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Nonmonotonic spatial profiles of excitation rates in
bounded plasmas caused by effects of EDF

nonlocality
E. A. Bogdanov, A. A. Kudryavtsev and L. D. Tsendin.

Abstract— It is shown that the impact of the electron dis-
tribution function (EDF) nonlocality on the spatial profiles of
excitation rates is important up to high gas pressures pR <100
cmTorr. A paradoxical effect related to the nonlocal character of
the EDF is revealed: the peaks of the profiles of the excitation
rates shift from the discharge axis toward the periphery as the
pressure increases. This effect cannot be understood from the
hydrodynamic point-of-view but is instead related to the nonlocal
character of the EDF.

Index Terms— nonlocal electron kinetics, positive column of
glow DC discharge, electron distribution function.

I. INTRODUCTION

When simulating gas-discharge plasmas, the electron dis-
tribution function (EDF) is usually calculated using the tra-
ditional local approximation [1], [2]. This means that terms
with both spatial gradients and an ambipolar electric field are
omitted in the kinetic equation and the EDF is factorized as

f0(w,x) = ne(x)f0
0 (w, E/p) (1)

In this approximation, the electron distribution over kinetic
energy w = m v2/2 at a fixed point x depends on the local
parameters, primarily the heating electric-field intensity E and
the pressure. The inhomogeneity results in small corrections
which determine particle and (if necessary) energy fluxes,
which are proportional to the relatively small gradients of
these parameters. They manifest themselves in the formation
of fluxes of particles and energy, which are proportional to
these gradients. Such an approach is characteristic for the so-
called fluid approach, see for example [1], [2], [3]. In this
approximation, the direction of the differential fluxes, i.e. of
the contributions of different EDF parts to the total particle
and energy fluxes, coincides with the directions of the total
fluxes. Correspondingly, the rates of electron collisions, i.e.
impact excitation rates

Wk(x) = 4π

∫

∞

vk

f0(v,x)νk(v) v2dv = νk(E/p)ne(x) (2)

(where vk =
√

2εk/m ) of atomic energy levels k with
threshold energy εk, are proportional to the electron density
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ne(x) [1], [2]. These rates control plasma-chemical reaction
rates, plasma luminosity and composition, ionization, etc.
Thus, the excitation frequencies, νk(E/p), are determined
by the local EDF, f0

0 , which depends on the local values
of the heating electric-field intensity and other parameters
(the gas temperature, the density of excited particles, etc.).
Consequently, in the gas-discharge plasmas this field is the
dominant factor which controls spatial Wk profiles, and they
are expected to reproduce the heating field and the electron
density profiles. Therefore in a DC positive column plasmas,
where electrons are heated by the uniform longitudinal electric
field Ez, the common expectation is that all the excitation rates
in a column are maximal on the tube axis, where the plasma
density is maximal. Nevertheless, in simulations [4], [5] of the
positive column (PC) in Argon at pR = (6 − 100) cm · Torr
(where p is pressure and R is tube radius), a surprising
phenomenon was revealed, that excitation rates were maximal
not on the tube axis, but shifted towards the wall. Hence,
the applicability of local approximation for EDF calculations
requires careful inspection.

The traditional local approach is applicable only when terms
with spatial gradients are small and can be omitted in the
kinetic equation, i.e. when electron energy relaxation length
λε is significantly less then size of spatial inhomogeniety of
plasma [6]. In the opposite case the nature of EDF is nonlocal,
i.e., its value at a given point depends on the distribution of the
physical parameters (primarily on the electric field strength)
within the sphere with center placed in a given point and with
radius λε, rather than on their local values. Estimating λε one
must take into account that the relation between the volume
processes and the diffusion of electrons to the walls could be
different for different electron energy ranges.

If the electron energy balance is determined by elastic
collisions, then for atomic gases in the energy range ε < ε1

(where ε1 is inelastic processes threshold energy) in which
most electrons are concentrated, the electron energy relaxation
length is

λε '
√

Dx/(δν) ' λ/
√

δ > 100λ (3)

(where λ is the electron mean free path, Dx = λv/3 is the
coefficient of spatial electron diffusion and δ = 2m/M ). When
λε > Λ (where Λ is characteristic diffusion length), the EDF is
nonlocal throughout the whole plasma volume. The length (3)
is more than two orders of magnitude larger than the electron

0000–0000/00$00.00 c© 2005 IEEE

user
Text Box
Copyright (c) [2006] IEEE.   Reprinted from (Special Issue on Nonlocal,  Collisionless Electron Transport in Plasmas - June 2006).
This material is posted here with permission of the IEEE.  Internal or personal use of this material is permitted.  However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.



