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Abstract

A procedure is proposed for finding a solution to the linearized kinetic equation with the Landau

collision integral included for charged particles in a plasma with a high degree of ionization. This

procedure is used to obtain an expression for dielectric permittivity tensor for a collisional plasma

over the entire range of frequencies and wave numbers as well as the collisionality parameter. This

is transformed to the known expressions in the corresponding asymptotic strongly collisional and

collisionless limits. Nonlocal linear transport equations for small perturbations are also formulated

for arbitrary relations between the characteristic space, time and collision scales of the plasma.
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I. INTRODUCTION

The dielectric response function of a plasma is the fundamental quantity considered in

all textbooks on plasma physics. Still, an universal expression or an effective algorithm for

its derivation in collisional plasmas has not been obtained over the entire range of wave

numbers k and frequencies ω. This is due to the fact that even determining the linear

plasma response involves the solution of an integro-differential kinetic equation for particles

experiencing Coulomb collisions. The derivation of the plasma susceptibility function in a

form that would permit its effective use in various applications has been formulated when

the exact Landau collision integrals are replaced by model expressions. However, such

simplifying assumptions may lead to a significant loss in the numerical accuracy.

One of the most widely used expression for the longitudinal permittivity of a collisional

plasma has been derived by using the Bhatnagar-Gross-Krook (BGK) collision integral [1].

This simple approximation enables an effective description of dispersion properties of the

plasma in the presence of collisions. However, the use of the BGK model can lead to a

significant error in certain regions of (ω , k). Attempts to improve such a model description

by introducing the velocity dependent effective collision frequency have not substantially

improved the accuracy of the dielectric susceptibility [2, 3]. A noticeable improvement of

the theory was obtained when the electrostatic plasma response was determined by using

the Lorentz model with an exact Landau electron-ion collision integral [4–6]. However, it

has been shown that neglecting the electron-electron collision integral still does not allow an

accurate description to be obtained for the dielectric properties of plasmas over the entire

range of frequencies and wavelengths [7, 8].

The same problem arises in the calculation of the transverse permittivity. Many applica-

tions simply rely on various approximations to the electron permittivity based on the Drude

model or its modifications [2]. However, the actual limits of the validity of these approx-

imations are often unknown. For example, one must account for significant variations of

the electron-ion collision frequency νT
ei, which changes by factors of few as one moves from

the ac regime, ω À νT
ei, to the dc regime, ω ¿ νT

ei. Also, the nonlocality of the electron

conductivity which depends on the collisionality parameter kλei should be taken into ac-

count (λei is the electron-ion collision mean free path). A theory of the plasma response to

electromagnetic perturbations has been developed in Ref. [9] based on the full solution to
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the Fokker-Planck equation in high-Z plasmas without electron-electron collisions. Those

results have been compared to approximate expressions for the electron conductivity based

on the Drude model and indicate a discrepancy by a factor of few in regions where the

spatial dispersion is important.

In addition to theoretical models providing an accurate description of the dielectric sus-

ceptibility over the entire range of (ω ,k), standard perturbation theory gives the correct

asymptotic behavior of the dielectric function. Such approximations include the kinetic

theory of weakly collisional plasmas [10] and the hydrodynamic-type theory for collisional

plasmas [11]. These theories are appropriate within restricted regions of the parameters

ω/νT
ei and kλei . The most direct method for calculating the dielectric susceptibility for ar-

bitrarily values of (ω ,k) involves a numerical solution of the Fokker-Planck kinetic equation

in Fourier space. However, a numerical solution to the kinetic equation is still a difficult task

and the results are restricted to a particular set of parameters. Consequently, the construc-

tion of a theory which provides a universal method for obtaining the dielectric susceptibility

tensor over the entire range of frequencies, wave numbers, and arbitrary plasma parameters

(νei, λei) is important for many practical applications. Here we review our study which is

devoted to the solution to this problem.

The problem of determining the dielectric susceptibility of a collisional plasma is closely

related to the problem of nonlocal transport. Theoretical models of nonlocal transport

in hot fully ionized plasmas have been developed for more than 20 years beginning with

publications [12–15]. However, a further improvement of these models is required for the

case where λei/L > 10−2. Classical strongly collisional transport theory does not apply

[16, 17] in this limit. Such conditions are often encountered in inertial confinement fusion

(ICF) experiments where the characteristic length L of plasma inhomogeneity in the region

of laser energy absorption does not exceed one hundred electron mean free paths. Strong

inverse dependence of a Coulomb collision frequency on the particle kinetic energy makes

the nonlocality of the particle transport an essential feature of hydrodynamical models of

fully ionized plasmas. For this reason, the interpretation of almost all laser produced plasma

experiments requires the use of nonlocal transport theory.

Significant advances were made in the development of nonlocal transport theories by using

the small perturbation model [12, 18–21]. Analytic solutions to linearized kinetic equations

can be obtained relatively simply for high-Z plasmas and these are used to calculate electron
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fluxes. Most of these theories assume that the transport processes are sufficiently slow (quasi-

stationary) so that the transport coefficients can be considered to be independent of time.

In such a quasi-static approximation, the nonlocal hydrodynamic equations as derived in

Refs. [19, 20] are completely equivalent to the linearized kinetic description of a plasma.

However, the validity of the quasi-static nonlocal theory is restricted by the non-stationary

nature of transport processes [7, 8, 22]. Even for small amplitude perturbations, effects of

non-stationary transport are reflected in ω− terms appearing in the transport coefficients,

which leads to a complicated frequency dependence of the dielectric function. In [4, 23],

these effects were taken into account for weakly collisional and collisionless plasmas. The

approach recently developed by the authors [7, 8] makes it possible to analyze transport

properties of plasmas for arbitrary relations between the temporal, spatial, and collisional

scale lengths.

Nonlocal hydrodynamics provides a reduced description of a plasma in terms of few

hydrodynamical variables. Such equations are easier to solve than the equivalent kinetic

model. Starting with the early 1990s, nonlocal models have been developed [24–27] with

the objective of incorporating kinetic effects (such as Landau damping) into hydrodynamic

equations. These theories dealt with collisionless and magnetized plasmas. A systematic

procedure of deriving nonlocal closure relations for fluid equations is a necessary step in

deriving a reduced plasma description.

In this paper, the derivation of transport equations for plasma perturbations and expres-

sions for the dielectric susceptibility tensor are based on the solution to the initial value

problem for the linearized kinetic equation for plasma particles [7, 8, 19, 20]. Independently

the Ref. [28] has presented similar nonlocal closure for transport equation describing plasma

evolution in response to initial perturbations. However, this work [28] has used simplified

kinetic equation and applies only to limited range of plasma collisionality parameter. The

method used in our paper for solving kinetic equation is valid for a plasma with a large ionic

charge Z À 1. It is applicable for arbitrary relations between the perturbation inhomo-

geneity spatial scale length L = k−1 and the electron mean free path, as well as the typical

temporal perturbation time scale, τ = ω−1, the electron collision time, and the free transit

time (the time during which an electron with mean thermal velocity, vTe, passes the distance

equal to the characteristic scale length of plasma inhomogeneity, 1/kvTe). In this approach,

a spherical harmonic expansion of the distribution function is used. All angular harmonics of
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the electron distribution function are summed, thus allowing a description of the continuous

transition from the strongly collisional hydrodynamic limit to the collisionless case in the

transport equations and in the expression for dielectric susceptibility. The solution to the

initial value problem for perturbations of the distribution function [19, 20] is generalized to

the non-stationary case [7, 8]. The transport equations are formulated in the form of rela-

tions between Fourier components of the electron fluxes and the generalized hydrodynamic

forces (i.e., the density and temperature gradients, plasma velocity, and the electric field).

