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Monte Carlo vs. Bulk Conductivity Modeling of RF
Breakdown of Helium

Carsten Thoma, Thomas P. Hughes, Nichelle L. Bruner, Thomas C. Genoni, Dale R. Welch, and Robert E. Clark

Abstract— A Monte Carlo collision model and a bulk conduc-
tivity model have been implemented in the finite-difference time-
domain code LSP to allow simulation of weakly-ionized plasmas.
The conductivity model uses only mesh quantities derived from
moments of the electron distribution function, while the Monte
Carlo model uses particles to provide a detailed representation
of the electric distribution function. The models are compared in
simulations of Helium gas breakdown in an applied RF electric
field. The conductivity model assumes that the free electron
velocity distribution equilibrates instantly with the applied field,
and transport coefficients for the model are obtained from steady-
state solutions of the Boltzmann equation. For Helium at STP
and a 1-GHz applied electric field, the conductivity model is
found to agree well with the Monte Carlo model and is orders of
magnitude faster. The Monte Carlo model, which treats scattering
and ionization of particles in a detailed way, captures transient
effects associated with finite electron heating and cooling times
which are absent from the conductivity model.

I. INTRODUCTION

UNDER normal conditions, a room-temperature gas such
as Helium is a poor electrical conductor. When a mi-

crowave field is applied, free electrons present in the gas are
accelerated by the field and undergo collisions with neutral
atoms. While these elastic electron-neutral collisions tend to
randomize the electron velocities, some electrons may gain
enough energy from the electric field to reach the neutral
gas ionization threshold [1]. If the field strength is large
enough, the ionization process will cause the density of free
electrons to increase exponentially resulting in “breakdown”,
where the gas conductivity becomes large enough to affect the
propagation of the microwaves. For the parameters of interest
here (see Table I), the gas remains predominantly neutral
for the duration of the microwave pulse. The exponential
growth in the free-electron density is typically limited by
reactions which are nonlinear in the electron density (such as
recombination) or by the microwave pulse length rather than
by complete ionization of the gas.

Insofar as the gas remains weakly ionized (ne � nn,
where ne and nn are the free electron and neutral densities,
respectively), the collisionality of the plasma species is dom-
inated by scattering from neutrals. When energy-dependent
inelastic processes are significant the particle distribution can
be quite non-Maxwellian. Electron-neutral and ion-neutral
collision frequencies are ∝ nn. Electron-electron, ion-ion, and
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electron-ion scattering (all with collision frequencies ν ∝ ne)
are neglected in this regime.

To simulate gas breakdown with the 3-D electromagnetic
particle-in-cell (PIC) code LSP [2], a Monte Carlo scattering
algorithm for weakly ionized plasmas has been implemented
which allows for an arbitrary number of elastic and inelastic
processes including ionization, excitation, and charge ex-
change. This combination of a particle-in-cell code with Monte
Carlo collisions is generally referred to as a PIC-MCC code
[3], [4], [5]. The particle-advance and field-solver algorithms
used in the LSP calculations in this paper are standard explicit
algorithms [6], [3].

The collision models in LSP were originally developed
for fully or nearly fully ionized plasmas in which the col-
lisionality is dominated by Coulomb scattering [7]. In this
case, the charged particle distributions are assumed to be
drifting Maxwellians. Inelastic processes such as ionization
and excitation are included but are treated, in effect, as weak
perturbations to Coulomb scattering, with energy losses dis-
tributed over all particle energies. In the weakly-ionized limit,
by contrast, Coulomb collisions are considered negligible,
and no assumption is made that the velocity distributions are
Maxwellian. Energy-dependent cross-section tables for elastic
and inelastic collisions between electrons and neutrals are
used. Recombination channels are not included at present.
Excited atoms are assumed to relax instantaneously and the
code does not track the electromagnetic energy released by
the relaxation of excited states. The collision times of electron
species scattering from neutrals must be resolved for accurate
results. The MCC algorithm is discussed in greater detail in
Sec. II-A.

An alternative to the MCC method is to develop a model for
the bulk gas conductivity. The authors recently developed such
a model for the Air Force Research Laboratory (AFRL) [8].
For the parameter regime in Table I, the details of the
particle dynamics can be replaced, to a good approximation,
by a conductivity model in which the necessary transport
coefficients depend only on E/nn (electric field amplitude
divided by neutral density, sometimes called the “reduced
electric field”). Pressure is often used as a convenient proxy
for nn, in which case a specific neutral temperature is implied
(300 K in this paper). The transport coefficients are obtained
from the Boltzmann code EEDF [9]. The theory behind the
EEDF and conductivity models is reviewed briefly in Secs. II-
B and II-C, respectively.

