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In low-pressure radio-frequency discharges, the electron-energy distribution function (EEDF) is
typically non-Maxwellian for low plasma density. The non-local plasma conductivity, plasma density
profiles and EEDF are all non-linear and non-locally coupled. For accurate calculation of the
discharge characteristics, the EEDF needs to be computed self-consistently. The method of fast
self-consistent one-dimensional of planar inductively-coupled discharges driven by a radio frequency
electromagnetic field is presented. The effects of a non-Maxwellian EEDF, plasma non-uniformity
and finite size, as well as the influence of the external magnetic field on the plasma properties are
considered and discussed.

I. INTRODUCTION

Low pressure radio-frequency (rf) inductive coupled
plasma (ICP) are extensively used for plasma aided mate-
rials processing, semiconductor manufacturing and light-
ing [1, 2]. For very low pressures, i.e. in the mTorr
range ICP discharges exhibit a strong non-local behav-
ior and a number of peculiar physical effects typical of
warm plasmas, such as anomalous skin penetration and
a resonant wave-particle interaction [3–5]. Understand-
ing of these effects can help design and optimization of
the ICP sources, resulting in improvement of character-
istics of plasma-based devices.

A gas discharge is a complex, non-linear, multi-
parametric, self-organizing system, characterized by
enormous disparity of temporal, spatial and energy
scales. Therefore, discharge simulations using ”brute-
force” numerical solutions of the governing equations
(e.g., PIC-MCC) can be extremely time and labor con-
suming. For example, the simulation time step is limited
typically by the electron plasma frequency, which is of
the order of 0.1 ns, whereas the time needed to establish
discharge steady-state is of the order of 10000 ns [1]. One
way to reduce the computational burden is to implement
fast kinetic modeling to eliminate fast time and small
spatial scales by using appropriate space-time averaging
procedures. The resulting averaged equations are usually
much simpler, and can be effectively integrated using a
desktop computer. This is important for analyzing engi-
neering applications of discharge plasmas. Another ben-
efit of fast kinetic modeling is gaining thorough insight
in the discharge behavior, and this is not easily available
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through direct numerical modeling. The description of
the one-dimensional, fast, self consistent, kinetic mod-
eling of low-pressure non-local ICP rf-discharges, is the
main topic of this article.

Note that, the formalism described here as applied to
ICPs, can also be applied to other problems of wave-
particle interaction in nonuniform plasmas, i.e., semicon-
ductor physics, laser-plasma interactions, collective phe-
nomena during propagation of intense beams, rf heating
of plasmas in discharges and tokamaks, etc.

In the first part of this paper, the results of
self-consistent numerical modeling of a non-uniform
low-pressure plasma are presented, focusing on non-
magnetized ICP discharges. The pronounced influence of
the electrostatic potential on plasma parameters at the
bounce resonance condition is demonstrated [6]. This
phenomenon is of importance in a wide range of prob-
lems related to penetration of electromagnetic waves into
bounded low-pressure warm plasmas, and a similar for-
malism can be applied to a number of other cases [7].

The addition of the weak external magnetic field can
substantially change the ICP discharge properties due to
enhanced electron heating by electron cyclotron (ECR)
and transmission resonances [8]. The influence of an
external magnetic field on the plasma properties was
extensively investigated in the 1960-1970s in connec-
tion with plasmas in metals, and recently for gaseous
ICP discharges [9–12]. However, most theoretical results
where obtained for uniform plasmas and a prescribed
electron energy distribution (EEDF) function (Fermian
or Maxwellian). Self consistent kinetic calculation of
the discharge plasma parameters, taking into account
the plasma non-uniformity and possible non-equilibrium
EEDF, is still a challenging task. A detailed description
of fast, self-consistent modeling of non-uniform weakly-
magnetized ICP discharges and analysis of the related
ECR and transmission resonances are the topic of the
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second part of this paper.
The presented approach differs from the most previous

analytical and semi-analytical works on the low-pressure
ICP as it allows a self-consistent treatment of the low-
collisional, non-uniform plasmas with non-local conduc-
tivity operator. Having given atomic cross-sections, dis-
charge dimensions and applied power or the driving coil
current, the presented model yields the consistent elec-
tron energy distribution function (EEDF), the rf electric
field and plasma density profiles. Moreover: a) the pos-
sibility of modeling of the non-uniform plasmas with a
non-Maxwellian EEDF differs the presented model from
the other studies on non-local ICP such as [12–18] where
a uniform plasma or a Maxwellian EEDF are used and
b) the possibility of the modeling of the non-local kinetic
effects differs the model from the existing self-consistent
treatments of the collisional discharges with local con-
ductivity operators such as [19, 20].

II. ENHANCED COLLISIONLESS HEATING IN
NON-UNIFORM NON-MAGNETIZED PLASMA

An interesting effect that can lead to enhanced heating
for bounded, low-pressure plasmas is a bounce resonance
between the frequency ω of the driving rf field and the fre-
quency Ωb of the bounce motion of the plasma electrons
confined into the potential well by an electrostatic am-
bipolar potential φ(x) and the sheath electric fields near
the plasma edges[13, 15, 21–23]. Most earlier theoretical
and numerical studies on this subject assumed for sim-
plicity a uniform plasma density and the absence of an
electrostatic potential. As a result, the electrons bounced
inside a potential that is flat inside the plasma and infi-
nite at the walls [13, 16–18]. Although these suppositions
can result in a qualitative description of the plasma be-
havior under non-resonant conditions, the plasma param-
eters under resonant conditions can be greatly altered by
accounting for the presence of the electrostatic potential,
which always exists in real-life bounded plasmas.

It is a well-known result of the quasilinear theory, that
the electron heating of low-collisional, warm plasmas es-
sentially depends on the resonant electrons, or electrons
with velocities equal to the phase velocities of the plane
waves constituting the rf field ω = v · k [22, 23]. For
bounded plasmas the k spectrum is discrete, and the
above condition transforms into the requirement that the
rf field frequency must be equal to or be an integer (n)
multiple of the bounce electron frequency ω = nΩb. If
the electron mean free path is much larger than the dis-
charge gap L, the resonant electrons (with Ωb = ω/n) ac-
cumulate velocity changes in successive interactions with
the rf electric field, which lead to a very effective electron
heating [14, 21, 24? –26]. The electron bounce frequency
is very sensitive to the actual shape of the electrostatic
potential, especially for low-energy electrons. Account-
ing for the electrostatic potential can bring the plasma
electrons into a resonant region, even if they were not

there in the absence of the potential. The increase of the
number of the resonant electrons results into a drastic
enhancement of the plasma heating.

A. Basic Equation

Our model assumes a one dimensional, slab geometry,
ICP discharge of a plasma bounded on both sides by
parallel walls with a gap length L as it is shown in Figure
1.

FIG. 1: 1-D model of bounded ICP.

The surface currents, produced by an external radio
frequency rf source, flow in opposite directions. The in-
duced rf electric field Ey is directed along the walls. The
static electric field Ex = −dφ/dx, directed towards the
discharge walls, keeps electrons confined and the plasma
quasineutral, i.e. ne(x) = ni(x). In the present treat-
ment of plasmas with density ne ∼ 108 − 1012 cm−3, the
sheath width is neglected, because it is of the order of a
few hundreds of microns, which is small compared with
the discharge dimension L. Furthermore, it is assumed
that the plasma electrons experience specular reflection
either at the discharge walls xw = 0, L by the sheath
electric field, if the electron energy εx = mv2

x/2 − eφ(x)
is larger than −eφ(xw), or at the turning points x±(εx),
where −eφ(x±) = εx, by the static electric field in the
plasma. The above 1-D scheme is a good approxima-
tion for a cylindrical ICP discharge, if the rf field pen-
etration depth, or skin depth δ into the plasma is less
than the plasma cylinder radius R [27]. Note, that the
correspondence between 1-D geometry x, y used in this
paper and the more practical cylindrical configuration
is: x → r, y → θ. In particular, for a cylinder Estat is
directed along −→er and Erf along −→eθ .

A self-consistent study of the discharge properties in-
volves calculation of the electron energy distribution
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function (EEDF) f0(ε), the rf electric field Ey(x) and
the ambipolar potential φ(x). The full description of the
mathematical formalism is given in Refs.[6, 7, 28]. See
also the second part of this review paper where the up-
graded version of the formalism with inclusion of external
magnetic field is developed.

The EEDF f0(ε) is obtained from the temporal-spatial
averaged Boltzmann equation:

− d

dε

(
Dε + Dee

) df0

dε
− d

dε

[
Vee + Vel

]
f0 = Stinel. (1)

Here, the upper bar denotes spatial averaging according
to [28], Stinel is the inelastic collision integral and the
coefficients Vel, Dee and Vee stem from the elastic and
electron-electron collision integrals, respectively, and are
given in Ref. [29].