Due to non-stationary response, all electron transport coefficients in the (ω ,k)-space contain

imaginary components, which are missing in the quasi-stationary theory [12, 18–20]. The

resulting complex longitudinal and transversal dielectric susceptibilities are analyzed over

the entire (ω ,k) region as functions of the plasma collisionality parameters, kλei, ωλei/vTe.

Relations between the dielectric susceptibility of a plasma and the non-stationary nonlocal

transport coefficients are found.

II. KINETIC EQUATION

Consider a small perturbation of the homogeneous equilibrium plasma with electrons and

ions described by the Maxwellian distribution functions fa
M (a = e, i) which are characterized

by particle densities na and temperatures Ta. The linearized equation for the spatial Fourier

components δfa = fa − fa
M of the perturbation reads as follows:

(
∂

∂t
+ ik · v)δfa +

ea

ma

E
∂fa

M

∂v
=

∑

b

(Cab[δfa, fb] + Cab[fa, δfb]) , (1)

where Caa and Cab are the Landau collision operators for particles of the same and different

species, respectively and with a charge ea and a mass ma.

After taking the one-sided Fourier transformation in time we expand the function δfa in

spherical harmonics Ylm(θ, φ),

δfa =
∞∑

l=0

l∑

m=−l

fa
lm(v)Ylm(θ, φ) , Cab[δfa, f

b
M ] + Cab[f

a
M , δfb] =

∞∑

l=0

l∑

m=−l

C lm
ab Ylm(θ, φ) ,(2)

where θ and φ are the polar and azimuthal angles characterizing the direction of the particle

velocity relative to the vector k. These operations reduce the kinetic equations (1) to an
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infinite system of equations for the angular harmonics of the distribution functions, fa
lm :

−iωfa
lm + ikv

√
l2 −m2

4l2 − 1
fa

l−1,m + ikv

√
(l + 1)2 −m2

4(l + 1)2 − 1
fa

l+1,m − C lm
aa − C lm

ab = Sa
lm , (3)

Here the collision operators , C lm
ab (both for b = a and for b 6= a ), have the form of Rosenbluth

potentials:

C lm
ab

νab(v)
=

l(l + 1)

6
fa

lm(I0
2 − 3I0

0 − 2J0
−1) +

v

3

∂

∂v

(
v
∂fa

lm

∂v
(I0

2 + J0
−1)

)
+ (4)

ma

mb

v
∂

∂v
(fa

lmI0
0 ) +

4πma

nemb

v3fa
Mf b

lm + v
∂fa

M

∂v

lδJ l
−l−1 − (l + 1)δI l

l

2l + 1

(
1− ma

mb

)
+

v2

2(2l + 1)

∂2fa
M

∂v2

(
l(1− l)

2l − 1
(δI lm

l + δJ lm
1−l) +

(1 + l)(2 + l)

2l + 3
(δI lm

l+2 + δJ lm
−1−l)

)
+

v

2(2l + 1)

∂fa
M

∂v

(
(l2 + 3l − 2)δI lm

l + l(l − 1)δJ lm
1−l

2l − 1
− (l + 1)(l + 2)δI lm

l+2 + (l2 − l − 4)δJ lm
−1−l

2l + 3

)
,

where νab(v) = 4πnb(eaeb)
2Λab/m

2
av

3 is the velocity dependent collision frequency between

particles of the kind a with particles of the kind b, Λab is the Coulomb logarithm, and

{
I0
n; δI lm

n

}
=

4π

nbvn

∫ v

0

{
f b

M ; f b
lm

}
vn+2dv ,

{
J0

n; δJ lm
n

}
=

4π

nbvn

∫ ∞

v

{
f b

M ; f b
lm

}
vn+2dv (5)

are Rosenbluth potentials (J0
n) and their perturbations (δJ lm

n ), defined in the standard way

[11].

By assuming that initial perturbations of distribution functions δfa(t = 0) have a

Maxwellian form (i.e., they are characterized by initial perturbations of densities δna(0)

and temperatures δTa(0) )

δfa(v, t = 0) =

[
δn(0)

ne

+
δT (0)

Te

(
v2

2v2
Te

− 3

2

)]
fa

M(v) , (6)

the source functions Sa
lm are specified by initial perturbations of distribution functions

and by the Fourier components of the electric fields E: Sa
00 =

√
4πδfa(t = 0), Sa

10 =
√

4π/3(eaEz/T )vfa
M and Sa

1±1 =
√

2π/3(ea(Ex ± Ey)/T )vfa
M , where the vector k is as-

sumed to be directed along the z−axis.

Since we are only interested in electron kinetic effects, we seek a solution to Eq. (3) for

the electron distribution function (EDF). By assuming that ions have a large charge Z À 1,

electron-electron (e-e) collisions can be neglected in the equations for higher harmonics of

the electron distribution function, and are retained only in the equation for the symmet-

ric part of the EDF. Further simplifications result from the expansion of the electron-ion
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collision integrals with terms involving the ratio of the characteristic ion velocity to the

electron velocity being neglected. Contributions on the order of ∼ me/mi in Cei, which are

responsible for the slow energy transfer from the electrons to the ions are also neglected.

This is well justified, for example, in the case of a laser produced plasmas. Thus, for the

electron-ion collision integral, we will use the expression:

C lm
ei = − l(l + 1)

2
νeif

e
l + δl1

νeiv

v2
Te

(
δm0

√
4π

3
ui

z + δm±1

√
2π

3
(ui

x ∓ ui
y)

)
f e

M , (7)

where the terms proportional to the mean ion velocity, ui, (plasma velocity) give additional

source terms.

The standard approach that is used to solve the infinite system of equations (3) is to

assume that the higher angular harmonics are small and that reasonable accuracy can be

obtained by retaining just two of them, f e
00 and f e

10,. This procedure is fully justified in

the strongly collisional limit. However, in order to describe transitions to the collisionless

domain, a large number of angular harmonics of the distribution function δfe must be taken

into account. In fact the correct description of Landau damping requires the summation

of the entire infinite series of angular harmonics. Such a summation procedure has been

introduced before [14, 18, 20] in terms of the modified collision frequency νlm

f e
lm = −i

√
l2 −m2

4l2 − 1

kv

νlm

f e
l−1,m (8)

νlm = −iω +
1

2
l(l + 1)νei + ikv

√
(l + 1)2 −m2

4(l + 1)2 − 1

f e
l+1,m

f e
lm

which satisfies the following recurrence relation

νlm = −iω +
1

2
l(l + 1)νei +

(l + 1)2 −m2

4(l + 1)2 − 1

k2v2

νl+1,m

. (9)

Equation (9) can be also represented in terms of continuous fractions. Accurate calculations

of the functions ν1,1 and ν1,0 for any practically interesting conditions usually involves 20 -

30 terms.