2

mean-free-path, and the inequality λε > Λ is satisfied up to
relatively high pressures p · Λ 6 (5 − 10) cm·Torr.

Since at λε > Λ the energy of an electron changes only
slightly during its single pass across the discharge volume,
the total energy

ε = w + eϕ(x) = m v2/2 + eϕ(x) (4)

(the kinetic energy plus the potential energy) is the integral of
motion of such electrons.

In the energy range ε > ε1, which corresponds to inelastic
collisions, an electron diffuses in the electron energy relaxation
length λ∗

ε before inelastic collision occurs:

λ∗

ε =
√

Dx/ν1 '
√

λλ∗ ' (3 − 10)λ (5)

(where, λ∗ = 1/(Nσ∗) is the electron mean-free-path for
inelastic processes and ν1 is frequency of inelastic collisions)
and its characteristic lifetime is 1/ν1. The length λ∗

ε (5) is
much shorter than λε that is given by Eq. (3).

Therefore, from the physical standpoint, the most conve-
nient variables for describing a nonlocal EDF are the variables
ε and x [3], [6]. Because of the presence of two very different
energy scales, the nonlocal character of the EDF manifests
itself in different ways in its different parts. In terms of the
total energy (4), the nonlocal EDF can be either dependent
on, or independent of, the spatial coordinate x [6]. The most
examined marginal case of low pressures when λ∗

ε > Λ and the
EDF at ε 6 eΦw depends only on the total energy ε [6], [7],
[8] (Φw is the potential difference between the discharge axis
and the tube wall). At higher pressure, when the inequality
λε > Λ > λ∗

ε holds, the situation becomes more diverse
[4], [9], [10]. In this case the bulk of the EDF at ε < ε1

remains a function of ε only, but the EDF tail, at ε > ε1,
depends both on ε and x. The analysis of this case was started
only recently [4], [5], [9], [10], [11] and many surprising
phenomena were discovered. One of the most impressive is
the case of paradoxical non-monotonic behavior of excitation-
rate spatial profiles in DC positive column (PC) plasmas [4],
[5], [11].

In this paper we present the main results, their concise
explanation, and scalings for the excitation profiles in a PC
at moderate and high pressures.

II. NUMERICAL SIMULATIONS RESULTS IN POSITIVE
COLUMN

The positive column (PC) plasma is the most studied object
of the low-temperature plasma physics. The relative simplicity
of its creation and diagnostics makes it traditional benchmark
and testing field for many novel concepts and approaches. It
was pointed out in [4], [5] that the above-mentioned paradoxi-
cal phenomenon of non-monotonic behavior of excitation-rate
spatial profiles are caused by the non-local electron kinetics
[6], and in [11] was presented a kinetic analysis of the
problem.

The simulation code used in this work is described in
detail in [12]. The code solves equations of continuity for
plasma species and Poisson equation for the electrostatic field.
Heavy particles were described by a fluid model. The electron

distribution function is calculated by solving the Boltzmann
equation using a two-term spherical harmonics expansion. For
EDF calculations, we have accounted for various processes
including stepwise excitation and ionization, as well as the
generation of energetic electrons in superelastic collisions with
metastables and Penning ionization between metastables. At
the tube wall r = R = 1cm, the loss-cone boundary condition
has been used (see e.g., [8], [9]). We consider six plasma
species: Ar (ground state), Ar∗ (metastable state) with energy
ε1=11.55 eV, Ar∗r (resonance state, 11.73 eV), Ar∗∗ (13.2
eV), Ar+, and Ar+

2 (atomic and molecular ions). The argon
chemistry mechanism is similar to that used in [5] (see also
[13] with similar mechanism for xenon). It includes conversion
of the atomic to molecular ions and thus could be used in
a wide range of gas pressures. The mechanism consists of
21 reaction steps, including various electron-induced excita-
tion, de-excitation, ionization steps and radiative transitions:
Ar∗∗ → Ar∗ and Ar∗r → Ar (radiation trapping includes
both Doppler and collisional line broadening account).

The calculated radial profiles of excitation rates R1 and R2

for the reactions Ar + e ↔ Ar∗ + e and Ar + e ↔ Ar∗∗ + e
presented in Fig. 1 for different gas pressures. Off-axis peaks
of both excitation rate profiles are observed for a pressure
range 5 < p < 50 Torr. The R2 peaks (Fig. 1b) are more
pronounced than the R1 peaks (Fig. 1a). The nonmonotonic
excitation rates result in nonmonotonic distributions of excited
species. For example, Fig. 2 shows the radial profiles of Ar∗

density at different gas pressures. One can see that Ar∗ density
is nonmonotonic at pressures from 5 to 50 Torr.