The energy diffusion coefficient, responsible for elec-
tron heating, is given by

Dε(ε) =
π

4

∞∑
n=−∞

∫ ε

0

dεx × (2)

|∆vy(εx)|2 ε− εx

Ωb(εx)
ν

[Ωb(εx)n− ω]2 + ν2
,

where ν is the collision frequency and Ωb(εx) =

2π/Tb(εx), where Tb(εx) = 2
∫ x+

x−
dx/

√
2[εx + eϕ(x)/m]

is the half of the bounce period of electron motion in the
potential well, and ∆vy(εx) = e/m

∫ Tb(εx)

0
Ey[x(t)]eiωtdt

is the velocity kick acquired by an electron with energy
εx during one bounce period [28].

Electric field is obtained from a single scalar equation

d2Ey

dx2
+

ω2

c2
Ey = −4πiω

c2
[j(x) + Iδ(x)− Iδ(x− L)] , (3)

where I is the surface (coil) current. j(x) is the plasma
electron current density calculated from the anisotropic
part f1 of the EEDF, obtained from the linearized Boltz-
mann equation [28].

The electrostatic potential φ(x) is obtained using the
quasineutrality condition ne(x) = ni(x), where ne(x) =∫∞

ϕ(x)
f0(ε)

√
ε− ϕ(x)dε is the electron density profile and

ni(x) is the ion density profile, obtained from a set of the
fluid conservation equations for ion density and momen-
tum [30].

B. Results and Discussion

The total power P , deposited into the plasma per unit
square of a side surface, is related to the electron energy
diffusion coefficient Dε(ε) as [6, 28]

P = −
√

2m

∫ ∞

0

dεDε(ε)
df0(ε)

dε
. (4)

The dependence of plasma heating on resonant electrons
is especially pronounced for ν ¿ ω, Ωb [7], because in this

0 2 4 6
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1x108
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FIG. 2: (Color online). The electron bounce frequency
Ωb(εx), as a function of the electron energy εx = mv2

x/2 −
eφ(x) for different potential wells, consisting of the reflecting
walls and different ambipolar potentials φ(x). The solid line
corresponds to a uniform plasma with φ(x) = 0, dashed line
– quadratic potential φ(x) = 5 × (2x/L − 1)2 eV and dot-
ted line – the realistic potential obtained from the ion fluid
model with Te = 5 eV. The discharge length is L = 3 cm.
The box of hight 2ν shows the resonance region, correspond-
ing to ω = 8.52 107 s−1. Arrows show electron energies in the
resonance region [6].

case the last factor on the right hand site of Eq.(2) tends
to the Dirac delta function. As a result, the electron
heating does not depend on the collision frequency and
accounts explicitly for the bounce resonance

Ωb(εx)n = ω. (5)

However, if nonlinear effects are taken into account the
collisionless heating may depend explicitly on the colli-
sion frequency [31]. Note that if L → ∞, the summa-
tion in Eq. (2) can be replaced by integration over the
corresponding wave vectors k, and the bounce resonance
condition Ωb(εx)n = ω transforms into the wave-particle
resonance condition kxvx = ω for a continuous wave spec-
trum.

The presence of ambipolar potential can greatly affect
the electron heating due to the fact that the number of
resonant electrons is generally larger for a nonuniform
plasma than for a uniform plasma [7]. Eq.(2) shows that
for ν ¿ ω (when the effect of a bounce resonance is
important) only resonant electrons, i.e., electrons in the
energy range corresponding to |Ωb(εx)n − ω| < ν, or
Ωb(εx)n ∈ [ω − ν, ω + ν] give essential contributions to
the energy diffusion coefficient. As is evident from Fig.2,
which shows the dependence of the electron bounce fre-
quency Ωb(εx) on the electron energy εx for different po-
tential wells, the number of resonant electrons increases
if the ambipolar potential is taken into account. In the
limit of a parabolic potential, the bounce frequency is
the same for all electrons and all electrons can be reso-
nant simultaneously. The realistic potential is close to
parabolic in the discharge center and changes faster at
the plasma periphery. As a result, the number of reso-
nant electrons in nonuniform plasma is much larger than
in uniform plasma, see Fig.1.

To explicitly show the importance of accounting for
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FIG. 3: (Color online). The plasma resistance ReZ as a func-
tion of the discharge gap L for a uniform plasma (without any
ambipolar potential - the solid line) and nonuniform plasma
(quadratic potential - the dashed line, and the realistic poten-
tial obtained from the ion fluid model - the dotted line) with
a given Maxwellian EEDF. Plasma parameters are: electron
temperature Te = 5 eV, peak electron density at the discharge
center ne = 5 × 1011cm−3, rf field frequency ω/2π = 13.56
MHz, and the electron collision frequency ν = 107s−1 [6].

ambipolar potential on the calculation of plasma heat-
ing, we performed numerical simulations of the plasma
resistance for uniform and nonuniform plasmas (with
and without ambipolar potential) for a given Maxwellian
EEDF. Specifically, we obtained results for the plasma
surface resistance, or the real part of the surface
impedance Z = 4π/c×E0/B0, as a function of the plasma
length. E0 and B0 are the electric and magnetic field at
the wall [5]. The plasma surface resistance is related to
the power deposition as P = I2ReZ, where I is the ef-
fective amplitude of the driving current. From Fig. 3 it
is evident that the presence of ambipolar potential sig-
nificantly enhances plasma resistance under the bounce
resonance condition (L ≈ 2.6 cm), comparing to the case
of a uniform plasma. The most profound change in re-
sistance is observed for a quadratic potential, because
in this case all trapped electrons have the same bounce
frequency, and, thus, all of them are resonant. The max-
imum of plasma surface resistance in Fig. 3 occurs due
to the first bounce resonance n = 1 in Eq.(5). At larger
L a smaller maximum exists due to the second resonance
n = 2 in Eq.(5). The obtained results explicitly show
that neglecting the ambipolar potential, as is often done
for simplicity, can lead to large discrepancies, especially
for conditions close to the bounce resonance.

The bounce frequency increases with decreasing of the
gap size for both uniform and non-uniform plasmas, but
in the non-uniform plasma the bounce frequency for low
energy electrons does not tend to zero as shown in Fig.2
and Fig.6(c). As a result, ω < Ωb can be satisfied for all
electrons, which leads to complete disappearance of the
collisionless heating for small gaps in the non-uniform
plasma (see Fig.3 and Fig.6(a)) in contrast to the limit
of uniform plasma.
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FIG. 4: Self-consistent simulations of the plasma surface re-
sistance ReZ and the electron temperature Te (defined as 2/3
of the average electron energy) at the discharge center as func-
tions of the discharge gap. Discharge parameters are the coil
current I = 5 A/cm, the rf field frequency ω/2π = 13.56 MHz
and Argon pressure P = 3 mTorr [6].

C. Self-Consistent Simulations

The aforementioned phenomena has been observed in
a fully self-consistent simulation of the EEDF, rf elec-
tric field and ambipolar potential for a given coil current
which have been performed for 13.56 MHz rf driving fre-
quency.

Figure 4 shows dependence of the plasma surface resis-
tance on the discharge dimension. The simulations have
been performed for discharge gaps in the range 3−10 cm
(discharge can not be sustained for L < 3 cm). The cal-
culated plasma surface resistance has a sharp maximum
for the resonant condition ω = Ωb(εx), which corresponds
to the discharge gap 3 cm. Note that the plasma density
is not a constant as in Fig.2; it is approximately propor-
tional to the plasma surface resistance, as more power
(P = I2ReZ) is deposited for larger ReZ.

The self-consistent electrostatic potential and ion-
electron density profiles are plotted in Fig. 5(a) for two
different discharge lengths - 3 cm, corresponding to the
bounce resonance condition, and 10 cm, corresponding
to the non-resonant width. These graphs show that
the electron density at the center of the discharge is
larger for 3 cm resonant gap than for 10 cm non-resonant
gap. Note, if the power transfer efficiency, or the surface
impedance were the same, then the total power trans-
ferred into the plasma were also the same and plasma
densities were equal, due to energy balance. In our
case the surface impedance for 3 cm gap is considerably
higher, what corresponds to the higher plasma density.

The electron energy distribution function and the dif-
fusion coefficient in energy space are shown in Fig. 5(b).
Figure 5(b) shows that the energy diffusion coefficient is
larger for 3 cm gap than for 10 cm gap for electron energy
less than 15 eV . This results in more effective electron
heating, leading to the larger plasma resistivity shown in
Fig. 21.

The steady-state electron energy distribution function
is governed by following processes: the collisionless elec-
tron heating in the rf electric field, inelastic collisions
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FIG. 5: The results of self-consistent simulations for the dis-
charge gap L = 3 cm corresponding to the bounce resonance,
and L = 10 cm for the same conditions as in Fig.5 (a) the elec-
tron density and ambipolar potential profiles, (b)the electron
energy distribution function EEDF and the energy diffusion
coefficient Dε(ε) profiles.

with neutrals, and redistribution of energy among plasma
electrons due to electron-electron collisions. We see in
Fig. 5(b) that the EEDF shape is similar to the two-
temperature EEDF [4] with the temperature of the tail
of the distribution being lower than the temperature of
the main body of the EEDF, corresponding to the onset
of inelastic collisional losses. For 3 cm gap, corresponding
to the bounce resonance condition, the electron temper-
ature of low-energy electrons (less than excitation poten-
tial 11.5 eV ) is much higher than for 10 cm non-resonant
gap. This effect is similar to the plateau formation on
the EEDF governed by collisionless heating in the finite
range of electron energies [22]. Under conditions of Fig. 5
this plateau is not well pronounced, because it is smeared
out by electron-electron collisions.

