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Abstract 

The plasma-sheath problem is solved numerically for the transition regime from 

collisionless to strongly collisional in both planar and cylindrical geometry. An improved 

frequency for ion-neutral momentum transfer collisions is introduced as a combination of 

the constant collision frequency and constant mean free path models. The model is 

correct in the limiting cases of collisinless and strongly collisional plasmas. The current 

density at the wall is calculated for a wide range of parameters and an analytic form 

is found to describe the reduction of the flux, where  is the ion 

flux for the collisionless case,  is the dimension of the plasma, 

2/1
0 )/1/( λκLJJ += 0J

L λ  is the ion-neutral 

mean free path and κ  is a fitting parameter.  
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I. Introduction 

There has been a recent increase of interest in plasmas and plasma sheaths in the 

transition regime from collisionless to strongly collisional (continuum).1, , ,2 3 4 The 

transition regime means that the ratio of the ion-neutral momentum transfer mean free 

path λ  and the size of the discharge  is finite and varies between L 10001/ −=λL . 

Within this regime the approximations in the limiting cases of collisionless or strongly 

collisional plasmas are invalid. The direct effect of collisions on the plasma is the 

reduced ion flux to the wall and also the lower average energy of ions striking the wall. 

Indirectly, however, collisions also affect other plasma parameters, such as the plasma 

potential and electron temperature. The particle balance equation is regularly applied in 

analytical as well as computational models of low pressure discharges. In the particle 

balance the generation rate of the plasma (ionization) is set equal to the rate at which ions 

are lost to the walls. The Bohm current flux5,6, , is often used to describe the 

flux of ions to the wall, where is the elementary charge,  is the undisturbed plasma 

density and 

scqn05.0

q 0n

ies mTc /=  is the ion sound speed with the electron temperature  in 

energy units. As collisions reduce the loss rate of ions to the wall, the plasma potential 

(relative to  ) needs to increase to ensure the better confinement of the electrons.   

eT

eT

The weakly collisional plasma-sheath problem has a kinetic and fluid approach. 

For the fluid model, Self and Ewald7 found the analytical solution in the plasma 

approximation. Numerical solutions to the problem were obtained e.g. by Forrest and 

Franklin,8 Ingold9 and Franklin and Snell.10 In these papers a model of constant collision 

frequency for momentum transfer has been applied. This collision model goes naturally 
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over to the constant mobility case that is valid for strongly collisional plasmas at high 

pressures. On the other hand, the constant mean free path model is physically more 

accurate at lower pressures. In the kinetic approach the ion density is calculated from the 

ion distribution function it is natural to apply the constant mean free path model to 

include collisions. The original kinetic theory of Tonks and Langmuir11 has been 

extended by Riemann12 to include collisions and solved for the plasma approximation in 

planar geometry. Wallschläger13 reported numerical solutions to the full plasma sheath 

problem for cylindrical geometry. Recently, Sternovsky and co-authors14,15 presented 

numerical results on the energy distribution of ions striking the wall and the reduced ion 

flux for both the planar and cylindrical cases. The above models assumed that ions are 

born cold. Bissell and Johnson16 have applied an ionization model in the collisionless 

case, where ions are born with a Maxwellian distribution. 

Within the transition regime of plasmas, there is a smooth transition from constant 

collision frequency of ions near the center of the discharge to an approximately constant 

mean free path case in the sheath regions with high electric field. This transition is due to 

the finite temperature of ions. Near the center of the discharge the electric field 

accelerating the ions toward the walls is negligible. The fluid velocity  of ions is thus 

small compared to their thermal motion and collision frequency is independent of . In 

the sheath region, on the other hand, the electric field accelerates the ions to velocities 

comparable or larger than the thermal speed and the collision frequency becomes 

proportional to . This picture of transition from one collisional model to the other is 

consistent with the variation of ion mobility with the electric field intensity. For small 

electric fields the mobility is independent to the electric field, while for large fields it 

du

du

du
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decreases with increasing field.17,18 The smooth transition between the two regimes 

happens where the potential drop over a mean free path is comparable to the thermal 

energy of ions.  

The purpose of this paper is to present a collision model for the hydrodynamic 

description of plasma-sheath problem that correctly describes the transition regime. The 

plasma-sheath equations are solved numerically with the emphasis being on the 

calculation of the flux of ions to the wall. This quantity is important for plasma 

processing applications and/or modeling plasmas with nonlocal electron kinetics. 