The densities of other excited species have similar radial
profiles. The electron density profiles are close to Bessel distri-
butions with the maximum values varying from 1.6×109cm−3

(at 1 Torr) to 1.5×1010cm−3 (at 100 Torr). The axial electric
field Ez calculated self-consistently by the code has values 6.9,
6.2, 12.1, 31.3, 64.9, and 131.7 V/cm for p=1, 5, 10, 25, 50,
and 100 Torr, for the fixed discharge current of 1 mA. For such
a low current, Coulomb collisions, volume recombination, and
gas heating are not important.

Thus the observed effects cannot be understood from the
hydrodynamic point of view and their understanding can be
achieved by analysis of electron kinetics in PC at moderate
gas pressures.

III. KINETIC ANALYSIS

Let us give a kinetic analysis of the problem for the
excitation profiles in a PC. In order to clarify the underlying
physics, here we consider the model problem as a plane-
parallel (rather then cylindrical as in the real PC) geometry
with the gap spacing 2L. This simplificatition does not lead
to losing the essence of investigated phenomenon.

If independent variables are spatial coordinate x (−L 6

x 6 L) and the total electron energy ε (4) then the kinetic
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equation takes the form (see, for example, [6], [11]):

∂

∂x

(√
wDx

∂f0

∂x

)

+
∂

∂ε

(√
w

(

DE
∂f0

∂ε
+ Veaf0

))

=

∑

k

(

νk(w)
√

w f0(ε) − νk(w + εk)
√

w + εk f0(ε + εk)
)

− Nmgaν1(w)
√

w

N0gm
f0(ε − ε1) .

(6)
This equation accounts for both the longitudinal Ez and
perpendicular (ambipolar) Ex = −∂ϕ/∂x electric fields. Here
DE = (eEz)

2Dx is the energy diffusion coefficient, which
relates to the Joule heating by the field. The energy loss in the
elastic collisions causes in the ”velocity” along the energy axis
Vea = wδν. The right-hand side of Eq.(6) includes sources
and sinks due to inelastic processes. Here, νk corresponds
to the inelastic collisions with excitation of an atomic level
k. The first term within the sum Σk is non-zero only at the
EDF tail, when w > ε1 (in the region III in Fig. 3a). The
second one desribes the electrons appearing after an inelastic
collision with small energy; it is important only at small
energies (in the region I in Fig. 3a) and will be neglected
at later. The last term in (6) desribes the electrons appearing
after superelastic collisions e + Ar∗ → e + Ar of electrons
with long-living metastable atoms. In this process slow bulk
electron additionally acquires the threshold excitation energy
ε1 and instantaneously becomes fast. Such processes have sub-
stantion impact on effective constants of excitation reactions
with high threshold energies and, accordingly, on the densities
of highly excited states (see [5] for details). ν1 is the excitation
frequency of the metastable level, N0 and Nm are ground state
and metastable atoms density and ga, gm - their statistical
weights.

The kinetic equation (6) is the 2D diffusion equation with ε
and x, as variables. It is reasonable to introduce the differential
flows along the energy axis and along the spatial coordinate
x (it would be radial coordinate r in the real PC case):

Γε = −
(

DE(w, x)
∂f0

∂ε
+ Vea(w)f0

)

(7a)

Φx = −Dx(w)
∂f0

∂x
(7b)

At moderate and higher pressure, when λε > Λ > λ∗

ε , as
already mentioned, the bulk of the EDF at ε < ε1 remains a
function of ε only, but the EDF tail, at ε > ε1, depends both on
ε and x. When a kinetic energy w = ε− eϕ(x) > ε1 exceeds
the inelastic collision threshold ε1 (region III in Fig. 3),
the EDF decreases sharply, ∼ exp(−ε/T ∗) ∼ exp(−x/λ∗

ε),
where

T ∗(ε) ' (DE/ν1)
1/2 = eEzλ

∗

ε (8)

is the electron ”temperature” in the inelastic region. The
electrons with w > ε1+T ∗ are practically absent. In the region
IIb (see Fig. 3a), inelastic collisions are absent and an intense
inward-directed differential spatial flux Φx(ε, x) (the diffusive
flux of electrons with the given total energy) is formed [9]
(see Fig. 3a). At the boundary between the regions IIb and

III , which is given by a relation

eϕ(x1(ε)) = ε − ε1 , (9)

a zero boundary condition for the EDF values (”black wall”
approximation [6]) should be imposed.