This summation procedure can be used to find an expression for the first angular harmonic

of the EDF, f e
1 =

∑1
−1 f e

1mY1m:

f e
1 = f e

10 cos θ

√
3

4π
+

√
3

8π
sin θ

∑
m

f e
1meimφ = −ik · v

ν10

f e
M + (10)

1

ν10

∂f e
M

∂v

(
eE‖ · v
mev

− νei

(ui‖ · v)

v

)
+

1

ν11

∂f e
M

∂v

(
eE⊥ · v

mev
− νei

(ui⊥ · v)

v

)
,
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where the following notation has been introduced for the longitudinal and transverse com-

ponents of a vector A:

A‖ =
k(A · k)

k2
, A⊥ =

k× (A× k)

k2
. (11)

The symmetric part of the perturbed EDF f e
0 = f e

00Y00 = f e
00/
√

4π satisfies the kinetic

equation

(
−iω +

k2v2

3ν10

)
f e

0 − Cee[f
e
0 ] =

iev2

3ν10

(E · k)

Te

f e
M − i(k · ui)

v2νei

3v2
Teν10

f e
M + δf e(v, t = 0) (12)

with the initial perturbation δfe(v, t = 0) defined by the relation (6). Equation (12) is a lin-

ear inhomogeneous equation, whose general solution can be written as a linear combination

of three basis functions [8, 20]:

f e
0 = i

e(E · k)

k2Te

f e
M +

(
δne(0)

ne

− ω
e(E · k)

k2Te

)
ψNf e

M +
3

2

δTe(0)

Te

ψT f e
M − i(k · ui)ψ

Rf e
M , (13)

where the basis functions ψA satisfy three (A = N, T, R) kinetic equations with various

source terms SA (
−iω +

k2v2

3ν10

)
ψA = (f e

M)−1Cee[f
e
MψA] + SA . (14)

The three velocity functions: SN = 1, ST = v2/3v2
Te − 1 SR = v2νei/3v

2
Teν10 are sources

corresponding to the perturbations of the electron density (N), the electron temperature

(T ), and the ion velocity (R). Equation (14) has been analyzed in detail in Ref. [20]. It was

solved numerically by expanding the solution in Sonine-Laguerre polynomials L
1/2
n (v2/2v2

Te)

and analytically in the strongly and weakly collisional limits.

The equation for the first azimuthal harmonic (l = 1, m = ±1) of the EDF (10) can be

used directly to calculate transverse electron fluxes and transport coefficients. Calculation

of the longitudinal electron fluxes requires elimination of the initial density and temperature

perturbations from the expression for the symmetrical harmonics (l = 0) of the EDF (13).

From the two first velocity moments of Eq. (13) for the perturbations of density δne =

4π
∫∞
0

dvv2f e
0 and temperature δTe = 4πme/(3ne)

∫∞
0

dvv2(v2− 3v2
Te)f

e
0 at time t we obtain

the following system of equations:

δne

ne

= i
e(E · k)

k2Te

+

(
δne(0)

ne

− ω
e(E · k)

k2Te

)
JN

N +
3

2

δTe(0)

Te

JT
N − i(k · ui)J

R
N ,

δTe

Te

=

(
δne(0)

ne

− ω
e(E · k)

k2Te

)
JN

T +
3

2

δTe(0)

Te

JT
T − i(k · ui)J

R
T , (15)
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where we have introduced velocity moments of the basis functions

JA
B =

4π

ne

∫ ∞

0

v2dvψAf e
MSB , (16)

where A,B = N, T,R. The matrix JB
A is symmetric [20].

If the initial density and temperature perturbations are expressed in terms of their in-

stantaneous values, (15) can be used to derive the following expression for the isotropic part

of the EDF f e
0 :

f e
0 = i

e(E · k)

k2Te

f e
M +

(
δne

ne

− i
e(E · k)

k2Te

)
JT

T ψN − JN
T ψT

DNT
NT

f e
M + (17)

δTe

Te

JN
N ψT − JT

NψN

DNT
NT

f e
M − i(k · ui)

(
ψR − DRT

NT

DNT
NT

ψN − DNR
NT

DNT
NT

ψT

)
f e

M ,

where DCD
AB = JC

A JD
B −JD

A JC
B . Equation (17) is written in terms of hydrodynamical moments

and basis functions (14). The symmetric part of the EDF can be used to calculate the

anisotropic perturbation to the distribution function f1 and to derive closure relations for

the system of hydrodynamic equations.

III. NONLOCAL HYDRODYNAMICS FOR ELECTRON PERTURBATIONS

We have proposed a new systematic closure procedure that expresses EDF in terms of its

lower velocity moments (17). The well known closure strategy in the strongly collisional limit

is the Chapman-Enskog procedure. However, this method only applies when the electron

mean free path λei and the characteristic perturbation scale length L satisfy the following in-

equality λei/L < 0.06/
√

Z [29]. Consequently, classical theory cannot be used for describing

experiments such as those involving the interaction of laser radiation with matter in fusion

studies, where small-scale perturbations are of particular interest. The range of applicability

of the hydrodynamic equations in describing plasmas has been significantly expanded within

the framework of nonlocal hydrodynamics [20]. At first, this theory was formulated for slow

processes in the quasi-static approximation. In the previous sections we have summarized

the generalization of the nonlocal hydrodynamics framework to the case of rapidly varying

processes in a plasma for potential perturbations [8].
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A. Nonlocal transport equations.

The first three moments of the kinetic equation (1) lead to equations of continuity, mo-

mentum and energy balance for electrons:

∂δne

∂t
+ neik · ue = 0 ,

∂ue

∂t
= − e

me

E∗ +
1

mene

ik · Π̂e − 1

mene

Rie , (18)

∂δTe

∂t
+

2

3ne

ik · qe +
2

3
Teik · ue = 0 ,

where ue = ui − j/ene is the mean electron velocity and

j = −e

∫
d3vvfe , q = me/2

∫
d3vv(v2 − 5v2

Te)fe (19)

are the electric current and the electron heat flux. We have also introduced an effective

electric field E∗ as follows

E∗ = E + ik
Te

e

(
δne

ne

+
δTe

Te

)
. (20)

As in the previous studies [8, 19, 20], we introduce an effective friction force Rie = Rie −
meneν

T
eiui and the stress tensor Π̂e

Rie = me

∫
d3vvνeife , Π̂e = me

∫
d3v(Î/3− (v − ue)(v − ue))fe , (21)

where Î is the unit tensor and νT
ei = 3

√
π/2 νei(vTe) is the averaged electron-ion collision

frequency. Note that the electron momentum equation (the second in Eqs. (eq18)) can be

used for defining the stress tensor ikΠ̂e = Rei + eneE
∗ − iωmeneue. Two other equations

from Eqs. (18), which involve only longitudinal electron fluxes are equivalent to the system

(15).

Since the EDF contains terms that are proportional to the vectors E and ui, the electron

flux will have components that are transverse and parallel to the vector k. The longitudinal

component, directed along k has the following form [8, 19, 20]:

j‖ = σE∗
‖ + αikδTe + βjeneui‖ , (22)

q‖ = −αTeE
∗
‖ − χikδTe − βqneTeui‖ ,

R
‖
ie = −(1− βj)neeE

∗
‖ + βqneikδTe − νT

eiβrmeneui‖ , (23)
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where σ is the electrical conductivity, α is the thermoelectric coefficient, χ is the temperature

conductivity and βj,q,r are the ion convection transport coefficients:

σ =
e2ne

k2Te

(
JT

T

DNT
NT

+ iω

)
, α = − ene

k2Te

(
JN

T + JT
T

DNT
NT

+ iω

)
, βj = 1− DRT

NT

DNT
NT

,

χ =
ne

k2

(
2JN

T + JT
T + JN

N

DNT
NT

+ i
5

2
ω

)
, βq =

DRT
NT + DRN

NT

DNT
NT

, (24)

βr = 1 + k2vTeλei

[
JR

R − (1− βj)(J
N
R + JT

R) + βqJ
T
R

]− (2π)3/2vTe

ne

∫ ∞

0

dvvνei

ν10

f e
M .