Additional simulations have been performed for the
twice lower discharge frequency - 6.78 MHz. Figure 6(a)
shows the result of self-consistent simulation of the
plasma surface resistance for two coil currents, 1 A/cm
and 5 A/cm. For lower discharge frequencies, the first
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FIG. 6: Self-consistent simulations for coil currents I = 1
A/cm and I = 5 A/cm and the given discharge parameters:
P = 3 mTorr, ω/2π = 6.78 MHz. Shown are: (a) the plasma
surface resistance, (b) the electron temperature in the dis-
charge center vs the discharge gap and (c) the electron bounce
frequency [6].

bounce resonance corresponds to larger L. Correspond-
ingly the maximum of plasma surface resistance shifts
toward larger L, compare Fig.4(a) and Fig.3. However,
the positions of the surface resistance maxima are differ-
ent for different coil currents. This is due to the different
plasma density and correspondingly skin depth in the two
cases. The larger coil current transfer a larger power into
the plasma, which results in a higher plasma density. For
example for the condition of Fig. 6(a): ne = 2 × 1010

and ne = 7 × 1011 for 1 A/cm and 5 A/cm, respec-
tively. ne ∼ P ∼ I2 due to P ∼ nevBohm 4 εi and
P = −I2ReZ, where vBohm is the Bohm velocity and4εi

is the ionization price [1]. The higher plasma density, in
turn, leads to the smaller skin depth. Further, it follows
from Eqs.(4) and (2) that the electron heating is maxi-
mal if two conditions are met: the electron velocity kick
∆vy(εx) is large for electron energies corresponding to
the first bounce resonance ω = Ωb(εx), and the fraction
of the resonant electrons satisfying the bounce resonance
condition is not small. The velocity kick amplitude ∆vy

is maximal if transit time through the skin layer δ/vxis
approximately equal to 1/ω, i.e., ω ≈ vx/δ (transit reso-
nance). Combining the transit resonance condition with
the first bounce resonance condition ω ≈ vxπ/L esti-
mated in uniform plasmas, yields L ≈ πδ. As it is shown
in Fig.1 and Fig.6(c), the fraction of the resonant elec-
trons is not small if ωδ ≤ VT , where VT is the thermal
velocity. Thus, the resulting rate of the electron heating
depends on both transit and bounce resonances and is
maximal when the both resonances are satisfied simul-
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FIG. 7: The electron energy distribution functions for the
bounce resonance discharge gap length, L = 9 cm , and for
nonresonant discharge gap L = 15 cm , for the surface current
I = 1 A/cm and other conditions are the same as in in Fig.7.

taneously, which occur at L ≈ πδ. Correspondingly, for
larger discharge currents, the skin layer length is smaller
and the position of the surface resistance maximum shifts
into the region of smaller discharge gaps, as evident from
Fig.4(a). Similar results have been obtained in numerical
simulations in Ref. [32] (see Fig.2 of that paper).

Figure 6(b) shows the electron temperature versus the
discharge gap. Note, that our calculations show that the
electron temperature grows with the increase of the dis-
charge gap for small L. It differs from the predictions of
the global model [1, 2] based on the Maxwellian EEDF
and particle balance νion[Te] = νloss[Te], where νion is the
ionization frequency and νloss is the loss frequency. The
difference is due to non-Maxwellian shape of the EEDF
for the conditions of Fig. 6.

The electron energy distribution functions for
6.78 MHz are plotted in Fig. 7 for the surface cur-
rent 1 A/m and for two different lengths, resonant 9 cm
and non-resonant 15 cm. The phenomenon of plateau-
formation on the EEDF is clearly seen for the bounce
resonance condition for L = 9 cm .

D. Comparison of plasma parameters with
Maxwellian and Non-Maxwellian EEDFs

Here, the plasma properties, simulated using
non-equilibrium (non-Maxwellian) and equilibrium
(Maxwellian) EEDFs, are presented. It is shown, that
the calculated plasma parameters can be drastically
different for different EEDFs used. It suggests that the
realistic plasma simulations must necessarily include the
self-consistent treatment of non-equilibrium EEDF.

Results in Figs. 8 − 11 are for a pressure of 1 mTorr,
discharge frequency of 13.56 MHz and discharge length 5
cm [30]. Under these conditions the electron collision fre-
quency is small compared to the applied field frequency.
In each case, profiles calculated using the non-Maxwellian
EEDF (solid lines) are compared with profiles (dashed
lines) obtained using the Maxwellian EEDF approxima-
tion (see [30] under the same discharge conditions and
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FIG. 8: (a) Self-consistently predicted non-Maxwellian (solid
lines) and Maxwellian (dashed lines) electron energy distri-
bution function (EEDF) as a function of total energy for 1
mTorr. (b) Energy diffusion coefficient (Eq. 2) De(ε) (solid
line) and energy diffusivity (see text) related to e-e collisions
(dashed line) as a function of total energy for 1 mTorr. Inset
shows an expanded scale for De(ε) [30] .

for the same (integrated) total power. Values of power
correspond to a plate cross sectional area of 64 cm2.

Fig. 8a shows the EEDF as a function of total energy
for non-Maxwellian (solid lines) and Maxwellian (dashed
lines) cases. The non-Maxwellian EEDF has a higher
fraction of electrons just beyond the ionization thresh-
old, predicting a higher ionization rate. For a pressure
of 1 mTorr, the electron collision frequency 3 x 106 s-1
and ν/Ωb ∼ 0.1. The energy diffusion coefficient Dε(ε)
of (Eq. (2)), exhibits a ”knee” at 1 V (Fig. 4b), indi-
cating that the ”temperature” of electrons with energies
less than 1 V is lower than that of electrons with energies
greater than 1 V. The ”knee” in Fig. 4b arises due to a
phenomenon called ”bounce heating” or ”resonant heat-
ing”. For ν/Ωb ∼ 0.1, the energy diffusion coefficient in
Eq. (13) can be approximated as
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FIG. 9: Effective temperature profiles for a non-Maxwellian
EEDF (solid lines) and a Maxwellian EEDF (dashed lines)
for 1 mTorr [30].

Dε(ε) ∼
∞∑

n=−∞

∫ ε

0

dεx × (6)

|∆vy(εx)|2 ε− εx

Ωb(εx)
δ [Ωb(εx)n− ω]

where, δ [Ωb(εx)n− ω] represents the Dirac-delta func-
tion. It can be seen from Eq. (6) that for energy ε < ε1

(where ε1 is obtained from Ωb(ε1) = ω, De(ε) ∼ 0). For
ε1 < ε < ε2 (where Ωb(ε2) = ω/2 ), De(ε) ∼ (ε − ε1) ,
i.e., the energy diffusion coefficient increases linearly with
total energy. This behavior leads to the ”knee” observed
in Fig. 8b, and implies that electrons with energy ε1

(in this case is 1 V) are in resonance with the field and
are thus heated more efficiently. Higher order resonant
modes ( n = 2, 3, 4...) contribute less as the Fourier coef-
ficients of the electric field decrease as n increases. The
dashed line in Fig. 8b shows the dependence on total en-
ergy of the e-e collision diffusivity term (given by Dee(ε)
in Eq. (1)).

Fig. 9 shows the screaning temperature profiles given
by Eq. 28 for the Maxwellian and non-Maxwellian
EEDFs. For the Maxwellian case, the electron tem-
perature is independent of power while for the non-
Maxwellian case, significant differences are observed with
power. The large difference between the temperatures at
the edge and the center may be explained by examin-
ing Fig. 8a (solid lines). The EEDF shows that elec-
trons with total energies less than 1 V are not effec-
tively heated. Electrons with such low energies are es-
sentially trapped near the discharge center (where the
heating field is weak) as they cannot overcome the elec-
trostatic potential barrier. Hence, the effective temper-
ature at the center is low. In contrast, electrons with
relatively high energies can overcome the potential bar-
rier and reach the edge where the field is strong, and the
effective temperature at the periphery (and larger total
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FIG. 10: Normalized amplitude of the RF field for 1 mTorr.
Results using non-Maxwellian EEDF (solid lines) are com-
pared with results using Maxwellian EEDF (dashed lines),
under otherwise identical conditions [30].

energies) is high. Note that even for the highest plasma
density in Fig. 4, the electron-electron mean free path
is about 10 m for 1 eV electrons, much higher than the
interelectrode gap. Therefore, the electron-electron and
collisionless energy diffusion coefficients are comparable
at very low energy, 1 eV, see Fig. 4. As a result, low en-
ergy electrons form a Maxwellian distribution with very
low temperature, 1 eV. Note that the part of the EEDF
corresponding to such cold electrons is difficult to mea-
sure experimentally. The effective temperature profile
becomes less non-uniform as power is increased, because
of higher electron density resulting in more ”thermal-
ization” of the distribution by e-e collisions. The dis-
crepancy between the Maxwellian temperature and the
effective temperature near the edge induces a difference
in the effective electron mean free path, which leads to
considerably different field and current density

Fig. 10 shows the profiles of the normalized ampli-
tude of the RF field. The field profile is monotonic
for low power. However, for high power, the behav-
ior becomes progressively non-monotonic due to increas-
ing non-locality. Specifically, the skin depth decreases
with power, and the more energetic electrons can escape
from the skin layer during a RF cycle, resulting in non-
local behavior and non-monotonic RF field profiles. The
effect of non-locality is more pronounced for the non-
Maxwellian EEDF, especially for higher powers for which
the RF field at the discharge center is more than 50 per-
cents of the value at the edge. This is a direct conse-
quence of the higher effective temperature predicted by
the non-Maxwellian EEDF near the edge compared to the
Maxwellian case. Warmer electrons can reach further in
the discharge core. The corresponding power deposition
profiles are shown in Fig. 11. The peak of power deposi-
tion in the Maxwellian case is seen to occur closer to the
boundary, when compared to that of the non-Maxwellian
case. This is because of the higher effective temperature
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of electrons in the skin layer for the non-Maxwellian case,
which causes them to travel a greater distance during an
RF cycle. Both cases exhibit negative power deposition
near the discharge center. This can be explained by the
phase difference between the current and the RF field;
electrons can pick up energy from the field within the
skin layer and lose energy back to the field outside the
skin layer. Negative power deposition has been observed
experimentally for low-pressure inductively coupled dis-
charges [16].