If L >> λ∗

ε the expression (2) for the total excitation rate
could be considerably simplified. The differential flux Φx, and
the flux Γε along the energy axis are shown in Fig 3a. The
excitations occur in the narrow (∼ T ∗) strip in the (ε, x)
plane (dotted line in Fig. 3b). Multiplying (6) by (4πv2dv dx)
and integrating it over the srip, which length ∆x satisfies the
conditions

L >> ∆x >> λ∗

ε , (10)

we obtain an expression for the total excitation rate Wex:

Wex(x)∆x = −4πv1

m
∆x

[

Γε +
∆ε

∆x

∂f0

∂x

]

= −4πv1

m
∆x

[

DE
∂f0

∂ε
+ Dx(eEx)

∂f0

∂x

]

.

(11)

The first term in the expression for the excitation rate (11)
corresponds to the traditional mechanism of Joule heating (the
diffuson in energy). It is maximal at the gap midplane. Since
the EDF in the region IIb (see Fig. 3a) decreases exponentially
with energy, the corresponding contribution to the exitation
rate (2) decreases towards the column periphery. The second
term relates to the differential flux Φx that is inward-directed
in the region IIb (see Fig. 3a). Its direction is determined
by positive spatial gradient ∂f0/∂x at fixed ε; the last due
to sink ”black wall” at the x = x1(ε) point. Since this flux
corresponds to the diffusion with ε conservation, the kinetic
energy of electrons in the range ε1 < ε increases. In other
words, these electrons are ”heated” by the radial electric
field. It is to be noted that in our approximation the total
electron transverse flux equals zero (the flux Φx in region
IIa is outward directed, Fig. 3a, and compensates the inward-
directed flux in IIb). That is why this effect cannot be treated
in the conventional terms of the fluid approximation (see [9]
for details). This spatial term is proportional to

∆ε = eEx∆x (12)

and equals zero both at x = 0 and at x → L; thus the
peripherically peaked profiles of Wex(x) arise, if this term
dominates.

At λε > L the term Vε in (6) can be neglected in the region
IIb. So we have an estimate for the excitation rate profile

Wex (x)

Wex (0)
=
[∂f0 (x, ε)

∂ε
+

Ex

(eEz)2

× ∂f0 (x, ε)

∂x

]

∣

∣

∣

∣

ε=eϕ(x)+ε1

×
(

∂f0

∂ε

∣

∣

∣

∣

x=0, ε=ε1

)

−1 (13)

We performed estimates of the rate profile (13) using the WKB
solution for the EDF in the region IIb that was formulated in
[9]. This solution satisfies zero boundary conditions for the
function f0 at x = x1(ε) (9), and for its spatial derivative at
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Fig. 1. Radial profiles of excitation rates of Ar∗ (a) and Ar∗∗ (b) at different
pressures.

x = L, and is exponentially decreasing with ε [9]

f0 (x, ε) ' exp [−Ψ(ε)] sin

[

π

2

(x − x1(ε))

(L − x1(ε))

]

;

Ψ(ε) =
π

2

ε
∫

ε1

√

Dx

DE

dε′

(L − x1(ε))
≈ π

2

(ε − ε1)

eEz(L − x1(ε))
.

(14)
The first term in the numerator in (13) decreases with x due to
EDF decrease along the boundary between the regions III and
IIb. On the contrary, the second one is zero at x = 0. It rises
at small x values due to the Ex(x) rise. At larger x values the
exponential decrease of the EDF f0(x, ε = ε1 + e ϕ(x)) (see
(14)), overcomes this factor, and so this term has a maximum
at some x 6= 0. The estimate of (13) yields

Wex (x)

Wex (0)
≈ exp

[

−π

2

ϕ(x)

Ez(L − x)

]

×
(

1 +
Ex

Ez

)

. (15)

The effect can be interpreted in terms of an electrostatic
analogy (Fig. 4). Neglecting the drift term Vε in the energy
flux, the last term in the right-hand side of (6), and using the
absorbing wall approximation, the problem is reduced to the
Laplace equation. It can be treated as finding the electrostatic

Fig. 2. Radial profiles of excited Ar∗ species at different pressures.

Fig. 3. a) Formation scheme of the spatial differential fluxes Φε(x, ε), and of
the flux in energy Γε(x, ε). The dashed arrows relate to the electrons which
have lost energy by inelastic collisions. b) The integration domain of (6) in
the (x, ε) plane.

Fig. 4. Electrostatic analogy.
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Fig. 5. Spatial profiles of the total excitation rate for Ez/p = 0.65 V/(cm·Torr)
and eϕ(r) = ε1(x/L)3 for different p=0.5(A), 5(B), 10(C) and 100(D) Torr.

Fig. 6. Spatial profiles of the excitation rate for Ez =5 V/cm, p = 3Torr and
eϕ(r) = ε1(x/L)3 for different a = 0(dotted line), 0.25(curve 1), 1(curve
2) and 1.5(curve 3).

Fig. 7. Formation scheme of excitation spatial profiles for high energy levels.

