Challenging problems of Hall thruster discharge

- Yevgeny Raitses
- PPPL, Princeton
- in collaboration with
- Artem Smirnov, David Staack and Nathaniel J. Fisch

Motivation & Challenges

Hall thruster plasma: collisionless, magnetized electrons and non-magnetized ions, non-uniform, non-equilibrium, with hot electrons and high energy ions.

➤What is a role of plasma-wall interaction in the presence of a strong secondary electron emission?

➤ What mechanisms are responsible for enhanced electron cross-field transport in Hall thruster discharge?

Controlling of electron transport and plasma-wall interaction could lead to a technologically superior thruster

Hall Thruster (HT)

Magnetic field ~ 10^2 Gauss Discharge voltage ~ 10^2 - 10^3 keV Ion kinetic energy ~ 10^2 - 10^3 keV Ion beam density ~ 0.1-1 A/cm²

Parameters of Hall thruster plasma

Neutral density ~ 10^{12} - 10^{13} cm³ Plasma density ~ 10^{11} - 10^{12} cm⁻³ Highly ionized flow: Γ_{ion}/Γ_{n} ~ 80% Electron temperature ~ 20-60 eV Ion temperature ~ 1 eV Ion kinetic energy ~ 10^{2} - 10^{3} keV

 $\lambda_{ea}/h \sim 20 - 200$ $\lambda_{ei}/h \sim 4 \times 10^{3}$ $\lambda_{ia}/h \sim 10\text{-}100$ Energy relaxation length in the inelastic range $\lambda^{*}/h \sim 30 - 300$

Collisionless, non-equilibrium plasma with magnetized electrons and high energy, non-magnetized ions

Non-local effect of electron-wall interaction on the V-I characteristics

Narrow low-SEE segments at the channel exit drastically change V-I characteristics

Plasma measurements in PPPL HT with emissive and biased probes

Low disturbing shielded emissive probe

Find more at <u>htx.pppl.gov</u>

Ionization and ion acceleration in a short region

Electron energy balance

 $\frac{d}{dz}\left(\frac{5}{2}T_e\Gamma_{ez}\right) = P_J - Q_{ea} - Q_{wall}$

 P_J - Joule heating

Electron energy losses:

- Q_{e-a} inelastic losses
- Q_{wall} wall losses

If no-SEE: $Q_{wall} = v_{iw} N_e \varepsilon_w \approx \frac{V_{Bohm}}{h} N_e \varepsilon_w$

Near-wall sheath with SEE

 $\Gamma_e = \frac{\Gamma_{ion}}{1 - \delta_{in}(T)}$

•Strong SEE from ceramic walls: for Maxwellian EEDF and Boron $\phi_w \sim T_e$ nitride, $\delta_{eff} = \Gamma_{SEE} / \Gamma_{ep} \sim 100\%$ at $T_e \approx 20 \text{ eV}$.

•Space-charge saturation of the wall sheaths: <u>SEE does not exceed 1</u>

For Xenon:
$$\delta_{eff} = \delta_c \approx 0.983$$

$$v_{ew} \approx \frac{1}{h} \left[\frac{1}{1 - \delta_c} \right] \sqrt{\frac{T_e}{M_{ion}}}$$

 \Rightarrow walls act as effective energy sink \Rightarrow near-wall electron conductivity

Comparing theory with experiment

II and III predicted for space charge saturated sheath

Barral et al, Phys. Plasmas, 2003 Ahedo et al., J. Appl. Phys., 2004

T_{emax} saturation:

Experiment $\approx 55 \text{ eV}$ at $V_d > 350 \text{ V}$ Theory $\approx 30 \text{ eV}$ at $V_d > 150 \text{ V}$ (but for a lower SEE BN)

9/14

Electron-wall collision frequency *Experimental vs. Theoretical*

Similar to the models:

- Maxwellian EEDF
- Temperature saturation due to SCS wall sheaths

Experimental frequency:

$$v_{exp}^{SCS} \approx \frac{P_J}{2T_e}$$

Theoretical frequency:

$$v_{th}^{SCS} \approx \frac{1}{h} \sqrt{\frac{T_e}{M_i}} \frac{1}{1 - \delta_c}$$

Raitses, Staack, Smirnov and Fisch, Phys. Plasmas, 2005

10/14

T_{emax}(V_d) dependence for different SEE wall materials

SEE is likely responsible for the temperature saturation obtained for the thruster discharge with BN channel walls

Kinetic effects may explain the reduced sensitivity to SEE

✓ Non-Maxwellian electron EDF

- i) depleted tail (at $\varepsilon > \varphi_{\text{sheath}}$): $T_{\text{tail}} < T_{\text{bulk}}$ (<u>Smirnov's poster, today</u>)
- ii) EDF anisotropy due to heating $\perp \mathbf{B}$ and mostly forward e-a scattering. At $T_{\rm e} \sim 40 \, {\rm eV} \, \sigma_{<30^{\circ}} / \sigma_{>30^{\circ}} \sim 2$

✓ Secondary electrons emitted from opposite channel walls form counter-streaming beams

$$\Gamma_{i} - \Gamma_{ep} + \Gamma_{see} - \delta_{b}\Gamma_{see} = 0$$

$$\Gamma_{ep} = \frac{\Gamma_{i}}{1 - \delta_{see}(1 - \delta_{b})}$$

 δ_{see} can be > 1 if $\delta_{see}(1-\delta_b) < 1$

PIC simulations: Anisotropic electron EDF (See today's poster by D. Sydorenko et al.)

Distribution of all electrons in the middle of the plasma:

 W_{χ} – the energy of electron motion normal to the walls.

 W_7 – the energy of electron motion along the accelerating field.

The complete distribution can be separated into:

-40

- 1. The plasma bulk:
- anisotropic, with T₂ >> T_x,
- confined by the plasma potential.
- 2. The SEE beams:
- non-zero temperature of emission,
- produce most of the electron current to the walls.

Electron cross-field transport in HT

- PIC simulations: NWC exceeds the collisional value by a factor of 3 times, but sheath is not space charge saturated.
- Experiment: for low-SEE segmented channel, cross-field mobility reduces with the discharge voltage

Summary

- The electron-wall interaction in the presence of a strong SEE limits the maximum electron temperature in Hall thruster discharge.
- In experiments, the maximum temperature exceeds the predicted value for the SCS regime obtained under the assumption of the Maxwellian electron EDF.
- The reduced sensitivity to the SEE indirectly support recent kinetic studies, which suggest:
 - ✓ Strongly anisotropic electron EDF.
 - \checkmark Secondary electrons from opposite walls form beams.
 - SEE coefficient due to the plasma bulk electrons can exceed
 1 if the beam of secondary electrons reaches the opposite wall.

Igor Kaganovich, *PPPL* Dmitry Sydorenko, *U. of Saskatchewan* Michael Keidar, *U. of Michigan*