The corresponding positive ion density profiles are
shown in Fig. 12. The positive ion density is deter-
mined by two factors: (1) the effective electron tempera-
ture at the boundary, which controls the loss rate of ions
to the wall and (2) the rate of ionization (ground-state
and metastable) [30]. The latter depends on the tail of
the EEDF beyond the ionization threshold of 15.76 V
(ground state ionization dominates under these condi-
tions). The ionization rate was found to be marginally
higher for the non-Maxwellian EEDF. However, the ef-

fective temperature at the wall for the non-Maxwellian
case ( 6.5 V) is larger than the Maxwellian temperature
of 4.4 V (Fig. 9), leading to larger losses for the non-
Maxwellian EEDF. This results in lower density for the
non-Maxwellian case. The differences in the peak densi-
ties are 32.4, 38.8, and 44.4 percents, respectively, for 50,
100, and 200 W.

III. SELF-CONSISTENT TREATMENT OF
LOW-MAGNETIZED ICP PLASMA

Application of a weak constant external magnetic field
to low-pressure bounded plasma can drastically changes
its electrodynamics, due to possibility of the electron-
cyclotron resonance (ECR), when ω = Ωc, and the ap-
pearance of the new propagating wave modes for ω >
Ωc. These can result in more effective power transfer
into plasma and possible transmission resonances (when
the induced plasma field is close to one of the Fourier
harmonics)[8–12]. Here ω - is the rf driving frequency
and Ωc = eB/m - is the electron cyclotron frequency (e
- is the electron charge, m - is the electron mass and B -
is the magnetic field induction). A description of a fast
self consistent treatment of a weakly-magnetized plasma
and investigations of plasma parameters under resonance
conditions are the main topics of this section.

A. Basic Equations

The system under consideration assumes a one dimen-
sional slab geometry inductively coupled (ICP) discharge
of a plasma bounded on both sides by two parallel walls
with a gap length L. For the case of the cylindrical like
geometry (two current sheaths) - the both walls carry
prescribed currents, produced by an external radio fre-
quency (rf) source, flowing in opposite directions, and for
the case of one grounded electrode - one of the walls is
grounded, correspondingly.

The external magnetic field B is applied perpendic-
ularly to the discharge plates, as it is shown in Fig-
ure 13. The induced solenoidal rf electric field Ey and
Ez is directed along the walls and the static ambipolar
electric field Esc of the ambipolar potential φ(x) is di-
rected towards the discharge walls, keeping the plasma
quasineutral, ne(x) = ni(x). In the present treatment of
high density discharge plasmas (ne ∼ 108 ÷ 1012 cm−3)
the sheath width is neglected, because it is of the or-
der of a few hundreds of microns, much less than the
discharge dimension L. Furthermore, it is assumed that
the plasma electrons experience specular reflection: a)
from the discharge walls when they have total energy
ε = mv2/2 − eφ(x) larger than the potential at the
walls ϕw, and b) from the geometrical location of the
turning points x−(ε), x+(ε) when the the plasma elec-
trons are confined into the potential well φ(x). The one-
dimensional slab geometry system of two surface currents
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FIG. 13: 1-D model of magnetized ICP. The external mag-
netic field goes perpendicularly to walls. rf electric field has
also a component along z-axis.

flowing in opposite directions provides a good description
of a solenoidal discharge with diameter D = L [27], and
also describes approximately a “pancake” geometry with
one coil at x = 0 and a grounded electrode at x = L/2
(corresponding to the boundary condition Ey = 0 at
x = L/2) [28]. In this article, we preferentially use the
one-dimensional slab geometry of two surface currents (if
it is not stated otherwise), because the analytical solu-
tion in this case is much simpler and easier to analyze,
while results are similar to the just mentioned configu-
rations for typical plasma parameters (see Appendix A
for details). As for non-magnetized plasmas, the corre-
spondence between 1-D geometry x, y of Fig. 13 and
the realistic cylindrical configuration is: x → r, y → θ
(Estat → Er and Erf → Eθ).

In order to describe the discharge self-consistently,
one needs to determine the induced rf electric field pro-
files Ey,z(x), the electron energy distribution function
(EEDF) f0(ε), and the plasma density profile, or cor-
responding ambipolar potential φ(x). The detailed de-
scription of all the needed formalism for non-magnetized
discharges is given in [28]. A short account of the formal-
ism, that is applicable to the magnetized plasmas (which
is the straitforward generalization of the formalism for
the non-magnetized case ) is given below.

B. Calculation of the EEDF

For the case of low-pressure, low-temperature dis-
charges, when an energy relaxation length is large com-
paring to the plasma width and an energy relaxation time
is large comparing to the rf period, the electron velocity

distribution function (EVDF) can be represented as a
sum of a main isotropic part f0(ε) (EEDF), that is a
function of only the total energy ε, and of a small alter-
nating anisotropic part f1(x,v, t), f = f0(ε) + f1(x,v, t)
[29, 35? ]. The Boltzmann equation for the electron
velocity distribution function, after applying the formal-
ism of quasilinear approach can be split into two equa-
tions (see Appendix B.), one for the EEDF f0, and the
other for f1(x,v, t) (used for calculation of the energy
diffusion coefficient and the non-local conductivity oper-
ator). Note, that the EVDF can be represented as two-
term expansion f0(ε)+f1(x,v, t) if the rf-quiver velocity
is much less than the thermal velocity Vrf/VT ¿ 1, or
(eErf/

√
m2(ω2 + ν2))/

√
kT/m ¿ 1 [28]. For ω À ν, it

yields (e2E2/mω2)/kT ¿ 1. As a consequence, our ap-
proach is valid only if the ponderomotive potential can
be neglected (see, also, Appendix B). The description of
effects of the rf magnetic field and ponderomotive force
on the low-frequency ICP can be found in Ref. [3].

The final equation for the electron energy distribution
function f0 is

− d

dε

(
Dε + Dee

) df0

dε
− d

dε

[
Vee + Vel

]
f0 = (7)

∑

k

[
ν∗k(w + ε∗k)

√
(w + ε∗k)√

w
f0(ε + ε∗k)− ν∗kf0

]
.

Here the bar denotes averaging according to Eq. (82), and
ν∗k is the inelastic collision frequency. The coefficients
Vel, Dee, Vee stem from the elastic and electron-electron
collision integrals, respectively, and are given by [29, 36]

Vel =
2m

M
wν, (8)

Vee =
2wνee

n

(∫ w

0

dw
√

wf

)
, (9)

Dee =
4
3

wνee

n

(∫ w

0

dww3/2f + w3/2

∫ ∞

w

dwf

)
, (10)

νee =
4πΛeen

m2v3
, (11)

where w = mv2/2 is the electron kinetic energy, νee is
the Coulomb collision frequency, and Λee is the Coulomb
logarithm.

The energy diffusion coefficient responsible for the elec-
tron heating is given by

Dε(ε) =
πe2

8m2

∞∑
n=−∞

∫ ε

0

dεx

∣∣E+
n (εx)

∣∣2 ε− εx

Ωb(εx)
× (12)

ν

[Ωb(εx)n− (ω + Ωc)]
2 + ν2

+

+
πe2

8m2

∞∑
n=−∞

∫ ε

0

dεx ×
∣∣E−

n (εx)
∣∣2 ε− εx

Ωb(εx)
×

ν

[Ωb(εx)n− (ω − Ωc)]
2 + ν2

,
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Note that the expression for Dε(ε) explicitly accounts
for the Doppler shifted electron-cyclotron resonance Ωc+
Ωb(εx)n = ω. The dependance of electron plasma heat-
ing on resonant electrons especially pronounced for the
ν << ω, as in this case

ν

[Ωb(εx)n− (ω − Ωc)]
2 + ν2

→ πδ(Ωbn− ω + Ωc) (13)

where δ() is a Dirac delta function. It is worth to note
that if L → ∞, the summation in (13) goes into in-
tegration over corresponding wave vectors kn, and the
above mentioned resonance condition transforms into the
well-known ECR resonance condition for continuous wave
spectrum Ωc + kv = ω.