Fig. 8. Profiles of excitation rates (normalized to their maximal values) of
different levels of Argon atoms k = 1 (curve 1), 3 (2), 5 (3), 17 (4) and
25 (5) with energies εk = 11.55, 11.72, 12.91, 14.01, 15.2 eV, respectively,
calculated (a) without and (b) with allowance for superelastic collisions; r0

is the peak coordinate of the excitation rate profile.

Fig. 9. EDFs at different radii r as function of the total energy ε: r = 0 (curve
1), 0.2R (2), 0.4R (3), 0.6R (4) and 0.8R (5).

”potential” of a uniformly charged plane at ε = 0, while the
boundary between III and IIb is analogous to the conducting
surface, and the excitation rate is analogous to the surface
charge per unit length along the x axis σ(x). The boundary
condition of zero flux at the vessel wall can be interpreted as
the periodicity condition along x. So, it is obvious that if some
parts of the conducting surface are normal to x, the surface
charge per unit length along the x axis tends to infinity there.
On the contrary, if the conducting surface is gradual enough,
the surface charge on the conductor per unit length along x
is maximal at the points where ε at the conductor surface is
minimal.

Let us return to our model problem. If the ambipolar
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Fig. 10. The peak coordinate r0 of the excitation rate profile for the k-th level
as a function of the energy εk of this level. Curves A and B show the results
of calculations with and without allowance for the superelastic collisions,
respectively. The dotted line corresponds to the energy of the metastable state.

potential is approximated as

e ϕ(x) = −a ε1(x/L)n/n (16)

it is easy to derive the algebraic equation for the maximum
Wex (x) position x0 of (15). If A = ε1/(eEzL) � 1 then
the value of x0 can be estimated as:

x0 = n

√

n/(πAa) (17)

The formulated considerations are illustrated for the model
problem in the slab (plane-parallel) geometry with 2L=2 cm.
For ϕ(x) we had used approximation (16) with n =2 and
3. The spatial profiles of the excitation rate Wex(x) (2) are
presented in Fig. 5 for Ez/p = const and different pressures
p [11]. It could be seen that at low pressure, when the whole
EDF is nonlocal, the total excitation rate is peaked at the
plasma center (curve A). In contrast, at moderate pressure the
peak of the Wex(x) (curves B, C) is substantially displaced
from the PC axis. The x0 positions for curves B and C obtained
from (16), (17) are 0.33 and 0.38 accordingly; These values are
in agreement with numerical results (Fig. 4): 0.41 and 0.55. At
higher pL it holds λε < L, and the EDF in the central part of
region II becomes local. Nevertheless, nonlocal effects still
exist at a distance λε from the wall, if the potential profile
ϕ(x) in the wall vicinity is steep enough. It can be seen from
the curve D that the Wex (x) profiles in the central vessel part
are maximal at x = 0, but at the distance from the wall of
the order of λε (3), where the EDF is non-local, the satellite
maximum remains. If the ϕ(x) profile is more gradual (say, for
n = 3/2 in (15)), the satellite maximum disappears. A quick
test for existence of nonmonotonic profiles and a maximum
position gives Eq. (15). It means, in particular, that excitation
profiles expected to be nonmonotonic when Ex exceeds the
longitudinal field Ez . Therefore, for the effect presence the
profile of radial potential should be rather steep. In Fig. 6
the excitation rate spatial profiles Wex (x) are presented in
dependence of Ex value. In the absence of the transverse
electric field the dependence of total excitation frequency Wex

is independent of x. At low Ex, Wex has maximum at x = 0;
at higher Ex, the maximum is shifted towards the periphery.

The excitation rates of individual levels Wk (x) with the
excitation energies εk can be divided roughly into two groups.

Fig. 11. Radial excitation rate profiles (normalized on maximal value) for
several energy levels of Argon (with k = 1 (a), 5 (b) and 16 (c)). P = 7 Torr,
R = 1 cm, I = 30 mA. A: without account of Coulomb collisions and gas
heating; B: with account of Coulomb collisions, but without gas heating; C:
with account of gas heating, but without Coulomb collisions; D: with account
of Coulomb collisions and gas heating; E: same as B, but without account of
superelastic collisions; F : without account of Coulomb collisions, gas heating
and superelastic collisions.

The excitation rates for the levels with the low εk, for which
the excitation threshold satisfies the condition εk < ε1 + T ∗,
i.e., lies within the dotted strip in the Fig. 3b, the excitation
rates behave, roughly speaking, in a similar way as it follows
from (15). It means that shift in energy on distances less than
T ∗ does not distort essentially the spatial profile of electon flux
through the line of fixed kinetic energy εk, which in this case
determines this excitation rate profile. The spatial profiles of
the higher levels excitation rates with the threshold εk > ε1 +
T ∗ (see Fig. 7) depend more on EDF behaveour in region III .
Electrons in the near-axial region cannot gain energy ε > εk

in the longitudinal electric Ez field because εk −ε1 > T ∗ and
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Fig. 12. EEFD on the tube axis. The sense of symbols A, B, C, D and
physical conditions (P , R, I) are same as in Fig.11 (curves E and F do not
presented because E almost same with B and F almost same with A).