Transport coefficients (24) depend only on the moments JB
A of the isotropic part of the basis

functions ψA (A = N, T ). All additional moments of ψA, which are introduced as a result

of the integration in (10) have been eliminated by using solutions of Eq. (14) and by taking

into account the conservation of particle number and energy in e-e collisions:

∫ ∞

0

d3vCee = 0 ,

∫ ∞

0

d3vv2Cee = 0 . (25)

The transport relations (22) satisfy Onsager symmetries: the coefficient α is the same in the

expressions for the electric current and the heat flux. Only one new coefficient, βr, appears

in the expression for the friction force. This is in agreement with the equalities JB
A = JA

B

(A,B = N, T, R) and symmetry relations are satisfied for arbitrary kλei, ω/νT
ei.

The transverse electron fluxes are defined as a moment of the first harmonic f1,±1 and

are expressed in terms of the transverse electric field and transverse mean ion velocity. The

final expressions read [20]

j⊥ = σ⊥E⊥ + eneβ⊥jui⊥ , q⊥ = −α⊥TeE⊥ − neTeβ⊥qui⊥ , (26)

R⊥
ie = −(1− β⊥j)neeE⊥ − νT

eimeneβ⊥rui⊥ (27)

where we have introduced the transversal transport coefficients as follows:

σ⊥ =
4πe2

3Te

∫ ∞

0

dvv4f e
M

ν11

, β⊥j = 1− 4π

3nev2
Te

∫ ∞

0

dvv4 νie

ν11

f e
M , (28)

α⊥ =
4πe

3Te

∫
dv

(
v2

2v2
Te

− 5

2

)
v4f e

M

ν11

, β⊥q =
4π

3ne

1

v2
Te

∫
dv

(
5

2
− v2

2v2
Te

)
v4 νei

ν11

f e
M ,

β⊥r = 1− 4π

ne

vTe

√
π

2

∫
dvv

νei

ν11

f e
M .

These coefficients also satisfy relations similar to Onsager symmetries (coefficient β⊥j ap-

pears both in the electric current and in the friction force).
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All electron transport coefficients have real and imaginary parts which when presented in

dimensionless form, can be parametrized by kλei, ω/νT
ei and Z similarly to classical expres-

sions. The longitudinal transport coefficients (24) were analyzed in Ref. [8] and all transport

coefficient in the static limit ω = 0 were studied in Ref. [20].

B. Potential components of the electron fluxes

Consider first the limit of slow processes, such that ω ¿ k2v2
Te/νei, νei, and the frequency,

ω, can be neglected in the kinetic equations. In this approximation we substitute the solution

of Eqs. (14) into Eqs. (24) and find the longitudinal transport coefficients to be purely real

[19, 20] and with a dependence only on kλei and Z. Results of these calculations are shown

in Fig.1. In the strongly collisional limit, kλei < 0.06/
√

Z, the ion convective coefficients

vanish as k2λ2
ei while the remaining transport coefficients converge to their classical values:

σSH =
32nee

2

3πmeνT
ei

, αSH =
16nee

πmeνT
ei

, χSH =
200

3π
nevTeλei . (29)

All of these coefficients have similar long-wavelength asymptotic representations:

σ = σ0(1− 19Zk2λ2
ei), α = α0(1− 107Zk2λ2

ei), χ = χ0(1− 239Zk2λ2
ei), (30)

βj = 22k2λ2
ei, βq = 88k2λ2

ei, βr = 2.4k2λ2
ei .

Note that in this limit, the ion convection coefficients do not explicitly depend on the ion

charge.

In the short-wavelength limit kλei À 1, the coefficients βj and βr approach unity and the

coefficient βq vanishes. All other transport coefficient are inversely proportional to the wave

number and exhibit a fractional-power dependence on k in the weakly collisional regime

kλei À 1/
√

Z, similarly to results of Refs. [12, 30]:

σ =
5e2nevTe√

8πkTe

1 + 9/5ξ

1 + 2ξ
, α = − enevTe√

2πkTe

1

1 + 2ξ
, χ =

4nevTe√
2πk

1

1 + 2ξ
, (31)

βj = 1− 0.4 ln(kλei)− 0.1

kλei

, βq =
1.4 ln(kλei)− 2.6

kλei

, βr = 1− 13 ln(kλei)− 41

kλei

.

The function ξ = 1.9Z2/7(kλei)
−3/7 has been found in Ref. [30] from an asymptotic solution

of the equation for the basis function (14) in the range Zk2λ2
ei À 1.

12



We note that the electrical conductivity is almost independent of the ion charge and

quickly converges to the asymptotic expression at large values of kλei. The simple expression

σ = σSH

(
1 +

128

15
√

2π
kλei

)−1

(32)

is a good approximation for the electric conductivity over the entire range of the kλei.

The temperature conductivity is the most sensitive function of the ion charge Z and the

dimensionless inhomogeneity scale length kλei. Deviation from the classical limit occurs at

kλei ∼ 0.06/
√

Z. We introduce the following approximation for the temperature conductivity

coefficient:

χ = χSH

[
1 + kλei

100(1 + ξ)Z0.25(kλei)
0.5

3
√

2π(40 + Zk2λ2
ei)

0.25

]−1

, (33)

which works well over the entire range of the collisionality parameter.

The most unusual dependence on the wavelength is exhibited by the thermoelectric co-

efficient. It changes sign in the intermediate range, kλei ∼ 1 − 10. In the range kλei . 1

the coefficient α is almost independent of the ionic charge and can be characterized by the

simple expression;

α =
αSH

1 + 35(kλei)1.2
, kλei . 1. (34)

In the range kλei > 1 the thermoelectric coefficient changes sign at a value of k which

depends on Z. For example, α passes through zero at kλei = 2.6 and 5 for Z = 8 and

Z = 64, respectively.

The applicability of the static transport coefficients in the classical strongly collisional

limit (kλei < 0.06/
√

Z) requires small values of frequency ω as compared to the electron-ion

collision frequency, ω ¿ νT
ei [11]. In this limit transport coefficients are determined pri-

marily by the electron-ion collision frequency, νT
ei. Effects associated with electron-electron

collisions represent small corrections of the order O(Z−1) [16, 17]. The limits of validity

for the localized form of these classical coefficients are determined by the electron energy

delocalization length λε =
√

Zλei [14, 15]. For kλε ≈ 1, electron-electron collisions begin

to affect transport coefficients and to modify the symmetric part of the distribution func-

tion, which in turn determines the anisotropic perturbations of the EDF (see Eq. (10))

as well as the electron fluxes. As kλε increases, the role of low energy electrons (elec-

trons which are characterized by the velocity v∗ . vTe) becomes dominant in the evolution

of the symmetric part of the EDF. These slowly moving particles are strongly affected by

13



electron-electron collisions [12]. For example, for kλε À 1, the characteristic electron velocity

v∗ ∼ vTe/(Zk2λ2
ei)

1/7 becomes noticeably lower than the thermal velocity [12, 20]. Thus, the

region of validity of the static approximation for the transport coefficients for moderate gra-

dients 0.06/
√

Z < kλei < 6Z2/3 is determined by the conditions ω ¿ νT
ee , νT

ei (kλei)
4/7/Z 5/7

[12, 20], where νT
ee = 2νee(vTe)/(3

√
2π). For higher gradients where kλei > 6Z2/3, all angular

harmonics must be taken into account in order to obtain a correct description of the particle

transport. In this collisionless regime the validity condition for the static approximation is

defined in the usual way as ω ¿ kvTe. In summary, the static approximation applies under

the following conditions [8]

ω ¿





νT
ei , kλei < 0.06/

√
Z

νT
ee , νT

ei (kλei)
4/7/Z 5/7 , 0.06/

√
Z < kλei < 6Z2/3

kvTe , kλei > 6Z2/3

(35)

The jump in Eq. (35) at kλei ∼ 6Z2/3 indicates the transition to the collisionless regime

where all spherical harmonics should be taken into account.