To illustrate the use of the MCC and conductivity models
in LSP, we present the results of two sets of simulations of a
weakly ionized Helium gas in the presence of electric fields. In
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TABLE I

PARAMETER REGIME OF GAS CONDUCTIVITY MODEL DEVELOPED FOR

AFRL. IN THIS PAPER, ONLY THE HELIUM MODEL IS DISCUSSED.

RF frequency 0–3 GHz

Gas pressure 0.5–1 atm

Electric field amplitude 10–50 kV/cm

Electric field/pressure (E/p) 10–100 kV/cm/atm

Pulse length 100 ns

Gases He, Air (0–4% H2O), Argon, SF6

Sec. III, we compare 0-D swarm calculations using the MCC
algorithm with EEDF for a constant applied electric field. The
MCC method is also compared to the conductivity model for
an oscillating applied field. In Sec. IV the MCC and conductiv-
ity models are compared further in a series of 1-D simulations
of Helium breakdown by an incident electromagnetic wave. It
is shown that the MCC model contains transient effects absent
in the conductivity model for GHz RF fields and gases at or
near atmostpheric pressure. This regime is of particular interest
in gas breakdown studies.

II. DESCRIPTION OF MODELS

A. Monte Carlo Collision Algorithm

The MCC algorithm is a method of treating interparticle
collisions, both elastic and inelastic, and can combined with
the particle-in-cell method, as shown in Ref. [5]. Consider the
scattering of plasma electrons by one or more neutral species,
which we assume to be at rest. In the particle-push phase of
the PIC cycle, each particle is tested to determine whether
or not it scatters. The total electron collision frequency, νT ,
is obtained by summing over all scattering channels and all
neutral species. To determine whether or not an electron
suffers a collision within a time step ∆t a random number R
is chosen from a uniform distribution in [0, 1], and the electron
is scattered if

R < νT ∆t. (1)

Once it is determined that the electron scatters, the specific
scattering channel is selected. The electron energy is first
reduced by the energy lost to inelastic collisions. The electron
is then scattered elastically. The electron velocity is adjusted to
account for energy transfer between the electron and scattering
species. Energy changes in the neutral species are neglected.
For each scattering channel the algorithm requires the energy-
dependent cross-section and inelastic energy loss (if any) as
input.

The preceeding algorithm applies to elastic and inelastic
processes in which no new electrons are created. In ionization
events, the incident primary electron energy is reduced by the
ionization energy, and then partitioned between the outgoing
primary and secondary electrons based on ionization cross-
section data given in Ref. [10]. Both electrons are then
scattered elastically and a new ion is created at the old neutral
position. The local neutral density is reduced accordingly.

In modeling ionization in the absence of a recombination
channel to act as an electron sink, it is possible for the number

of PIC macroparticles to become prohibitively large. In the
LSP implementation it is possible to control the number of
macroparticles by either setting a specific production rate or
by modifying the ionization probability. In each case, the
charge weight of the new ion and electron macroparticles is
adjusted so that the charge generated by ionization events
in a timestep is consistent with the physical ionization rate.
For example, the ionization probability for a species may
be divided by a factor greater than one. This will result in
fewer secondary macroparticles being produced. The charge
weight per particle must be multiplied by the same factor, so
the secondary particles will be more heavily weighted than
the primaries. Subsequent generations of macroparticles will
have even larger weights. Because of this effect, a strategy
of aggressively keeping down the particle count can result in
particle statistics which are skewed by the presence of a small
number of highly weighted macroparticles.

LSP also has a particle collapse algorithm in which particles
in the same cell with similar velocity are collapsed into a
single particle. By carefully adjusting the particle-production
and particle-collapse parameters, it is possible to keep the
particle number manageable while still getting good statistics.

The LSP implementation of the MCC algorithm has been
benchmarked against the plasma reactor code XPDP1 [11].
For the capacitively coupled plasma argon reactor example
available from Ref. [[11]], the steady-state electron densities
agreed to within a few percent. While the pressure in this
test is much lower (50 mTorr) than the pressure regime in the
present study, the plasmas are weakly ionized in both cases,
and electron-neutral collisions are a key feature of the physics.

B. Boltzmann Solver

An ab initio treatment of a weakly-ionized gas requires
knowledge of the phase-space distribution of free electrons.
This information is contained in the electron distribution
function f(x,v, t), the number density in a volume element
centered on (x,v) at time t, which can be obtained from the
Boltzmann equation

∂f

∂t
+ v · ∂f

∂r
+

F
m

· ∂f

∂v
=
(

∂f

∂t

)
c

(2)

where F is the external force and (∂f/∂t)c is the change
in f due to collisions, including elastic scattering as well as
inelastic processes such as ionization.