Fig. 13. The spatial profiles of metastable atoms densities. The meaning of
symbols A, B, C, D and physical conditions (P , R, I) are same as in Fig.11
(curves E and F do not presented because E almost same with B and F
almost same with A.).

Fig. 14. Spatial profiles of electron density. The meaning of symbols A, B,
C, D and physical conditions (P , R, I) are same as in Fig.11 (curves E and
F do not presented because E almost same with B and F almost same with
A.).

Fig. 15. The potential profiles. The meaning of symbols A, B, C, D and
physical conditions (P , R, I) are same as in Fig.11 (curves E and F do not
presented because E almost same with B and F almost same with A.).

Fig. 16. Normalized to Ez profiles of radial electric field Er . The sense of
symbols A, B, C, D and physical conditions (P , R, I) are same as in Fig.11
(curves E and F do not presented because E almost same with B and F
almost same with A.).

hence, they have to undergo inelastic collision before. The
way by wich an electron can reach the region with w > εk is
follows: First, the electron diffuses over energy up to ε > εk at
the periphery of the plasma column, where the kinetic energy
is low ε − eϕ(x) < ε1 and the electron does not undergoes
inelastic collisions. Then, this electron diffuses in the radial
direction toward the axis over a distance ∼ λ∗

ε . For this reason,
the maximum of excitation rate (and the corresponding rate
constant) of the level εk is shifted from the curve x = xk(ε)
(where xk(ε) defined by relation: ε − eϕ(xk(ε)) = εk) on
distance λ∗

ε toward the axis.
The values of Wk(x) depend most crucially on the expo-

nentially small probability to overcome the absorbing region
between the curves x̃1(ε̃) and x̃k(ε̃) in Fig. 7, where intro-
duced the dimensionless units:

x̃ = x
√

ν1/Dx = x/λ∗

ε ,

ε̃ = ε
√

ν1/DE = ε/T ∗ ,
(18)

and x̃k(ε̃) = xk(ε̃ T ∗)/λε. In order to estimate this probability,
let us assume vDx, vDE , vν1 to be velocity-independent. In
this case we can write the kinetic equation (6) in the region
III in form:

∂2f0

∂ ε̃2
+

∂2f0

∂ x̃2
= −f0 . (19)

The excitation rates Wk (x̃) are maximal at the points where
the ”absorbing barrier” between the curves x̃ = x̃1(ε), and x̃ =
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x̃k(ε) is most transparent. The ”distance” l̃ between the curves
x̃ = x̃1(ε), and x̃ = x̃k(ε) along the normal is minimal. Its
”transparency” can be estimated as ∼ exp[−l̃(x̃)]. Since the
curve x̃ = x̃k(ε) is shifted by ε̃k along the ε̃ axis in respect of
x̃ = x̃1(ε), this distance is maximal and equals ε̃k− ε̃1 at x̃ =
0, and decreases monotonously from discharge center towards
its periphery. For a concave potential profile of the type of (15),
this rise occurs up to the distance from the wall (L−x) > λ∗

ε

where the EDF decreasing in the region IIb compensated by
barrier transparency. Accordingly, the Wk (x) maximum are
to be rather sharp and located in the wall vicinity. It illustrates
also Fig. 8a, which shows the normalized radial profiles of
different Ar atoms states at p = 6 Torr, R = 1 cm, and and I
= 3 mA.

IV. DISCUSSIONS OF SPATIAL PROFILES IN POSITIVE
COLUMN

Now let us consider the results related to PC in ar-
gon simulations. In considerd conditions the destruction of
metastable atoms is determined by transitions to a neighboring
levels by electron impact. Due to low threshold energy of
such processes, their rates almost independent on EDF form.
It means that their rates can be writen in form Rmix =
kmixneNm where kmix is constant. The balance of creation
and destruction of metastable atoms in steady state is Rex =
kmixneNm where Rex is the excitation rate and electron den-
sity ne(r) monotonically decreases with increasing of r. Thus,
in this case nonmonotonic (with shifted from axis maximum)
excitation-rate profile of metastable energy level Rex will lead
to nonmonotonic spatial profile Nm(r) of metastable atoms
itself (see Fig. 2) [4], [5], [11]. With decreasing of discharge
current, the destruction of metastable atoms will be determined
by their diffusion and their spatial profile can be monotonic
even if their excitation-rate-profile is nonmonotonic.