C. Calculation of the rf electric field

The transverse rf electric fields E± is obtained from a
single scalar equation

d2E±

dx2
+

ω2

c2
E± = −4πiω

c2

[
j(x)± + Iδ(x)− Iδ(x− L)δanti

]
,

(14)
where I is the wall current ( δanti = 0 for one grounded
electrode, and δanti = 1 for two current sheaths ) and
j(x)± are the induced electron plasma current densities
that can be calculated knowing the anisotropic part f1s

of the EVDF

j±(x) = −em3/2

4π
√

2

∫
f1s(vy ± ivz)d3v = (15)

−em3/2

4π
√

2

∫
f1sv⊥e±iφd3v,

which can be rewritten after some transformations as

j±(x) =
e2

2m

∞∑
n=−∞

∫ ∞

ϕ(x)

Γ(ε)√
ε− ϕ(x)

E±
n cos[nθ(x)]

inΩb − i(ω ± Ωc) + ν
dε,

(16)
where

Γ(ε) =
∫ ∞

ε

f0(ε)dε. (17)

After mathematical continuing of the rf field outside
of the slab as E±(x) = E±(−x), and using the Fourier
series

E±(x) =
∞∑

s=0

Ξ±s cos(ksx), (18)

and

j±(x) =
∞∑

s=0

±s cos(ksx), (19)

the Eq. (14) yields
(
−k2

s +
ω2

c2

)
Ξ±s = −4πiω

c2

[
j±s +

(I + δanti)
L

]
, (20)

j±s =
e2

m

1
(2s + 1)ΩbT

∞∑

l=0

Ξ±l Z
gen
s,l

(
(ω ± Ωc) + iν

(2s + 1)ΩbT

)
,

(21)
where s is an integer, ks = (2s + 1)π/L for cylindrical
geometry and ks = (2s+1)π/(2L) for one grounded elec-
trode, ΩbT = vT π/L, and we introduced the generalized
plasma dielectric function

Z
gen
s,l (ξ) ≡

√
2
m

(2s + 1)πΩbT

L

∞∑
n=−∞

∫ ∞

0

(22)

× Γ(ε)
nΩb(ε)− (2s + 1)ΩbT ξ

Gs,n(ε)Gl,n(ε)
Ωb(ε)

dε.

where the coefficients Gl,n(ε) are the temporal Fourier
transform of cos(klx) in the bounce motion of an electron
in the potential well (dx/dt = −eEsc(x)/m)

Gl,n(ε) =
1
T

[∫ T

0

cos[klx(τ)] cos
(πnτ

T

)
dτ

]
. (23)

The coefficients Gl,n(ε) can be effectively computed using
the Fast Fourier Transform (FFT) method.

The Maxwell equation (20) together with the equations
for the electron currents (21) and (23) comprise the com-
plete system for determining the profiles of the rf electric
field.

D. Calculation of the electrostatic potential

The electrostatic potential is obtained using the
quasineutrality condition

ni(x) = ne(x) =
∫ ∞

ϕ(x)

f0(ε)
√

ε− ϕ(x)dε, (24)

where ne(x) is the electron density profile and ni(x) is
the ion density profile given by a set of fluid conservation
equations for ion density and ion momentum [30]

∂ni

∂t
+

∂(niui)
∂x

= Rion, (25)

and

∂(niui)
∂t

+
∂(niuiui)

∂x
= − ni

Mion

∂φ(x)
∂x

− νionniui, (26)

where Rion is the ionization rate, νion is the ion-neutral
collision frequency and ni, ui, Mion are ion density, velos-
ity and mass, respectively.
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Eq. (24) is solved in the form of a differential equation
[20]

dϕ

dx
= −T scr

e (x)
d ln[ni(x)]

dx
, (27)

where T scr
e (x) is the electron screening temperature

T scr
e (x) =

[
1

2n(x)

∫ ∞

ϕ(x)

f0(ε)
dε√

ε− ϕ(x)

]−1

, (28)

and the electrostatic ambipolar potential can be obtained
by integration of Eq.(27)

IV. DISCUSSION

The above described self-consistent system of equa-
tions gives a working tool for efficient, fast simulations
of one dimensional inductively-coupled magnetized plas-
mas.

The total power deposited into plasma per unit square
of side surface P can be computed as [1]

P =
1
4
Re(E+∗j+ + E−∗j−). (29)

Also, the total deposited power is related to the electron
energy diffusion coefficient Dε(ε) as [28]:

P = −
√

2m

∫ ∞

0

Dε(ε)
df0(ε)

dε
dε. (30)

The agreement of the total power computed from
Eq. (29) and Eq. (30) can be used as a good consistency
check for the above described formalism during the nu-
merical simulations.

For the sake of further analysis it is convenient to ex-
press the deposited power as a function of the plasma
resistance, or the real part of the plasma impedance Z,
that is defined as

Z = Z− + Z+ =
2π

c

E−(0)
B−(0)

+
2π

c

E+(0)
B+(0)

, (31)

where E±(0) and B±(0) are the electric and magnetic
field at the current sheath for the right and left polarized
waves. The power deposited into plasma is related to the
plasma impedance as

P = −I2Re(Z), (32)

where I is the effective amplitude of the sheath current
[1].

The surface impedance also can be used to estimate
the skin depth

δ =
E

−dE/dx
|x=0. (33)

Using Eq.(14), one obtains dE/dx = −2πiωI/c2 and the
skin depth Eq. (33) becomes

δ =
c2Z
4πiω

. (34)

For a purely inductive impedance, δ is a real number,
but in the general case δ is complex. Eq.(34) is accurate
only for a purely exponential profile of the electric field
exp(−x/δ). If the electric field profile is more complex
(e.g. two length scales), calculation of the entire profile
of the rf electric field is necessary, see Ref.[33] for an
example.

A. Analisis with a given Maxwellian EEDF

For uniform plasmas with Maxwellian EEDF our
formalism for calculation of the rf electric field
(Eq.(20),(21),(23)) simplifies considerably. In this case
the surface impedance of a one-dimensional, bounded,
uniform plasma of length L inductively driven by two
current sheets with an applied external static magnetic
field reads [28, 34]

Z =
Zl + Zr

2
, (35)

where

Zl,r =
16πiω

c2L

∞∑
s=0

1

k2
s − ω2/c2 − ZM

(
ω±Ωc+iν

ksVT

)
/ksδ3

a

.

(36)
Here we introduce the anomalous skin depth

δa =
(

c2VT

ω2
peω

)1/3

, (37)

where ωpe =
(
4πe2n/m

)1/2 is the electron plasma fre-
quency and ZM (ξ) is the ”standard” plasma dielectric
function

ZM (ξ) = π−1/2

∫ ∞

−∞
dt

exp(−t2)
t− ξ

. (38)

In the limit of a semi-infinite uniform plasma, L → ∞,
the summation turns into an integral with dk = 2π/L,
and Eq.(36) yields

Zl,r
∞ =

8iω

c2

∫ ∞

0

dk
1

k2 − ω2/c2 − ZM

(
ω±Ωc+iν

kVT

)
/kδ3

a

.

(39)
The expression for the plasma surface resistance fol-

lowing from Eq.(36) is given by

Re Zl,r =
16πiω

c2L

∞∑
s=0

ImZM (ζ)
ksδ3

a[
k2

s − ω2

c2 − ReZM (ζ)
ksδ3

a

]2

+
[

ImZM (ζ)
ksδ3

a

]2 .

(40)
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FIG. 14: Electric field profiles normalized by the electric field
E(x = 0, B = 0): (a) Amplitude and (b) Phase for differ-
ent values of applied magnetic field for a uniform, bounded
plasma. Plasma parameters are: half plasma length L/2 =
10.5 cm, rf field frequency ω/2π = 29 MHz, electron temper-
ature Te = 4 eV, electron collision frequency ν = 1.2 107 s−1

and the plasma density ne = 1011 cm−3 [34].

where ζ = (ω ± Ωc + iν)/ksVT .
As it can easily be seen from the dispersion equation

for the cold collisionles plasma [1]

c2k2

ω2
= 1− ω2

pe/ω2

1∓ Ωc/ω
, (41)

for ω < ωpe (where, ωpe is the electron plasma frequency),
application of external magnetic field gradually changes
the plasma electrodynamics from the non-wave propagat-
ing regime (evanecent waves) for Ωc < ω, to the regime of
propagation of the right-hand circularly polarized wave
Ωc > ω (with the minus sign in the denominator of the
Eq.(41) and with phase velocity less than the speed of
light).

For the warm, collisional plasma the main features of

the above picture remain the same. The electric field
profiles for different values of the applied magnetic field
are plotted in Fig. 14. A transition is evident from the
non-propagating (B < 10 G) to the propagating (B > 10
G) wave. Here, magnetic field

Bc =
mcω

e
(42)

Bc = 10 G corresponds to ECR for a 29 MHz discharge.
The electric field profile changes from almost exponential
in the evanescent regime (B < 10 G) to a wave pattern
(B > 10 G) [12, 34]. For B = 29 G, a standing wave
forms which corresponds to the Fourier-harmonic with
the wave vector k1 = 3π/L.