At high RF frequencies, the movement of ions in the
gas is insignificant compared to that of electrons. Therefore,
ion distributions are typically ignored and all the electrical
properties of the gas are determined by the free electrons. A
self-similar solution to Eq. 2 is sought in which the density
may change with time but the velocity distribution is fixed.

f(v, t) =

(
m

3/2
e

4
√

2π

)
ne(t)g(v). (3)

As shown in [12], for a system with a large electron-neutral
elastic collision frequency in the presence of an electric field
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one can represent the velocity dependence of f to a good
approximation by

g(v) � g0(u) + g1(u) cos θ, (4)

where θ is the polar angle between the electron velocity v
and the electric field, u is the electron energy mev

2/2, g0

is the isotropic part of the distribution, and g1 describes the
directed motion of the electrons due to the applied electric
field. Recalling that

ne =
∫

dvf(v),

integration of Eq. 3 yields the normalization condition∫ ∞

0

√
ug0(u)du = 1, (5)

The quantity
√

ug0(u) is referred to as the isotropic electron
energy distribution function, or ‘eedf’. The Boltzmann equa-
tion can then be written in the following form [12].(

1
ne

dne(t)
dt

)√
ug0(u) −

2
3

e2E2

me

d

du

[
u3/2νm

ν2
m + ω2

dg0

du

]
−

2
me

mn

d

du

[
u3/2νm

(
g0 + Tn

dg0

du

)]
= Lug0(u), (6)

where mn, Tn are the neutral mass and temperature, respec-
tively. The rms (peak) amplitude for the applied alternating
(DC) electric field is E, ω/2π is the frequency, and νm is
the electron-neutral momentum transfer frequency. The linear
operator Lu contains the scattering terms including ionization
and attachment. The second term on the left hand side of Eq. 6
represents electron acceleration by the field, and the third term
energy transfer from the electron to the neutrals (in the limit
that me/mn � 1). As written, Eq. 6 assumes that only one
neutral species is present, but can be easily extended to include
mixtures of gases. Integrating Eq. 6 over electron energy u
yields the rate equation

1
ne

dne(t)
dt

=
∫ ∞

0

Lug0(u)du = νi − νa, (7)

where νi and νa are the ionization and attachment rates.
The code EEDF solves Eqs. 6 and 7 iteratively to obtain

the isotropic distibution function g0(u) and ionization and
attachment rates νi and νa. Other transport coefficients, such as
electron mobility, can be calculated from appropriate integrals
of the distribution function. As an internal accuracy check,
EEDF calculates the power balance for each run. The electric
field power input is compared to the rate of change of electron
energy plus power dissipative collision processes. Typically,
the power is found to balance to within 1 or 2%. The form of
Eqs. 6 and 7 assumes that all terms in the original Boltzmann
equation are linear in f , and hence ne. For this reason
nonlinear terms such as recombination and electron-electron
scattering (∝ n2

e) are not included self consistently.

C. Conductivity Model

As seen in Sec. II-A, one can model gas breakdown at a
detailed level using a PIC-MCC algorithm. One has to use a
timestep small enough to resolve electron-neutral collisions,
and deal with exponentially increasing particle numbers. We
can avoid these difficulties if we can calculate the gas conduc-
tivity using rate coefficients and mobilities. This is possible if,
in the highly collisional regime of interest, the free electron
distribution function quickly reaches a state given by Eq. 3,
where the velocity distribution does not change. For a case
where only ionization and attachment are considered, one
obtains the simple rate equation for the electron density given
in Eq. 7. EEDF gives values for the ionization and attachment
rates νi and νa in this equation, and also computes a mobility
coefficient µ = vd/E, where vd is the average electron drift
velocity. Integrating Eq. 7 to obtain ne then provides the
conductivity

σ = neeµ (8)

which is needed to calculate the Ohmic electron current, Je =
σE in the equation used to advance the electric field:

∂E
∂t

= c∇× B − 4πJe (9)

The usefulness of this scheme depends on whether the elec-
tron distribution function can be parameterized by a small
number of variables for a particular gas. The model that we
have developed assumes that just one parameter is sufficient,
E/nn, where E is the instantaneous electric field value. This
treatment assumes that the RF period is much longer than
the collision time and that spatial diffusion is negligible.
Also, nonlinear electron processes such as e − e collisions
and recombination are assumed to be negligible. If this is
not the case, additional free parameters are introduced. See
Ref. [13] for an example of a conductivity model which
includes recombination.

We have implemented the rate-equation model in the LSP

code using a combination of lookup tables and analytic expres-
sions. For several gases (He, Ar, SF6, air with 0-4% water
vapor content by volume), lookup tables for the ionization
rate, attachment rates, electron temperature, and momentum
transfer frequency as functions of E/nn were generated using
EEDF [8]. Recombination and detachment rates are provided
by analytic expressions, when applicable. Spatial diffusion
is not at present treated. At each time-step in a simulation,
|E/nn| is calculated on each cell node and is used to retrieve
interpolated table values of the gas coefficients. The fields
are then advanced with the Ohmic plasma electron current
included.