It follows from the above discussion that the higher the
level, the larger the shift of the peak of the excitation rate
profile toward the periphery caused by effects of EDF nonlo-
cality. But usually the metastable atom density Nm is fairly
high and stepwise excitation could be more effective than the
above-considered direct excitation from the ground state. In
such situation this shift is superimposed by the not widely
known effect of the replication of the slow (nonlocal) part
of the EDF in its fast part [4]. In a superelastic collisions
with metastable atoms, a slow (bulk) electron participating
in the reaction Ar∗ + e → Ar + ~e additionally acquires the
threshold excitation energy ε1 and instantaneously becomes
fast. These processes substantially enhance population of the
fast component of the EDF and influence on the calculated
values of the constants for the excitation reactions with high
threshold energies and, accordingly, the densities of highly
excited states, as it illustrates Fig. 9 (see [4] for details). As
it was shown in [4] and also can be seen from Fig. 9, the fast
components of the EDF (ε > ε1) can be represented as a sum
f0 = f0t +f0h. If the density Nm of metastable atoms is high
enough, the part of the EDF which corresponds to Nm = 0
and sharply decreases at energies above the threshold energy
(ε > ε1),

f0t(ε) ' cnt exp(−ε/T ∗) (20)

is supplemented with a gently sloping pedestal

foh(ε) ' Nmga

N0gm
f0(ε − ε1) (21)

replicating the shape of the slow component (the bulk) of the
EDF. Because of the low effective temperature of the fast
electrons T ∗ (8), the EDF f0t (20) falls rapidly at higher
energies and, as early as at energies of a few electronvolts
above the threshold ε1, it is considerably less than the EDF
foh (21) (Fig. 9). Thus, the excitation rate of higher levels can
be given by sum of two terms

Wk (x) = W t
k (x) + W h

k (x) (22)

where W t
k and W h

k determined by f0t and f0h correspond-
ingly.

Since the energy dependence of foh is close to that of the
EDF of slow electrons (ε < ε1), the spatial profiles of the
frequencies and rates of the processes that are determined by
these parts of the EDF can also be close to one another [4].
Therefore, when the density Nm is fairly high, the maximum
shift for high energy levels is superimposed by the effect of
the replication of the slow (nonlocal) part of the EDF in its
fast part (see [4] and Fig. 8b). Therefore, for energies ε >
εh, at which the EDF f0h (21) is larger than f0t (20), the
effect of the shift of the peak of the excitation rate profile
disappears. In this case, the spatial profiles of direct (e+Ar →
2e + Ar+) and stepwise (e + Ar∗ → 2e + Ar+) ionizations:
W d

i (r) and W st
i (r) turned out similar. It can be shown in the

following way. Replacing variable v within integral in (2) by
u = mv2/2, we can write the expressions for rates of direct
and stepwise ionizations in the form:

W d
i =

8πN0

m2

∞
∫

εi

f0(u) σi(u) u du ,

W st
i =

8πNm

m2

∞
∫

εi−ε1

f0(u) σst(u) u du ,

(23)

where σi and σst are cross-sections of these processes. Be-
cause εi far exceeds ε1, the f0 in expression for W d

i (r) can
be replaced by f0h (21). Further, replacing of dummy variable
u by w = u − ε1 yields the expression for W d

i (r):

W d
i =

8πNmga

m2gm

∞
∫

εi−ε1

f0(r, w) σi(w+ε1) (w+ε1) dw . (24)

Now the integrals in W d
i (r) and W st

i (r) have same lower
limit εi − ε1. The values of these integrals are determined by
the integrand behaviour in thin bound of 2-3 eV at the lower
limit, where the factors σst(w) ·w and σi(w + ε1) · (w + ε1)
can be approximated by linear functions that equal zero at
εi − ε1. So, radial dependence W d

i (r) and W st
i (r) turned

out the same. The excitation rate radial profiles of close to
ionization threshold εi energy levels also will be close to
W st

i (r) profile. This is illustrated by Fig. 8b. For compari-
son, Fig. 10 demonstrates the position of the coordinate r0

corresponding to the peak of the excitation rate profile for the
k-th level as a function of the energy εk of this level. The
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EDF was calculated with (curve A) and without (curve B)
allowance for superelastic impacts. It can be seen that curve
B increases monotonically, while in curve A the effect of shift
of maximum-position is disappeared for high energy levels
because the excitation spatial profiles start to repeat the profile
of stepwise ionization. In other words, two parts of excitation
(22) gives two different reasons of behaviour of excitation-rate
profiles, which are superimposed on each other (compare the
curves A and F in Fig. 11).