The validity of the local transport theory can be extended into high frequency regime

by using a simple exact solution to the kinetic equation [11] for | ω + iνT
ei |À kvTe. Our

nonlocal theory shows that nonlocal effects are insignificant for kλei < 0.06/
√

Z, 0.1ω/νT
ei.

In this case, Eq. (10) for the two first harmonics of the EDF (l = 0, 1) can be solved by

using the first two Laguerre polynomials ψA = CA
0 +CA

1 (v2/3v2
Te−1) in the expansion of the

basis functions. In this approximation the effective collision frequency satisfies the following

expression: ν10 = νei − iω. As a result, transport coefficients are given by [11]:

σ

σSH

=
1

48

∫ ∞

0

dxx6Q(x) ,
α

αSH

=
1

144

∫ ∞

0

dxx6(x2 − 5)Q(x) ,

χ

χSH

=
1

1200

∫ ∞

0

dxx6(x2 − 5)2Q(x) , βr = 1−
∫ ∞

0

dxQ(x) , (36)

βj = 1−
√

2

9π

∫ ∞

0

dxx3Q(x) , βq =

√
1

18π

∫ ∞

0

dxx3(5− x2)Q(x) ,

where we have introduced the notation Q(x) = νT
eix exp (−x2/2)/(νT

ei − i
√

2/9π ωx3), (x =

v/vTe). These expressions for transport coefficients are independent of the wave number

and correspond to the local limit, including the hydrodynamic (static) limit. Figure 2 shows

transport coefficients as functions of frequency. In the limit of strong collisions and low

frequency ω ¿ νT
ei, expressions (36) lead to classical transport coefficients [16] with small
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imaginary corrections

σ

σSH

= 1 + i
105

16

ω

νT
ei

,
α

αSH

= 1 + i
105

8

ω

νT
ei

,
χ

χSH

= 1 + i
609

40

ω

νT
ei

,

βj = −i
32

3π

ω

νT
ei

, βq = −i
32

2π

ω

νT
ei

, βr = −i
ω

νT
ei

. (37)

In the high-frequency limit ω À νT
ei, coefficients βj and βr have small imaginary components

and these coefficients tend to unity. The coefficient βq has a small absolute value and has

a real component that is smaller than the imaginary component. In the same limit, the

transport coefficients σ, α and χ become purely imaginary and independent of Z and have

small real corrections:

σ =
i e2ne

meω

(
1− i

νT
ei

ω

)
, χ =

i Tene

meω

(
5

2
− i

13νT
ei

4ω

)
,

α =
i ene

meω

(
5

2

(
π8(νT

ei)
5

36ω5

)1/6

+ i
3νT

ei

2ω

)
, βj = 1− i

νT
ei

ω
, (38)

βq = −i
3νT

ei

2ω
, βr = 1−

(
9π(νT

ei)
2

2ω2

)1/3
π

3
√

3
(1 + i

√
3) .

As the the collision parameter kλei is increased, the nature of the frequency dependence

of transport coefficients changes. For example, coefficients α and χ show a nonmonotonic

frequency dependence, which can be clearly seen in Fig.3. First, the real part of the tem-

perature conductivity increases with frequency ω as compared to the static case, and then

decreases for ω/νT
ei > 1. At the same time, the imaginary part of the temperature conductiv-

ity is first negative and decreases to its minimal value; then begins to increase, changes sign,

reaches its maximal value, and then decreases again. Both, the imaginary and real parts of

the temperature conductivity have a maximum for ω/νT
ei ∼ 1 for kλei = 1 (see Fig.3). An

even more complex frequency dependence appears for the thermocurrent coefficient α whose

imaginary and real parts each have three local extreme points. The real part of α reverses

its sign upon an increase in ω.

Relatively simple equations for transport coefficients can be obtained in the (ω, k) region

where e-e collisions are negligible [6], i.e., for ω À νT
ee, ν

T
ei(kλei)

4/7/Z5/7. In this case, we

find solutions of the system (14) for the basis distribution functions in the form ΨA =

3ν10S
A
0 /(k2v2 − 3iων10). We obtain the following expressions for velocity moments of basis
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functions:

JN
N =

3

kvTe

∫ ∞

0

dxW (x) , JT
N =

1

kvTe

∫ ∞

0

dx(x2 − 3)W (x),

JT
T =

1

3kvTe

∫ ∞

0

dx(x2 − 3)2W (x) , JN
R =

3νT
ei

kvTe

√
π

2

∫ ∞

0

dxW (x)

xν10(x)
, (39)

JT
R =

νT
ei

kvTe

√
π

2

∫ ∞

0

dxW (x)(x2 − 3)

xν10(x)
, JR

R =
3π(νT

ei)
2

2kvTe

∫ ∞

0

dxW (x)

x2ν2
10

−
∫ ∞

0

dxxνeie
−x2/2

k2λeivTeν10

,

where W (x) =
√

2/πkvTe exp (−x2/2)/(k2v2
Te/ν10(x) − 3iω/x2). All transport coefficients

(24) can easily be calculated in terms of these moments.

In the collisionless kinetic limit kλei À 1, the transport coefficients are independent from

the ion charge Z. In this limit, we have βj, βr = 1, βq = 0, while the remaining coefficients

are functions of parameter p = ω/kvTe and can be obtained by using ν10 = kvTeh1, as the

effective frequency in Eqs. (39), where hl−1 = −ip + x2l2/(4l2 − 1)hl (cf. Eq. (9)). In this

case, we propose a simple approximate equation

h1(x, p) = i(π(p−
√

p2 − x2)/6− p) , (40)

for hl. This has an accuracy which is within 1% of the exact value. By substituting expres-

sions (39) calculated in this way into Eqs. (24), we obtain

σ =
e2nevTe

kTe

(
1

∆

∫ ∞

0

(
x4

3
− 2x2 + 3)W (x)dx + ip

)
, (41)

α =
enevTe

kTe

(
1

∆

∫ ∞

0

(x2 − x4

3
)W (x)dx− ip

)
, χ =

nevTe

k

(
1

∆

∫ ∞

0

x4

3
W (x)dx + i

5

2
p

)
,

where the following notation is used: ∆ =
∫

x4W (x)dx
∫

W (x)dx−(
∫

x2W (x)dx)2. It should

be noted that expressions for collisionless transport coefficients were also obtained in [23]. A

different definition of the transport coefficients from those in (41)was used and included an

explicit summation of infinite series. The collisionless transport coefficients can be calculated

by solving the initial value problem for the Vlasov kinetic equation. This leads to the

following expressions for moments, JB
A :