19, , ,20 21 22 Although the ions are weakly collisional in the transition regime (the product of 

the pressure and dimension of the discharge is on the order of or lower than Torr 

cm) the distribution of electrons exhibits nonlocal characteristics if the energy relaxation 

length is larger than the dimension the plasma. Since the electron-neutral collision mean 

free path is approximately an order of magnitude larger than that of ion-neutral 

collisions,

1≈pL

23 nonlocal electron kinetics is valid through the transition plasmas with  

1000/ ≤λL . For completeness we note, that for low pressure discharges the distribution 

of electrons is likely to deviate from a Maxwellian since the electrons from the tail of the 

distribution are lost to the walls.24 In the present paper, however, this effect is not taken 

into account.  

Two types of source functions are considered in the paper. In the proportional 

model it is assumed that the ionization is due to the plasma electrons and the rate of 

ionization is thus proportional to the electron density. In the homogenous ionization 

model it is assumed that the source function is independent of the position. Although 

proportional ionization is the prevailing model, there are numerous cases, where the 
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homogeneous model is more correct. Examples could be the hot filament discharges or 

the negative glow region of the DC glow discharge.25 In these plasmas the ionization is 

due to minor population of high energy electrons (beam electrons). 

The organization of the paper is as follows. In Sec. II the fluid equations of the 

plasmas-sheath and the collisional model are presented. The results from the numerical 

solutions are discussed in Sec. III and Sec. IV is the conclusion.    

 

 II. The collisional fluid model 

  

 The basic equations of the hydrodynamic plasma-sheath model are Poisson’s, the 

continuity and the momentum equations: 
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where 0ε  is the permittivity of free space, Φ  is the space potential,  is the elementary 

charge. The ion flux is   with  as the ion fluid velocity and 

q

dii unJ = du 1,0=β  refers to 
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the planar and cylindrical case, respectively. The ionization models considered are 

homogeneous ionization rate, constRR == 0 , and ionization proportional to the local 

electron density, [ ]eTxqRxR /)(exp)( 0 Φ= . 

 The above physical model is similar to that of Franklin and Snell.4 The ion-neutral 

collisions are included with momentum transfer collision frequency )( di uν . In the 

constant mean free path model the collision frequency is expressed in terms of the ion 

fluid velocity and the mean free path σλ nn/1= , where  is the number density of 

neutrals. It is assumed that the collision cross section 

nn

σ  is independent of velocity. In the 

limit of high electric fields, iTE >>λ , where  is the ion temperature in energy units, the 

ion drift speed can be calculated by the integration of the ion velocity distribution 

function using kinetic theory

iT

26 to obtain 

 

 
i

K
d m

qEu
π

λ2
= .        4. 

 

The above relation differs from the usual hydrodynamic result, i
HD
d mqEu /λ= , by a 

factor of π/2  in front of the mean free path λ . This means that in the fluid model the 

mean free path is reduced compared to the kinetic model and the corrected collision 

frequency to be used is 

 

 
λ
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2
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d
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Compared to the collision frequency λν /)( dd uu =  used by Franklin and Snell4 the form 

in Eq. (5) is shown below to provide better agreement with the kinetic models.  

 The opposite limit, iTE <<λ , applies in the bulk of the plasma unless the mean 

free path is on the order of or larger than the size of the plasma. With this condition 

satisfied, the fluid velocity of ions is much smaller than their thermal speed. The collision 

frequency of ions is thus determined by their random thermal motion rather than their 

velocity as a fluid and thus λν /2u= . In this relation ii mTu π/8= , and the collision 

frequency is independent of the fluid velocity. The factor 2  is due to the mutual motion 

of the ions and neutral assuming the same temperature for both species.27 Wannier 28 has 

introduced the concept of collision frequency in the transition range as 

[ ] [ ]22
2

1 )()()( ddd uuu ννν += , where 1ν  and 2ν  are the collision frequencies in the 

limiting cases. Following this approach the collision frequency of ions can be written as 

 

 
λ
π

ν
4/2

)(
222
d

d
uu

u
+

= .       6. 

 

A similar collision frequency has been applied in a Monte Carlo model to calculate the 

mobility and diffusion of ions in low and high electric fields.29 It is apparent that in the 

limit of zero ion temperature Eq. (6) is identical with the constant mean free path model. 

A finite ion temperature is required in order to properly describe the collision frequency 

in the transition regime. In the following the limits of validity are investigated. The ion 

flux in collisional plasmas is given by nDnE ∇−=Γ μ , where νμ imq /=  is the ion 
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mobility and νii mTD /=  is the diffusion coefficient. For Eq. (3) to be valid, the diffusive 

loss of ions has to be negligible compared to the ohmic term, i.e. nDnE ∇>>μ . A very 

approximate estimate for the electric field and the density gradient can be made as 

 and , where  is the size of the plasma, giving a limiting condition 

on the ion temperature 

LTE e /~ Lnn /~∇ L

1/ <<= ei TTτ . The physical meaning of this relation is that for 

large ion temperatures (i.e. comparable to  ) the flux of ions to the wall due to their 

thermal motion cannot be neglected. Similar reasoning can be used in the collisionless 

case. The random flux of ion due to the thermal motion has to be small compared to the 

sound velocity the ions gain as accelerated by the potential profile of the plasma. From 

here it follows that the  condition has to be satisfied also for the collisionless 

case. In this paper cases for 

eT

1/ <<ei TT

1.0≤τ  are considered. 