In a real situation, some additional affecting factors which
were not accounted in kinetic equation (6) can mask the
presented effects caused by EDF nonlocality. With increasing
the discharge current the influence of gas heating should be
expected, that results in decreasing of normal atoms density
on discharge axis area. The current rise leads also to EDF
maxwellization due to electron-electron collisions. To illustrate
their influence, on Figs. 11-15 shown the simulation results at
p = 7 Torr, R = 1 cm and I = 30 mA for different excitation
energy are shown: 11.55 eV (a), 12.91 eV (b) and 13.98 eV (c).
Fig. 11a corresponds to metastable level, Fig. 11b, corresponds
to the intermediate excited state and Fig. 11c corresponds
to the high (close to ionization threshold) energy level. The
changing of corresponding EDF and the profiles of metastable
atom densities are presented on Figs. 12 and 13. In accordance
with previous remarks, superelastic collisions do not affect the
maximum Wex position of metastable states (see Fig. 11a,
curves A, F), whereas they influence the maximum position
of high-energy levels (Fig. 11c, curves A, F).

With electron-electron collisions included (curves B on
Figs. 11-16), the nonmonotonity effect disappears for low
excited levels (see Fig. 11a, curves B and E). The qualititative
explanation of such an effect lies in spatial non-uniform
EDF maxwellization. The maxwellization of EDF results in
the depletion of the EDF bulk and in enrichment of its tail
due to energy exchange between fast and slow electerons in
Coulomb collisions. This influence is determined by the rate of
Coulomb collisions, that is proportional to square of electron
number density. Hence, this maxwellization is maximal on
the disharge axis and significantly lower at its periphery. It
is possible to write f0 = f00 + f̃0 for EDF, where f00 is
EDF calculated for given values of field Ez, potential ϕ (r)
and current I without account of electron-electron collisions
and f̃0 is correction caused by their account. It allows to
divide the excitation rates Wk on two parts W 0

k and W̃k,
conditioned by f00 and f̃0 correspondingly. The ”magnitude”
of f̃0 (for instance, the value of f̃0 at fixed kinetic energy
w = ε1) expected to be maximal where the rate of Coulomb
collisions (which is ∼ n2

e) is maximal, i.e. on the axis. Thus,
the part W̃k has maximum on discharge axis, whereas the
radial profile of W 0

k is nonmonotonic. For low energy levels,
which close to excitation threshold, the parts W 0

k and W̃k are
comparable and their sum turned out monotonic. On the other
hand, the nonmonotonic profiles of excitation rates of high
energy levels (with threshold energy εk > ε1+T ∗) are formed
in a different way (see the discussion above). As a result, the
nonmonotonic excitation rate profiles can remain even with
account of Coulomb collisions. In self-consistent simulations
the distortion of excitation profiles due to electron-electron

collisions leads to modification of metastable atoms, electron
density and electric potential profiles (see Figs. 13-15), and,
as consequence, to reduction of the ambipolar field (see Fig.
16) and to rise of the EDF tail (see Fig. 12).

When effects of both Coulomb collisions and EDF replica-
tion (22) are accounted for, nonmonotonic excitation profiles
appear only for intermediate energy levels (see Fig. 11, curve
B): for the low energy levels the nomnonotonic profiles are
destroyed by Coulomb collisions, and for high ones by EDF
replication. Gas heating results in a nonuniform temperature
profile with a maximum on axis. Due to the ideal gas law,
it decreases the normal atoms density in the central part of
the discharge. As the parameter E/N increases here, the
diffusion in energy coefficient DE increases in the central part
of discharge volume, too. A rise of the energy and length scales
(8) and (5) also plays a destructive role for the existence of
nonmonotonic excitation profiles (see Fig. 11, curves C and
D). In fact, gas heating and Coulomb collisions lead to an
increasing the density of fast electrons on the axis that is
greater than near the wall. The summary influence of both
effects at hgher discharge currents will result in monotonic
excitation profiles for all energy levels.

V. CONCLUSION

In complex systems, such as molecular gases, gas mixtures,
DC and RF discharges of complex geometry and discharges in
magnetic field, more complex scenaria of kinetic formation of
excitation rates are expected. These relate also to the plasma
luminosity and plasma composition spatial profiles.

In summary, the impact of the nonlocal character of the
EDF on the spatial profiles of excitation rates is important. A
paradoxical effect of non-monotonic excitation rate profiles is
presented and its concise explaination is given. The related
effects in a moderate and high pressure PC in Argon are
considered.

APPENDIX

The values of longitudinal electric field Ez corresponding
to Fig. 11-16 are:

No. A B C D E F

Ez (V/cm) 8.19 8.02 6.34 6.07 8.02 8.21
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