JN
N =

i

ω
J+(p) , JT

N =
i

3ω

(
(p2 − 1)J+(p)− p2

)
, (42)

JT
T =

i

9ω

(
(p4 − 2p2 + 5)J+(p)− p4 + p2

)
,

where J+(x) = x exp (−x2/2)
∫ x

i∞ dt exp (t2/2) is the standard dispersion function used in

the collisionless theory of plasmas [1]. The behavior of collisionless transport coefficients as

functions of ω/kvTe is illustrated in Fig.(4).
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The expression for the heat flux is often written in terms of the temperature gradient

and the electric current [17]. Accordingly, by eliminating the electric field from Eqs. (22),

we obtain

q‖ = −αTe

σ
j‖ − κikδTe − neTeβui‖, κ = χ− α2Te

σ
, β = βq − eα

σ
βj , (43)

where the thermal conductivity κ and the ion convective transport coefficient β are intro-

duced. Both coefficients have a sensitive dependence on the ion charge. In the strongly

collisional limit kλei ¿ 1, κ transforms into the classical heat conductivity [16, 17] :

κ = 128nevTeλei/3π. Note that in the static limit (35) for kλei . 1, the approximate

formulas

κ =
κ0

1 + (10
√

Zkλei)0.9
, β =

55k2λ2
ei

1 + 1.6(1 + 6kλei)(10
√

Zkλei)0.9
, (44)

provide a good description of nonlocal heat transport in a current free plasma. Figure (5)

illustrates the dependence of these transport coefficients on kλei in the static limit (35) and

on ω for kλei = 1.

Formulas (43) for j = 0 (a no-current plasma) are directly related to the description of

transport in an ICF plasma. It was shown in the hot spot relaxation problem [7, 22] that

transient effects and nonlocal transport are important for kλei & 0.1. For such inhomo-

geneity scale lengths, the stationary approaches [12, 14, 15, 18–20] are not applicable. The

equations of nonlocal hydrodynamics with nonstationary transport coefficients [8] enable

description of a plasma for any spatial and temporal perturbation scales.

C. Nonpotential components of the electron fluxes

In discussing the nonpotential electron flux components, we recall that the transverse

transport coefficients do not depend on e-e collisions or on the isotropic correction to the

distribution function. Therefore, Eqs. (28) give explicit expressions for these coefficients,

which are plotted in Fig.6 in the static limit. In this limit, all these transport coefficients

are real. The applicability condition for the static approximation for the transverse trans-

port coefficients reads ω ¿ νT
ei, kvTe. The static transverse transport coefficients have a

long-wavelength asymptotic behavior which is similar to the behavior of the longitudinal

transport coefficients. However, their deviation from classical values is determined by the
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small parameter k2λ2
ei ¿ 1, rather than Zk2λ2

ei, i.e.

σ⊥ = σSH(1− 86k2λ2
ei) , α⊥ = αSH(1− 314k2λ2

ei) , k2λ2
ei ¿ 1 (45)

β⊥j =
154

3π
k2λ2

ei, β⊥q =
616

3π
k2λ2

ei, β⊥r =
256

45π
k2λ2

ei .

When the nonlocal behavior of transport is taken into account, the transversal transport co-

efficients differ from the longitudinal ones, i.e., the electron fluxes demonstrate an anisotropy.

This vanishes in the local limit, kλei ¿ 1, ω/νT
ei, where the transverse transport coefficients

have the same form as the longitudinal ones. By using ν11 = νei− iω in Eqs. (28), we obtain

expressions (36) for all transverse transport coefficients.

In the weakly collisional limit kλei À 1, the perpendicular transport coefficients are

almost independent of the collision frequency νT
ei, which gives only small corrections. In

this limit, the coefficients β⊥j and β⊥r tend to unity, while the coefficient β⊥q vanishes in

accordance with

β⊥j = 1− 2.95

kλei

, β⊥q =
5.9

kλei

, β⊥r = 1− 2.76√
kλei

. (46)

Note, that the transverse short-wavelength limit for the ion convective coefficients do not

contain logarithmic terms as in Eqs. (31) because e-e collisions do not contribute to the

transverse transport coefficient. In the same limit, the transverse coefficients α⊥ and σ⊥ are

functions of the parameter p = ω/kvTe. These can be represented in a similar way as the

longitudinal ones, e.g. by using ν11 = kvTeh11 similarly to the effective frequency in Eqs.

(28) with hl−1,1 = −ip+x2(l2−1)/(4l2−1)hl,1. At the same time, the collisionless transverse

transport coefficients can be calculated exactly by solving the initial value problem for the

collisionless kinetic equation which gives

σ⊥ = i
e2ne

meω
J+ (p) , α⊥ = i

ene

2meω
((p2 − 1)J+ (p)− p) . (47)

In the quasistatic collisionless limit, we recover the result

σ⊥ =

√
π

2

e2ne

me

1

kvTe

, α⊥ = −
√

π

8

ene

me

1

kvTe

, k2λ2
ei À 1 (48)

that corresponds to the free streaming transport limit. Figures 7 and 8 show frequency

dependence of the above transport coefficients for several values of kλei.
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IV. DIELECTRIC TENSOR OF COLLISIONAL PLASMA

Since our transport equations contain both a potential part and a transverse one, the

total dielectric permittivity of a plasma

εij =
kikj

k2
εl +

(
δij − kikj

k2

)
εt (49)

is determined by the longitudinal (εl) and transversal (εt) components. The hydrodynamic

equations (18) are equivalent to a kinetic description and completely determine the linear

response of a plasma to small perturbations over the entire range of parameters (ω, k). These

equations can be used for deriving the permittivity ε(ω, k) of a plasma. In order to calculate

the longitudinal permittivity ,

εl = 1 + 4πi
j‖

ωE‖
(50)

we eliminate the density and electron temperature perturbations from the expression for

electric current by solving the system (18):

j‖ =

[
1− iω

(
e2ne

k2Teσ
+

2ne(σ + eα)2

σ2(2k2κ− 3iωne)

)]−1 {
− ie2ne

k2Te

ωE‖+ (51)

eneui‖

[
1− iω

(
e2neβj

k2Teσ
+

2ne(σ + eα)(1− β)

σ(2k2κ− 3iωn)

)]}
≡

− ie2ne

k2Te

ω(1 + iωJN
N )E‖ + eneui‖

(
1 + iωJR

N

)
.

For the transversal permittivity, εt = 1 + 4πij⊥/ωE⊥, we can use Eq. (26). We first analyze

a pure electron plasma in the limit of stationary (infinitely heavy) ions by assuming ui = 0.