 Equations (1) to (3) can be integrated numerically using standard numerical 

techniques, for example the Runge-Kutta or Bulirsh-Stoer methods.30 The integration 

starts close to the midplane, , and it is stopped at the wall, where the ion and 

electron fluxes are in balance. The random flux of electrons is given by 

0=x

[ ]eeee TxqmTnxJ /)(exp2/)( 0 Φ= π , where  is the electron mass. It is convenient to 

normalize the equations using variables: 

em

DxX λ/= , eTq /Φ=ϕ , si cuU /= , , 0/ nnN i=

sD cnRG 0/λ= , and sD c/~ νλν = , where 2
00 / qnTeD ελ =  is the Debye length. The 

potential at  is chosen to be zero. The problem with 0=x 0=iU  near  can be 

overcome by approximating the potential profile in the vicinity of the  with the 

form . Since  

0=X

0=X

2)( Xx αϕ −= 1≅≅ ei NN  in this region, we find that GXUi
β)( 2

1≅ . From 
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the momentum equation (3) the rate of ionization can be calculated as α=G  and 

3/8α=G  for the planar and cylindrical symmetries, respectively. The numerical 

calculations presented are for an electron-proton plasma. 

   

III. Numerical results and discussion 

 

 First, the numerical results for the collisionless case have been investigated in the 

large plasma limit in order to test the numerical code against previous analytical or 

numerical results. The values of the ion flux to the wall for ∞→DL λ/  are listed in Tab. 

I. for the cases investigated. The results for planar geometry agree with the well known 

Bohm result. The proportional ionization case in cylindrical symmetry is in agreement 

with the result  given in Refs. [6,7]. There appears to be no reference for 

the homogeneous ionization case in cylindrical geometry. The ion flux to the wall in the 

kinetic approach

sW cnJ 0419.0=

31  is in close agreement with the fluid result for the 

planar case. In cylindrical geometry the discrepancy is larger as the kinetic models

sW cnJ 0489.0=

13,15 

gave  and  for the homogeneous and proportional 

ionization models, respectively.  

sW cnJ 0415.0= sW cnJ 0380.0=

 For the constant mean free path case ( 0=iT ) the results were compared to those 

of Franklin and Snell4 for planar geometry, proportional ionization and argon gas. The 

agreement between the results was correct to the precision given in Ref. [4]. It is, 

however, necessary to note that the collision model of Franklin and Snell used a collision 

frequency λν /)( dd uu = , which differs from the collision frequency in Eq. (5)  by a 



  10 

factor of 2/π . The magnitude of difference between the two collisional models is 

indicated in Fig. 1. The numerical results from the presented fluid model were compared 

to those from a kinetic model reported by Sternovsky et al.14 and Sternovsky15 for the 

planar and cylindrical geometries. The figure shows that the kinetic results are in better 

agreement with the fluid results when a collision frequency from Eq. (5) is used. Figure 1 

shows fluid calculations for 1000/ =DL λ  and 8.252/ =DL λ . The calculations for the 

latter case were done for a direct comparison with the data from the kinetic model.  

 It was found that the reduction of the ion flux can be accurately approximated for 

 with the analytic formula 0→iT

 

 
λκ

λ
/1

)/(
L

LJJ DW

+
= ,        7. 

 

where )/( DW LJ λ  is the collisionless ion flux for a plasma of dimension DL λ/ , and κ  is 

a fitting parameter. The value of )/( DW LJ λ  is within few percent of the ion flux in the 

limiting case ∞→DL λ/  for plasmas14 100/ >DL λ .  The numerical calculations were 

done for a plasma of dimension 1000/ =DL λ  with the mean free path varied from the 

collisionless case up to 1000/ =λL . The value of the fitting parameters for the different 

cases is shown in Table I. It is important to note that the value of κ  is independent of 

DL λ/  and thus the effect of finite plasma dimension is incorporated in )/( DW LJ λ  only. 

For , the analytic approximation is accurate within about 1-2% on average with a 

maximum error of 6% for the investigated parameter range.  