B. Non-Propagating Regime and
Electron-Cyclotron Resonance

In the warm plasma the non-propagating regime is
described by anomalous skin effect for lfree/δp > 1,
or by the regular skin effect for lfree/δp < 1, where
lfree = VT /

√
ω2 + ν2 is the effective electron mean free

path, and δp is the rf field penetration depth. For
Ωc < ω, application of the external magnetic field leads
to increased rf wave dumping and, consequently, to in-
creased plasma resistance, due to gradual approach to
the electron-cyclotron resonance. The electrons gyrat-
ing with the same frequency as the driving frequency ω
(with Doplerr shift correction) feel the field of the right-
polarized wave as almost constant and are effectively ac-
celerated, resulting in enhanced heating, as it follows
from the Eq.(40). For ω ∼ Ωc À ν, ReZM ∼ 0, and
ImZM is maximal which give the enhanced dumping if

k2
s > ImZM

(
ω ± Ωc + iν

ksVT

)
/ksδ

3
a. (43)

The presense of the ImZM in the denominator of the
Eq.(40), implying the self-consistent effect of dumping
on the rf electric field, leads to Doppler shifting of the
electron-cyclotrone resonance condition

ω ∼ Ωc + ksVT . (44)

At the exact condition of the electron-cyclotron res-
onance Ωc = ω, the surface resistance of a collisionless
plasma ν ¿ ω, with plasma slab length much larger than
the anomalous skin depth δa, can be calculated from Eq.
(39) (taking into account that at ECR ReZM (0) = 0 and
ImZM (0) =

√
π). For the right-hand polarized wave

Zr
ECR =

8π5/6

3
(i +

1√
3
)
ωδa

c2
. (45)

Equation (45) predicts larger plasma surface resistance
at the electron-cyclotron resonance with increasing rf
field frequency ω and rf field penetration depth. The
latter can occur either due to increase of electron tem-
perature or decrease of plasma density.



13

C. Propagating Regime and Transmission
Resonances

For the propagating regime increased plasma resis-
tance, also, can take place, but due to a different mech-
anism - the possible transmission resonance [12, 34]. In-
creasing the external magnetic field above the ECR con-
dition (B ≥ 10 G for 29 MHz) leads to further growth of
the plasma surface resistance, as evident in Fig. This is
due to propagation of the right-hand polarized wave into
the plasma. Analysis of the wave propagation is espe-
cially convenient in the cold plasma approximation. In
the limit of high magnetic field, warm plasma effects are
not important if

Ωc − ω À VT ks, (46)

i.e., if the nonlocality length is small, VT /(Ωc − ω) ¿
1/ks. Substituting the cold plasma limit of the dielectric
function ZM (ζ) → −ζ−1 for ζ → ∞ gives the poles of
the electric field in Eq. (40)

c2k2
p

ω2
= 1− ω2

pe/ω2

1± Ωc/ω
. (47)

For a typical magnetically enhanced ICP ω, Ωc ¿ ωpe,
and propagating modes exist only for the right-hand po-
larized wave with a wave vector

kp =
ωpe

c
√

Ωc/ω − 1
. (48)

For a bounded plasma, transmission resonance occurs
if an odd number of half-waves equals the plasma slab
length, or kp = ks, which gives

(2s + 1)π
L

=
ωpe

c
√

Ωc/ω − 1
. (49)

Warm plasma effects can be neglected for not very high
resonance numbers s, for which the nonlocality length is
less than the wavelength VT /(Ωc − ω) ¿ πL/(2s + 1).

Strong transmission resonances at the values of the
magnetic field predicted by Eq. (49) are evident in Fig.
15. Note that the transmission resonances occur at dif-
ferent values of magnetic field for different plasma slab
lengths. When Eq. (46) is satisfied, the surface resis-
tance of cold plasma is the same as that of warm plasma.
In the opposite case, transmission resonances are less
pronounced due the wave dissipation through collision-
less damping. The maximum value of the plasma sur-
face resistance and the width of the transmission res-
onances are determined by a small dissipation, either
due to collisional or collisionless damping described by
Im(ZM ). Note that a right-hand polarized wave reflects
from a plasma-vacuum interface with a reflection coeffi-
cient R = 1 − 2ω/ckp. Since ω/ckp ¿ 1, R ' 1 and the
wave is trapped inside the plasma.

Let us now estimate the condition of existence of trans-
mission resonances. Warm plasma effects can be ne-
glected if kpVT ¿ Ωc − ω. Substituting kp from Eq.
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FIG. 15: Surface resistance of semi-infinite and bounded plas-
mas of different lengths as a function of the applied mag-
netic field for a uniform plasma with a Maxwellian EEDF.
The discharge frequency is 29 MHz, the plasma density
ne = 1011 cm−3 and the electron collision frequency ν =
1.2 107 s−1. (a) Warm plasma with the electron temperature
Te = 4 eV, (b) Cold plasma with the electron temperature
Te → 0 (local approximation for electron current) [34].

(48) gives the minimum value of Ωc−ω for a pronounced
transmission resonance

Ωc − ω À
(

VT

c
ωpeω

1/2

)2/3

. (50)

Substituting in turn Ωc−ω from Eq. (50) into Eq. (48),
gives the maximum value of the wave vector kp for a
pronounced transmission resonance

kp ¿ 1
δa

. (51)

That is, the wave length should be much longer than the
anomalous skin effect length. This condition provides
that the collisionless damping of the wave is small.

In addition, Eq. (49) suggests that the minimum value
of the plasma slab length to observe a pronounced trans-
mission resonance should satisfy the relation

L À πδa. (52)

For short plasma lengths or low plasma densities, Eq.
(52) is not satisfied and the transmission resonances are
not observed. Figure 16 shows the surface plasma re-
sistance of warm bounded plasmas for different elec-
tron densities. When the electron density is less than
ne = 1010 cm−3, Eq. (52) is not satisfied and transmis-
sion resonances are not observed. As a result, the plasma
surface resistance decreases with increasing applied mag-
netic field for magnetic fields larger than Bc. The disap-
pearance of the transmission resonances for small lengths
L = 10 cm is shown at Fig.17
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FIG. 16: Surface resistance of warm bounded uniform
Maxwellian plasmas for different electron densities as a func-
tion of the applied magnetic field. Discharge parameters: rf
field frequency ω/2π = 29 MHz, electron temperature Te = 4
eV, electron collision frequency ν = 1.2 107 s−1 and the
plasma half-length L/2 = 10.5 cm [34].
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FIG. 17: The plasma resistance as a function of the ap-
plied magnetic field for different gap lengths and a given
Maxwellian EEDF for the case of two current sheaths. The
discharge parameters: the rf field frequency ω/2π = 29 MHz,
the electron temperature Te = 4 eV , the electron density
ne = 1011 cm−3 and the gas pressure Pgas = 3 mTorr .

Strong transmission resonances may cause difficulty in
coupling power to the plasma through a matching net-
work, as was reported in Ref. [8] for magnetic fields
B > 20 G. These values of magnetic field appear to result
in transmission resonances for the experimental plasma
parameters in [8].

As evident in Figs. 15, increasing the length of a
bounded plasma leads to a larger number of transmission
resonance peaks. In the limit L →∞, these peaks over-
lap and the plasma surface resistance reaches an asymp-

totic curve. Substituting the cold plasma limit for the
dielectric function ZM (ζ) → −ζ−1 as ζ → ∞ and in-
tegrating Eq. (39) over the poles of the electric field,
k = kp, given by Eq. (48) yields the asymptotic value of
the plasma surface resistance

Zr
∞ =

4π

cωpe

√
ω(Ωc − ω). (53)

Also, it can be seen from Fig. 15 that for given mag-
netic field for Ωc > ω the increase of the plasma length
L leads to approaching by the surface resistance to its
value for the semi-infinite plasma. This value, again, can
be analytically described as the overlap of the multiple
transmission resonances, broadened due to collisionless
dumping or collisions (compare the cases of warm and
cold plasmas in Fig. 15. The condition on plasma length
for applicability of the limit of a semi-infinite plasma is
that the width of resonance δk is larger than the distance
between them dk

δk > dk. (54)

From Eq.(36) it follows that the distance between res-
onances is

dk = 2π/L. (55)

Also, from Eq.(36) it follows that the width of a reso-
nance is

δk =
ImZM

(
ω±Ωc+iν

kpVT

)

2k2
pδ3

a

. (56)

Indeed, from Eq.(36) for the real part of surface
impedance follows that the width of the resonance is
given by

∣∣∣∣k2 − ω2/c2 − ReZM

(
ω ± Ωc + iν

kVT

)
/kδ3

a

∣∣∣∣ ≤ (57)
∣∣∣∣ImZM

(
ω ± Ωc + iν

kVT

)
/kδ3

a

∣∣∣∣ .

Representing k = kp + δk, where kp is the root of the
left hand of inequlity in Eq. (58) and taking into account
that kp À δk and ReZM À ImZM (when condition in
Eq. (51) is valid), Eq. (58) easily yields Eq. (56) for δk.