A. Longitudinal electron susceptibility

We will characterize the electron contribution δεe to the longitudinal permittivity (εl =

1 + δεe) by the function δε ≡ k2λ2
Deδεe, where λDe is the electron Debye radius. By using

relation (51), we obtain the following expression

δε =

[
1− iω

(
e2n

k2Tσ
+

2n(σ + eα)2

σ2(2k2κ− 3iωn)

)]−1

≡ 1 + iωJN
N , (52)

which enables contributions to εl from all transport coefficients to be found. However, the

function εl is determined by only one specific moment JN
N of the basis function.
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In the local limit kλei < 0.06/
√

Z, 0.1ω/νT
ei , an analytic expression for δε is obtained by

substituting Eqs. (36) into formula (52). In the hydrodynamical limit of low frequencies

(ω ¿ νT
ei), this leads to the expression

δε =
2x(8x− 3iω)

16x2 − 6ω2 − 47iωx
, x =

32k2v2
Te

3πνT
ei

. (53)

In the limit ω À x, the electronic susceptibility is determined by the classical electrical

conductivity δεe = 4πiσSH/ω. In the opposite case (ω ¿ x) the static permittivity describes

Debye screening effect, Re εl = 1 + 1/(k2λ2
De); transport coefficients only determine the

small imaginary correction Im εl = 41ω/16x, which includes comparable contributions from

coefficients σ, α, and χ. The dispersion relation εl = 0 in the static limit for kλDe ¿ 1

gives the entropy mode ω = 2ik2κSH/3ne with a classical thermal conductivity [16, 17].

For fast processes (ω À νT
ei), the permittivity is determined by the high-frequency electrical

conductivity and is described by the well known expression ε = 1 − (ω2
pe/ω

2) (1 − i νT
ei/ω)

[10].

Figure 9 shows the parametric (k, ω), plane divided into regions corresponding to different

approximations for describing the permittivity beginning with the classical hydrodynamic

limit (dashed region) to the collisionless kinetic limit (dotted region). The grey region

between the fine solid curves in Fig.9 corresponds to strongly decaying perturbations, for

which Im εl > Re εl. Under the unmarked bold solid curve, the real part of the permittivity

corresponds to Debye screening, Re εl = 1 + 1/k2λ2
De. The ω(k) boundary curve denoted

by e− e separates the quasistationary regime (35), for which electron-electron collisions are

important, from the nonstationary regime. It should be noted that for kλei ¿ 6Z2/3 in the

quasi-static approximation, two angular harmonics (diffusion approximation) are sufficient

for calculating the electron distribution function and, accordingly, all transport coefficients

as well as the permittivity [12]. In this limit and for kλei À 1/
√

Z, the approximate

expression for the permittivity has the form [12]

δεl = 1 + i
ω

kvTe

{√
π

2
+ 2.17

Z2/7

(kλei)3/7

}
, (54)

which is close to the exact solution. Our analysis shows that the range of applicability of

relation (54) is in fact kλei > 1.

In the frequency range in which the e-e collisions can be neglected, we can reconstruct from
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relation (39) the permittivity obtained in [4–6], which leads to the well-known expression

ε = 1 +
1

k2λ2
De

[
1− J+

(
ω

kvTe

)]
. (55)

in the collisionless limit. The general expression derived for permittivity is applicable for

describing the plasma over the entire range of k and ω for any number of collisions in the

plasma. The contribution of collisions to the permittivity of the plasma is often described

by using a simplified collision integral in the Bhatnagar-Gross- Krook (BGK) form. The

theory presented here makes it possible to determine the accuracy of this approximation.

The best agreement is obtained by using the expression proposed in [3]:

δεC =
1− J+(y)

1− iJ+(y)/ykλei

, y =
ω + iνT

ei

kvTe

. (56)

However, in spite of the fact that the behavior described by this expression is correct in

general, it differs noticeably from the exact result for kλei < 1 in a wide frequency range

(see Fig. (10a). With increasing kλei, the agreement is improved; however, it follows from

Fig. (10b), that the formula (56) still differs from the exact solution by a factor of 2 to 3 in

the range of frequencies ω ∼ νei.

B. Transverse electron susceptibility

The electron transverse permittivity is completely defined by the transverse electrical

conductivity (28) [9]:

εt = 1 +
4πiσ⊥

ω
= 1− iω2

pe

√
2

π

∫ ∞

0

dx
x4 exp(−x2/2)

3ν11ω
(57)

In the local regime, kλei ¿ 1, using ν11 = νei + iω as an effective frequency in Eq. (57) one

obtains an expression for the transverse electron susceptibility known as the Drude model:

εt = 1− iω2
pe

√
2

π

∫ ∞

0

dx
x4 exp(−x2/2)

3(νei − iω)ω
(58)

In the collisionless limit kλei À 1, the dielectric permittivity agrees with the Vlasov theory

result [1]

εt = 1− ω2
pe

ω2
J+

(
ω

kvTe

)
(59)

There are also several limits where expressions for transverse susceptibility are well known.

They follow from asymptotic representations for the electron conductivity (29,37,38,48). The
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collisional, static limit, kλei ¿ 1, ω ¿ νT
ei, corresponds to the electron permittivity in the

hydrodynamical approximation:

εt = 1− 70

π

ω2
pe

(νT
ei)

2
+ i

32

3π

ω2
pe

ωνT
ei

(60)

. This is useful, for example, in the description of the normal skin effect. The collisionless

static limit, kλei À 1, ω/νT
ei, corresponds to resonant wave interaction with slow particles,

εt = 1− ω2
pe

k2v2
Te

+ i

√
π

2

ω2
pe

ωkvTe

(61)

and describes an anomalous skin effect. The high frequency limit, ω À νT
ei, kvTe, is also well

known,

εt = 1− ω2
pe

ω2
+ i

ω2
peν

T
ei

ω3
. (62)

Figure 11 shows transverse permittivity in comparison with different models. It is clear that

for kλei ≥ 1, the Drude model (58) gives a poor approximation in a wide frequency range.

The transverse susceptibility plotted in the parametric (k, ω) plane in the Fig.12 is simpler

as compared to Fig. 9 for the longitudinal susceptibility. The region in which Im ε⊥ >

Re ε⊥ (grey region) is roughly defined by the inequality ω < νT
ei, kvTe. The Drude model

(58), which corresponds to classical local description, is applicable for k < 0.1/λei, 0.1ω/vTe

(dashed region in Fig.12). The dotted region corresponds to the collisionless kinetic model

(59), which is valid for k > 10/λei.

C. Ion contribution to permittivity. Damping of ion-acoustic wave.

In accordance with definition (50), elimination of the ion velocity from expression (51)

allows ion contributions to plasma permittivity to be calculated. This will be accomplished

in this Section by solving hydrodynamical equations and finding relation between ui and

the electric field. Strictly speaking, a complete kinetic description of ions is required in this

case. However, according to the results obtained in [30], for fast perturbations (ω À kvT i,),

where vTi is the ion thermal velocity, we can use hydrodynamic equations for ions, in which

the ion viscosity and heat conductivity are taken into account by using the 21-moment

approximation of the Grad method. This leads to the hydrodynamical equations for ions in
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the following form

−iωui =
eZ

mi

E− ikv2
Ti

(
δni

ni

+
δTi

Ti

)
− 4

3

(k · ui)v
2
Ti

νi

η̂ik +
1

nimi

Rie − νT
eiui

−iωδTi = −2

3
i(k · ui)Ti − 2

3ni

k2κiδTi, −iωδni + i(k · ui)ni = 0 . (63)

The longitudinal component of the stress tensor is represented in terms of the ion viscosity

kΠi = ik4niTiη̂i(k · ui)/3νi, [30]

η̂i =
iνi(ω + 1.46iνi)

(ω + 1.20iνi)(ω + 1.46iνi) + 0.23ν2
i

, (64)

and the energy exchange during e-i collisions in the energy conservation equation is ne-

glected. An expression for the ionic thermal flux qi = −ikκi is determined by the thermal

conductivity [30]:

κi =
5

2

niv
2
Ti

νi

i(ω + 1.29iνi)

(ω + 0.8iνi)(ω + 1.29iνi) + 0.21ν2
i

. (65)

Here, the ion-ion collision frequency is introduced in the standard form, νi =

4
√

πe4
i niΛ/3T

3/2
i

√
mi.

