)  The ambipolar potential
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The quasineutrality condition 

gives the electrostatic potential:
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where  scr
eT is the electron “screening temperature”.
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3a)  The ion density profile

The ion density profile ( )ionn x is given by:
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is the ionization rate, and ( )ion uν

is the ion-neutral and ion charge transfer frequency.
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Simulation flow chart.
Each block depends on the results of other blocks – iterations.

Start

End

Initial 
potential,
EEDF,ne(L/2)

The 
Nonlocal
Boltzmann
solver

The 
rf Efield
block

The 
Ion 
Block

Potential,
ne(L/2)

RF field

Convergence 
?????      EEDF,

Ionization
rate

Yes

No
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The role of plasma non-uniformity 
at the bounce resonance :
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O. V. Polomarov, C. E. Theodosiou,  and I. D. Kaganovich, “Enhanced collisionless heating in non-uniform 
plasma at the bounce resonance condition”. Accepted  PoP August (2005).
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Influence of ambipolar potential on the bounce 
frequency and the corresponding enlargement of 
the number of resonant electrons

Solid lines -
The bounce frequency vs energy:
Black  - no ambipolar potential,
Green - realistic potential,
Red - quadratic potential.
Dashed box -
the resonant region
Arrows - the width of 
corresponding energy ranges
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The resonant electrons are the 
electrons with bounce frequency: 

The number of resonant electrons increases
if the ambipolar potential is taken into account.
More resonant electrons-larger dissipated power.

As it follows from
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The corresponding surface resistance 
for Maxwellian EEDF.
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ω =13.56 MHz,/TV Lω π=

Solid lines -
The bounce frequency vs energy:
Black  - no ambipolar potential,
Green - realistic potential,
Red - quadratic potential.
Dashed box -
the resonant region
Arrows - the width of 
corresponding energy ranges

The resonant length ~ 3 cm
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Plasma resistance, Te, density and 
ambipolar potential profiles
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1-D simulation of magnetized ICP 
discharges
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1) The dc magnetic field is applied perpendicularly to boundaries.
where  E ± is  left and right polarized electric fields, respectively.
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where  cΩ is the electron-cyclotron frequency.

O. V. Polomarov, C. E. Theodosiou,  and I. D. Kaganovich at all. “Self-consistent  kinetic 
modeling of low-pressure inductively coupled plasmas.“ submitted to IEEE(2005)
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Resonances in magnetized plasmas
O. V. Polomarov, C. E. Theodosiou,   I. D. Kaganovich at all,  “Effectiveness of electron-
cyclotron and transmission resonance heating in ICP plasmas”, accepted, PoP, September, 
(2005). 

Electron-cyclotron resonance:

Transmission resonances for B>Bc:
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Resistance of uniform and non-uniform 
plasmas for Maxwellian EEDF
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Self-consistent simulation of 1-D 
ICP for fixed coil current

Input parameters of the discharge:

Coil current, or power

Pressure

Frequency and Length
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Self-consistent simulation of the magnetized 
ICP and comparison with the experiment.

29 , 10,5MHz L cmω = =

Experimental data are taken from:

V. A. Godyak and B. M. Alexandrovich, 
Phys. Plasmas 11, 3553 (2004).
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Rf electric field
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The energy diffusion coefficient and 
EEDF

0 5 10 15
1E-3

0.01

0.1

0 5 10 15

1E

0.0

0.
29 MHz, 10 mT, 200W

no
rm

al
iz

ed
 e

ep
f (

eV
-3

/2
)

electron energy (eV)

Experiment: 
 B=0 G
 B=10 G

EEDF 

1-D Simulation:
 B=0 G
 B=10 G
 B=20 G



31

Electron temperature and density
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Conclusion

The self-consistent system of 
equations is derived for description of 
plasma heating and anomalous skin 
effect in non-uniform non-magnetized 
and magnetized plasmas.

The robust kinetic code was developed 
for fast modeling of ICP discharges.
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