0=iT
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 The effect of finite ion temperature on the ion flux is shown in Fig. 2. The flux 

decreases with increasing ion temperature because of the increase of the collision 

frequency (see Eq. 5) even though the mean free path remains the same. The significance 

of the finite temperature clearly increases with increasing collisionality ( λ/L ) of the 

plasma. It is also possible to fit Eq. (7) on the data for , although the accuracy of 

the fit is limited. Listed in Table I are the values of the fitting parameter for 

, and  that are valid with better than 10% accuracy for 

0>iT

003.0/ =ei TT 1.0/ =ei TT

100/ ≤λL  and 10/ ≤λL , respectively.  

 The plasma for finite ion temperature and large λ/L  approaches Shottky’s 

strongly collisional result [6] originally presented for the positive column of a DC glow 

discharge. Figure 3 shows the change of the potential profile with increasing 

collisionality in cylindrical geometry and proportional ionization. In the limit of large 

plasma ∞→DL λ/  and strong collisionality (continuum) it is valid that 405.20 →RL ν . 

Figure 4 shows that this limit is in fact approached.  

IV. Conclusions 

 

 An improved collisional plasma-sheath model was presented in the hydrodynamic 

approach. The model incorporates the limiting cases of constant collision frequency, 

valid in the bulk of the plasma, and constant mean free path valid in the sheath region. 

The transition between the two cases is due to the small, but finite ion temperature. The 

model of the constant mean free path case was corrected by a factor of 2/π  in order to 

bring the fluid solution closer to physically more complete kinetic plasma model.  It was 
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shown that the ion flux to the wall decreases with increasing ion temperature. This is due 

to the increased collision frequency with the increasing thermal motion of ions. The 

collisional plasma-sheath model provides the expected results in the limiting cases. 

 The numerical calculations were performed in order to determine the collisional 

reduction of the ion flux to the wall. A sufficiently accurate analytic approximation was 

found and is useful for modeling weakly collisional plasmas in the transition regime. 

Robertson and Sternovsky32 have recently published a model that calculates the plasma 

parameters (electron temperature, plasma potential) of a low-density hot-filament 

discharge from first principles, i.e. the particle and energy balance of electrons and ions. 

It is shown in a subsequent paper33 that the validity of the model can be extended into the 

weakly collisional parameter range by including the effect of reduced flux of ions to the 

wall.  

 Although the numerical solution of the presented collisional fluid model also 

yields the potential (and hence the electric field) at the wall, the significance of this 

parameter is limited for most plasmas of interest. As discussed above, the weakly 

collisional regime coincides with the parameter range ( 10001/ −=λL ), where nonlocal 

electron kinetics is valid. In reality, the electron distribution function of most nonlocal 

plasmas exhibit multiple populations of electrons and/or incomplete tail of a Maxwellian 

velocity distribution. The plasma potential is thus going to depend also on the form of the 

electron energy distribution function. On the other hand, the ion flux to the wall is 

generally only a function of the temperature of the electron population trapped by the 

plasmas potential.  
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Table I. The fitting parameters for the ion flux reduction for different sheath models. The 

1,0=β corresponds to planar and cylindrical geometry, respectively. 

 

 

Model 
sW cnJ 0./    

)( ∞→L  

κ   

0=iT  

κ   

03.0=iT  

κ   

1.0=iT  

0=β , homogeneous. 0.5 0.293 0.33 0.70 

0=β , proportional 0.5 0.351 0.39 0.82 

1=β , homogeneous 0.439 0.220 0.26 0.58 

1=β , proportional 0.419 0.284 0.33 0.74 
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Fig. 1. The reduction of the ion flux to the wall with increasing collisionality for  

(constant mean free path). The curves are calculated for the planar case (

0=iT

0=β ), plasma 

size 1000/ =DL λ  and homogeneous ionization with two collisional frequency models. 

The full squares are calculated from a kinetic model for 8.252/ =DL λ  (Ref [14]). The 

open circles are from a fluid model for 8.252/ =DL λ  and have been scaled vertically to 

have the same flux for 0/ →λL . 
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Fig. 2. The decrease of the ion flux to the wall with increasing ion temperature. The 

calculations are for plasma size DL λ1000= , planar geometry and ionization proportional 

to the electron density. The three curves are for different collisionality of the plasma.  
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Fig. 3. The change of the potential profile with increasing collisinality. The calculations 

are for cylindrical geometry, proportional ionization, plasma dimension DL λ1000= , ion 

temperature  and various mean free paths. The short-dotted line is the analytic 

result from the Schottky theory. The curves end at the potential of the wall.  
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Fig. 4. The collisional plasma-sheath model approaches the Schottky limit for strong 

collisionality and large plasmas. The calculations are done for cylindrical geometry, 

proportional ionization, and 1.0/ =ei TT . 
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