By using relations (63-65), we can exclude the ion velocity from expressions for the electric

current (26, 51) to describe the total permittivity of the plasma in the following form

εl = 1 +
1 + iωJN

N

k2λ2
De

− c2
s

λ2
De

(1 + iωJR
N)2

∆
, (66)

εt = 1 +
4πiσ⊥

ω
− ωpi2

∆⊥
β2

j⊥

where

∆ = ω2+ iωνT
ei + iωk2c2

s

(
JR

R +
(2π)3/2

nek2λei

∫ ∞

0

dvv
νei

ν10

f e
M

)
− k2v2

Ti

(
4iωη̂i

3νi

− 5niω + 2ik2κi

3niω + 2ik2κi

)
,

∆⊥ = ω2+ iωνT
ei + iωνT

ei

Zme

mi

(βr⊥ − 1) . (67)

Thus, expression (66) defines the total permittivity of a plasma with negligibly small ion

Landau damping, ω À kvTi.

From the dispersion relation εl = 0 in the quasineutral limit kλD ¿ 1 we obtain a weakly

damped solution ω = kcs − iΓs, which describes an ion-acoustic wave with a damping rate

specified by the formula [20]

Γs

kcs

=
necs

2k

[
(1− β)2

κ
+

e2β2
j

Teσ
+

βr

nevTeλei

]
(68)
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where cs is the ion-acoustic velocity. We note that all nonlocal transport coefficients con-

tribute to the damping factor Γs. This result corresponds exactly to the numerical solution

of the Fokker-Plank equation [18]. The dependence of Γs on k is shown in Fig. (13). The

decay rate agrees with the hydrodynamic expression Γs/kcs = 3πcs/256γk(Z)vTekλei in the

long wavelength limit cs/vTe ¿ kλei ¿ 1 and with collisionless Landau damping rate of

Γs/kcs =
√

π/8cs/vTe in the short-wavelength range kλei À 1.

V. CONCLUSION

We have derived equations of nonlocal transport for small perturbations in the general

case of arbitrary relations between the characteristic space, time, and collision time scales.

Our hydrodynamic equations are equivalent to a kinetic description of a plasma in terms of

the linearized Fokker-Planck equation. The nonstationary and nonlocal transport coefficients

in a Fourier representation are calculated in the entire (ω, k) region. The theory that is

developed generalizes earlier transport models to the case of arbitrary (ω, k) and describes

all limiting transitions to known results.

We propose a practical algorithm for calculating the dielectric tensor of a Maxwellian

plasma for arbitrary values of frequency and wave number. The expression for permittivity

derived here describes a smooth transition from the hydrodynamic region of strong collisions

to the collisionless kinetic region and from the static to the high-frequency limit. On the

basis of our theory, it becomes possible to analyze the linear plasma response and disper-

sion relations for unmagnetized plasma modes over the entire region of wave numbers and

frequencies.

The development of nonlocal hydrodynamics is especially important for describing heat

transport which is fundamental process for the laser plasma interactions in ICF experiments.

It is well known that traditional hydrodynamic codes with a thermal flux that is described by

using classical theory or its simple heuristic modifications, fail to explain experimental data

correctly. A model with nonlocal transport give a much better agreement with experimental

results [32].

The direct application of nonlocal nonstationary linear transport coefficients may involve

the theory of laser plasma instabilities. The importance of nonlocal effects on transport

in the quasi-static limit of filamentation instability and stimulated Brillouin scattering was

24



demonstrated in [33, 34]. Our approach can be used to investigate instability in a strongly

nonstationary laser plasma. Another important application of the permittivity is associ-

ated with the calculation of the Thomson scattering cross section, which is widely used for

diagnostics of plasmas [31, 32].
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FIG. 1: Dependence of the longitudinal transport coefficients σ, α , χ and βj,q,r on kλei in the

static limit (35) for a plasma with Z=8 (small dots) and Z=64 (large dots). The solid curves

correspond to the proposed approximation. The dots lines correspond to the classical strongly

collision asymptotic behavior and the dashed lines correspond to the collisionless limit.

FIG. 2: Dependence of the real and imaginary parts of transport coefficients σ, α , χ and βj,q,r

on ω/νT
ei in the long-wave limit kλei < 0.06/

√
Z, 0.1ω/νT

ei. Dashed curves correspond to the static

limit (37).

FIG. 3: Dependence of the real and imaginary parts of longitudinal transport coefficients σ, α , χ

and βj,q,r on ω/νT
ei for kλei = 1 and for a plasma with Z = 8 (solid lines) and Z = 64 (dots).

FIG. 4: Dependence of the real and imaginary parts of longitudinal transport coefficients σ, α , χ

on ω/kvTe , calculated using formula (41) (dots), in comparison with the exact collisionless theory

(42) (solid curve).

FIG. 5: Dependence of the real and imaginary parts of longitudinal transport coefficients κ, β on

kλei in the static limit (35) (imaginary part =0) for a plasma with Z=8 (small dots) and Z=64

(large dots) and on ω/νT
ei for kλei = 1 and for a plasma with Z = 8 (solid lines on second panel)

and Z = 64 (dots). The solid curves on first panel correspond to the proposed approximation. The

dots lines correspond to the classical strongly collision asymptotic behavior and the dashed lines

correspond to the collisionless limit.

FIG. 6: Dependence of the transverse transport coefficients σ⊥, α⊥ , and βj⊥,q⊥,r⊥ on kλei in the

static limit (35) (dots). The dots lines correspond to the classical strongly collision asymptotic

behavior and the dashed lines correspond to the collisionless limit.

28



FIG. 7: Dependence of the real and imaginary parts of transverse transport coefficients σ⊥, α⊥,

and βj⊥,q⊥,r⊥ on ω/νT
ei for kλei = 1.

FIG. 8: Dependence of the real and imaginary parts of transverse transport coefficients σ⊥, α⊥ on

ω/kvTe (dots) for kλei = 10 in comparison with the exact collisionless theory (47) (solid curve).

FIG. 9: Parametric (k, ω) plane for the longitudinal permittivity of plasmas. Dotted curves describe

the spectra corresponding to the Langmuir (epw) and ionic-acoustic waves (iaw). References are

given in the brackets.

FIG. 10: Dependence of the real and imaginary parts of δε(ω, k) (52) (dots) on ω/νT
ei for kλei =

0.25 (a) and 2.25 (b) in comparison with the theory disregarding the electron-electron collisions

(solid curves) [9] and the BGK model (56) (dashed curves) [3].

FIG. 11: Dependence of the real and imaginary parts of the transversal permittivity (εt−1)ω2/ω2
pe

(57) (dots) on ω/νT
ei for kλei = 1 in comparison with Drude model (58). Dashed lines correspond

to collisionless theory (59).

FIG. 12: Parametric (k, ω) plane for the transversal permittivity of plasmas. References are given

in the brackets.

FIG. 13: Dependence of the ion-acoustic damping factor Γs on kλei for a plasma with Z = 8 and

Z = 64 in comparison with a numerical solution (dots) of the Fokker-Plank equation [18]
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