Substituting (56) for δk and Eq. (55) for dk into
Eq.(54) gives

L > Lmax =
4πk2

pδ3
a

ImZM

(
ω±Ωc+iν

ksVT

) . (58)

This condition corresponds to strong dumping of the
propagating wave on distance Lmax. It follows from the
form of the dispersion equation for the propagating wave
e−ikx in unbounded plasma, which reads

k2 − ω2/c2 − ZM

(
ω ± Ωc + iν

kVT

)
/kδ3

a = 0, (59)
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FIG. 18: The plasma resistance as a function of the ap-
plied magnetic field for uniform plasma (without an ambipo-
lar potential) and for non-uniform plasmas (with φ(x) =
4 × (2x/L − 1)2 eV and φ(x) = 4 × (2x/L − 1)4 eV ) for a
given Maxwellian EEDF. The case of one grounded electrode.
The discharge parameters: the rf field frequency, rge electron
temperature and the peak electron density are the same as in
Fig.1. The gas pressure Pgas = 3 mTorr and the discharge
gap is L = 10.5 cm.

If wave dumping is weak, i.e., ImZM ¿ ReZM , than
the imaginary part of the wave vector is small compared
with the wave vector (Imk ¿ Rek), and Rek ' kp from
Eq. (48). The wave damping rate can then be easily
obtained by equating the real and imaginary parts of Eg.
(59), which for yields

Imk = δk, (60)

where δk is from Eq. (56).

D. Non-uniform plasma

The electron-cyclotron and cavity resonance heating
is, essentially, a wave-particle resonance type heating. It
follows that the heating of the both types highly depends
on the number of the resonant electrons, or electrons for
which the resonant conditions are satisfied (| ω − Ωc |≤
kmvT for ECR, and Eq.(41) with Ωc − ω > knVT for
cavity resonance), but the actual form of the ambipo-
lar electrostatic potential can greatly alter the number
of present resonant electrons, that, in turn, can greatly
affect the resonant heating.

In Fig. 18 the results of the numerical simulations of
the dependance of the plasma resistance on applied B
field are presented, for a given Maxwellian EEDF, uni-
form and nonuniform plasmas (with and without an am-
bipolar potential). The case of the one grounded elec-
trode was considered. It is seen that the plasma resis-
tivity is considerably enhanced at the electron-cyclotron

resonant conditions (Bext ≈ 10 Gauss), which means
the larger number of the resonant electrons due to the
presence of the ambipolar potential. The effect of en-
largement of the number of resonant electrons in the
non-uniform plasma at the bounce resonance condition
was reported by authors in [6]. The main idea of it that
the plasma electrons of different energies, bouncing in
the ambipolar potential of a non-uniform plasma, have
smaller spreading in a bounce frequency, comparing to
the case of a uniform plasma. And if this frequency
matches the resonant condition, it immediately gives a
larger number of resonant electrons. For example, the
plasma electrons of all energies bounce with the same
frequency in the quadratic ambipolar potential. The con-
dition of ECR for a bounded plasma, as it follows from
the expression for the energy diffusion coefficient (13), is
ω = Ωbn + Ωc. It includes the bounce frequency and can
be greatly affected by the ambipolar potential.

For the cavity resonance (Bext ≈ 20 Gauss) Fig. 18
reveals the lower plasma resistivity for non-uniform plas-
mas which can be attributed to the higher dumping in
this case, caused by more resonant electrons (violations of
the necessary condition (Eq.(46)). It needs to be accen-
tuated that non accounting for the electrostatic ambipo-
lar potential (allowing electrons to bounce between walls
that constrain plasma), as it is often done for simplicity,
can results in erroneous description of plasma behavior at
resonant conditions, due to aforementioned drastic influ-
ence of the electrostatic potential on the plasma heating.

V. RESULTS OF FULL SELF-CONSISTENT
CALCULATIONS OF THE DISCHARGE

PARAMETERS

To investigate the dependance of the parameters of a
magnetized discharge on the magnitude of the applied
magnetic B field, the full self-consistent simulations of
the driving sheaths current (corresponding to coil cur-
rent in 2-D geometry), EEDF, rf electric field, plasma
density, electron temperature, and ambipolar potential
for a fixed deposited power have been performed for the
case of one grounded electrode. Simulations described
in this chapter were performed in order to compare the
developed code with the data recently measured by V. I.
Godyak and co-workers and given in Ref. [8]. All cal-
culations have been done for 29 MHz driving frequency
and for the values of the applied magnetic field from 0 to
20 Gauss ( for B > 20 G the discharge is impossible to
maintain due to macroscopic plasma instability [8]). The
length and side area of the discharge was chosen 10.5 cm
and 64π cm2 correspondingly.

Figure 19 shows the dependence of the coil current on
the B field for different given deposited power and pres-
sures (correspond to different transport collision frequen-
cies). As it seen in Fig. 19 the coil current has pronounced
minima for B ∼ 10 G for low pressures P = 1, 3 mTorr
and the shallow minimum for P = 10 mTorr. All these
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FIG. 19: The sheath current as a function of the applied
magnetic field for full self-consistent discharge simulations for
different deposited powers and gas pressures. The case of one
grounded electrode. The discharge parameters: the rf field
frequency ω/2π = 29 MHz, the discharge gap L = 10.5 cm
and the discharge cross-section Sqross = 64π cm2.
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FIG. 20: The energy diffusion coefficient as a function of the
electron energy for full self-consistent discharge simulations
for different applied magnetic fields. The case of one grounded
electrode. The discharge parameters are the same as in the
Fig.19.

minima correspond to electron-cyclotron resonance, as it
follows from Eq. (32) and the general behavior of the
plasma resistance, given, for example, in Fig. 2. For con-
stant deposited power, increase and the maxima of the
plasma resistance correspond to decrease and minima of
the coil current. The shallowness of the coil current min-
ima for P = 10 mTorr can be explained by collisional
broadening. The same reasoning can be applied to the
minima for B ∼ 20 G which corresponds to the cavity
resonance. All of them are deeper than the correspond-
ing ECR minima, because of larger plasma resistance at
the cavity resonance (Fig. 2).
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FIG. 21: The electron energy distribution function as a func-
tion of the electron energy for full self-consistent discharge
simulations for different applied magnetic fields. The case of
one grounded electrode. The discharge parameters are the
same as in the Fig.19.

The profiles of the energy diffusion coefficient and the
electron energy distribution function are given in Fig. 20
and Fig. 21, correspondingly. It is seen, that the largest
electron energy diffusion coefficient in the region of low
energy ε ≤ 10eV is for B = 10 G (corresponds to ECR).
This results in more effective electron heating, leading to
a larger plasma temperature, shown in Fig. 22. It sug-
gests that at ECR condition the electrons interact with rf
wave in the most efficient way (the damping rate is max-
imal), meanwhile at cavity resonance conditions plasma
effectively gets transparentfor some rf wave with small
dumping of it by plasma electrons and the larger part of
dissipated energy goes into the energy of the propagating
wave.

The steady-state electron energy distribution function
is governed by following processes: the collisionless elec-
tron heating in the rf electric field, inelastic collisions
with neutrals, and redistribution of energy among plasma
electrons due to electron-electron collisions. We see in
Fig. 21, that the EEDF shape is similar to the two-
temperature EEDF [4], with the temperature of the tail
of the distribution being lower than the temperature of
the main body of the EEDF due to the onset of inelas-
tic collisional losses. The EEDF corresponding to the
electron-cyclotron resonance B = 10 G is enriched by
hot electrons due to the most effective heating and due
to the largest rate of damping at the electron-cyclotron
resonance.

The peak electron density (the density at the center
of the discharge) as a function of the external magnetic
field is plotted in Fig. 23 for different gas pressures and
deposited powers. It is seen, that the minima of the
electron density corresponds to the condition of electron-
cyclotron resonance and, consequently, corresponds to
maxima of the electron temperature (Fig. 22). For a
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FIG. 22: The electron temperature at the discharge center as
a function of the applied magnetic field for full self-consistent
discharge simulations for different deposited powers and gas
pressures . Case of one grounded electrode. The discharge
parameters are the same as in Fig. 19.
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FIG. 23: The electron plasma density at the discharge cen-
ter as a function of the applied magnetic field for full self-
consistent discharge simulations for different deposited pow-
ers and gas pressures . Case of one grounded electrode. The
discharge parameters are the same as in Fig. 19.

constant deposited power, such a behavior of the plasma
density as a function of electron temperature can be ex-
plained for one-dimensional geometry on the basis of the
generalized power balance Ptot ∼ neVBohm(Te)εion(Te),
where VBohm(Te) and εion(Te) are the Bohm velocity and
the ionization price, respectivelly, and both of them are
proportional to the electron temperature Te. From this
balance its obvious that the increase of the electron tem-
perature for constant deposited power, inevitable, leads

to the decrease of the peak electron plasma density.
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FIG. 24: The spatial profiles of the rf electric field along the
sheath current as the functions of the discharge length for fully
self-consistent discharge simulations for different applied mag-
netic fields. Case of one grounded electrode. The discharge
parameters: rf field frequency ω/2π = 29 MHz, discharge gap
L = 10.5 cm, discharge cross-section Sqross = 64π cm2, gas
pressure Pgas = 10 mTorr and deposited power Ptot = 200 W.

The spatial profiles of the induced rf electric field for
B = 0, 10, 20 G that correspond to no magnetic field,
ECR and cavity resonance, respectively, are plotted in
Fig. 24. The main features of the wave propagation in
the magnetized plasma, as decaying of the rf field due to
skin effect for ω > Ωc (evanescence) and the formation of
the standing wave for ω < Ωc (propagation) are explicitly
shown. The wave length of the propagating wave for
B = 20 G is 2π/k3 (corresponds to the harmonic mode
with k3 = 7π/2L).

Figures 21, 22, 23 and 24 depict the comparison of the
calculated plasma temperature, density, and rf electric
field profiles with the corresponding experimental values
of them from [8]. It is clearly seen, that the simple one-
dimensional ICP model of the present study, can describe
with a reasonable accuracy the main properties of the
real discharge. The apparent discrepancies, especially
for the plasma density, can be attributed to the higher
dimensionality of the actual discharge and are one of the
our concerns for future work.

In conclusion, enhanced electron heating and larger
plasma densities (for a given current in the coil) can be
achieved if low-pressure ICP discharges are operated un-
der the bounce resonance conditions. Self-consistent sim-
ulations of the discharge plasma surface resistance and
the electron energy distribution function demonstrate the
significance of explicit accounting for the non-uniform
plasma density profile and the correct form of ambipo-
lar electrostatic potential. Analysis of properties of a
weakly-magnetized inductively coupled discharges clearly
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reveals the phenomena of the electron-cyclotron and cav-
ity resonances. Enhanced plasma heating at the electron-
cyclotron resonance and the increase of deposited power
with the increase of the applied magnetic field are demon-
strated. The formalism developed in this work can be
applied to many different problems for the description of
wave-particle interaction in nonuniform plasmas.

VI. APPENDIX A

If the effective mean free path

λeff =
VT√

(ω − Ωc)2 + ν2
(61)

is small compared with the discharge gap L, then two an-
tennas act independently and the total deposited power
into plasma can be viewed as sum of two halves, which are
exactly the same as for one antenna at one plasma side
and the grounded electrode (E = 0) at another plasma
side. Comparison between two solutions is shown in Fig.
25. In Fig. 25 the plasma surface resistance is calculated
using Shaing’s formalism [13] for one grounded electrode
with plasma length L, and utilizing much simpler formal-
ism of the two driving antennas with plasma length 2L
for typical plasma parameters. Apparently, agreement
between two cases is very good, if not excellent.

For references purposes, the Shaing’s formalism [13] for
one grounded electrode for magnetized plasma of length
L is given by

El,r(x) =
4πiωI

c2L

∞∑
s=0

cos(ksx)
k2

s − ω2/c2 − iαKs[ ν±iω
VT

]
, (62)

Ks[a] =
∫ ∞

0

dy
e−y2

a2 + (ksy)2
[a +

(−1)sksy

sinh(aL/y)
], (63)

where ks = (2s + 1)π/(2L), α = 2/(πδ3
a′ ) and δ3

a′ =
VT c2/

√
πωω2

pe.

VII. APPENDIX B

The Boltzmann equation for the electron velocity dis-
tribution function reads

∂f1

∂t
+ vx

∂f1

∂x
− eESC(x)

m

∂f1

∂vx
− eEy(x, t)

m

∂(f0 + f1)
∂vy

−(64)

eEz(x, t)
m

∂(f0 + f1)
∂vz

− eBx(x, t)
m

{vz
∂f1

∂vy
− vy

∂f1

∂vz
}(65)

= St(f0 + f1),

where ESC(x) = −dφ(x)/dx is the stationary electric
field due to the space charge, Ey(x, t) and Ez(x, t) are
components of the nonstationary rf electric field, and
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FIG. 25: Surface resistance as a function of a normalized
electron-cyclotron frequency. Solid lines - correspond to
Shaing formalism for one grounded electrode with plasma
length L, dotted lines - correspond to the case of two driving
electrodes with plasma length 2L. Shown: rf driving frequency
(a) 29 MHz (b) 13.56 MHz. Electron temperature Te = 4 eV,
electron collision frequency ν = 1.2 107 s−1.

St(f) is the collision integral. Note, the rf magnetic field
drops out from Eq.65 as −→v × −−→Brf ∗ ∂f0(ε)/∂−→v ≡ 0. In
writing of the Eq.(65), the fact of constancy of f0(ε) along
the electron trajectory have been used:

vx
∂f0(ε)

∂x
− eEsc(x)

m

∂f0(ε)
∂vx

= vx
∂f0(ε)

∂x
|εx = 0. (66)

After applying the formalism [22] of the standard
quasilinear theory, Eq.(65) splits into two equations: a
linear one for f1

∂f1

∂t
+ vx

∂f1

∂x
− eESC(x)

m

∂f1

∂vx
− eEy(x, t)

m

∂f0

∂vy
−(67)

eEz(x, t)
m

∂f0

∂vz
− eBx(x, t)

m
{vz

∂f1

∂vy
− vy

∂f1

∂vz
} = St(f1),
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and a quasilinear one for f0

−eEy(x, t)
m

df1

dvy
+−eEz(x, t)

m

df1

dvz
= St(f0). (68)

Here the bar denotes space-time averaging over the phase
space available to electrons with total energy ε [29, 35?
].

Representing the rf electric field Ey(x, t) =
Ey0(x) exp(−iωt) and the anisotropic part of the EVDF
f1 = f10 exp(−iωt) , as harmonic functions (where ω
is the discharge frequency), using the Bhatnagar-Gross-
Krook (BGK) approximation, St(f1) = −νf1 [28], and
omitting the subscript 0 in the amplitudes, Eq. (68) can
be rewritten as

−iωf1 + vx
∂f1

∂x
|εx
− ev⊥

2
(E+e−iφ + E−eiφ)

df0

dε
+ (69)

Ωc
∂f1

∂φ
= −νf1,

where ν is the transport collision frequency, εx =
mv2

x/2 + ϕ(x) is the total energy along the x-axis and
ϕ(x) = −eφ(x) is the electron potential energy. The
left-hand and right-hand polirized RF fields, E+, and
E−, are defined by the relations: E+ = Ey + iEz and
E− = Ey − iEz. The electron cyclotron frequency is de-
fined as Ωc = eBx/m and the qyrophase angle φ is such
that vy = v⊥cosφ and vz = v⊥sinφ

After Fourier expansion of Eq.(70) with respect to the
gyrophase angle φ

f1 =
∑

q

fq
1 eiqφ = f+

1 eiφ + f−1 e−iφ + other. (70)

one can get the equations for q = ±1

−iωf+
1 +vx

∂f+
1

∂x
|εx−

ev⊥
2

E− df0

dε
+iΩcf

+
1 = −νf+

1 . (71)

and

−iωf−1 +vx
∂f−1
∂x

|εx−
ev⊥
2

E+ df0

dε
−iΩcf

−
1 = −νf−1 . (72)

Equations (71) and (72) can be effectively solved by
transformation to the variable angle of the bounce motion

θ(x, εx) =
πsgn(vx)

T (εx)

∫ x

x−

dx

|vx(εx)| , (73)

where T is half of the bounce period of the electron mo-
tion in the potential well ϕ(x)

T (εx) =
∫ x+

x−

dx

|vx(εx)| . (74)

Making use of the Fourier series

g(x, εx) =
∞∑

n=−∞
gn exp (inθ) (75)

gn =
1
2π

[∫ π

−π

g(θ, εx) exp (−inπθ) dθ

]
, (76)

Eq. (71) and Eq. (72) simplify to

(inΩb − iω + iΩc + ν)f+
1n = eE−

n

v⊥
2

df0

dε
(77)

and

(inΩb − iω − iΩc + ν)f−1n = eE+
n

v⊥
2

df0

dε
, (78)

where Ωb(εx) = π/T (εx) is the electron bounce fre-
quency in the potential well, and

E±
n (εx) =

1
π

[∫ π

0

E±(θ) cos (nθ) dθ

]
. (79)

Solving the above equations we arrive to the expres-
sions for the symmetrical part of f±1 as follows :

f±1s(x, εx) ≡ 1
2
(f±1 (vx > 0) + f±1 (vx < 0)) = (80)

−m
v⊥
2

V ±
⊥ (x, εx)

df0

dε
,

where

V ±
⊥ (x, εx) = − e

m

∞∑
n=−∞

E∓
n cos[nθ(x)]

inΩb − i(ω ∓ Ωc) + ν
. (81)

Knowing the symmetrical part of the anisotropic con-
tribution to the EVDF f1s = f+

1se
iφ + f−1se

−iφ, one can
average Eq. (68) according to

Term(x,v)(ε) =
∫ x+

x−
dxv(x, ε)Term[x, v(x, ε)],(82)

v(x, ε) =
√

2[ε− ϕ(x)]/m. (83)

and obtain the final equation Eq. (8) for the main part
f0 of the EVDF.
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