III. COMPARISON OF MCC AND CONDUCTIVITY MODELS

IN 0-D

A. Breakdown in constant applied field

LSP with Monte Carlo collisions was used to perform
a PIC “swarm” calculation. The simulation was set up on
a grid consisting of just one cell. Particles were confined
to the cell by doing only a momentum push: the position
update was skipped for all particles. This also kept the density
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Fig. 1. Cross sections for electron collisions with Helium atoms as a function
of electron kinetic energy (in the Helium scattering frame). The ionization
threshold is 24.6 eV, and there are seven separate excitation channels with
thresholds from 19.8–24 eV.

uniform. There was a constant applied electric field, and the
electromagnetic field equations were not solved. In contrast to
EEDF, LSP is a time-domain code, so the simulation has to
be set up as an initial value problem and run until asymptotic
behavior is observed. A seed electron (and ion) density of
109 cm−3 with a temperature of 300 K (0.026 eV) is used to
initialize the simulation.

Figure 1 displays the relevant cross-sections for electron-
He scattering including elastic scattering, ionization, and ex-
citation as functions of energy [14], [15]. Since Helium is a
noble gas, it does not have a significant electron loss channel
other than recombination. Both LSP and EEDF used the same
cross-section data. Seven excitation channels are included with
threshold energies ranging from 19.8 to 24.0 eV. The cross-
sections for these channels have been summed in the figure to
show the effective excitation cross-section. The ionization en-
ergy is 24.6 eV. Since EEDF assumes that the new electron is
created with no energy, the MCC algorithm was modified to do
the same. Ion-neutral collisions (elastic scattering and charge-
exchange) were neglected in both codes for this comparison.
From Fig. 1, the maximum total cross-section for electron-He
collisions is ∼ 10−15 cm2. The collision frequency is given
by ν = nnσv, where v is the electron speed in the neutral
rest frame. This gives a collision time 1/ν � 1/2 ps for 4 eV
electrons. To resolve the collision time a simulation time step
of ∼ 1/30 ps was used.

A conductivity-model simulation was set up in similar
manner. In this case however no particles were used and
the cell was treated as conducting medium as described in
Sec. II-C. The time step for this method just has to resolve
the exponential time variation of the electron density.

Results from the two codes for an applied field of 10 kV/cm
are shown in Fig. 2. The plots labelled (a) and (b) show the
electron temperature Te and drift velocity vd, respectively,
as functions of time. For the Monte Carlo method, denoted
LSP-MCC in the figure, the drift velocity reaches its steady-
state value in about a collision time. Note that at early
time, t < 1/ν, the electrons are accelerated ballistically by
the field resulting in a large transient drift velocity before
collisions become significant. The temperature levels off to

a constant value close to the EEDF value of 5.71 eV in about
0.1 ns (several hundred collision times). For the conductivity
model (LSP-σ in Fig. 2), the electron temperature is initialized
to Te = 0.026 eV. Thereafter, the temperature is retrieved
from the conductivity model lookup table. Similar behavior is
observed for the electron drift velocity. Since Te and vd are
functions only of the (constant) E/nn value in the conductivity
model, it is not possible to capture the initial transient behavior
seen in the MCC model.

Figure 2(c) shows a histogram of electron energies at t =
0.4 ns obtained from the LSP-MCC simulation, compared to
the EEDF distribution function. For comparison a Maxwell-
Boltzmann (M-B) distribution at 5.71 eV is shown to illustrate
how the ionization and excitation channels have depleted the
tail of the electron distribution. Figure 2(d) shows the electron
number density ne(t)/ne(0) as a function of time for the MCC
and conductivity model simulations. The MCC simulation is
run without modifying the ionization probability or using the
particle collapse algorithm. There is again a transient period
of about 0.1 ns in which the MCC model exhibits negligible
ionization. This corresponds to the time required to heat a
significant number of electrons up to the ionization threshold.
After this transient time, the slope of the curve approaches a
constant value of 0.60 ns−1 which is in good agreement with
the ionization rate of 0.59 ns−1 given by EEDF, as one would
expect. Again for the conductivity model the transient behavior
is absent, and the electron density increases exponentially
without a finite heating time. The slope for the conductivity
model (0.63 ns−1) is slightly higher for the MCC model. We
attribute this to linear interpolation error since the tabulated
ionization rates obtained from EEDF varies rapidly in the
region where E/p � 10 kV/cm/atm.

B. Electron cooling timescale

When the applied electric field is turned off, the electron
density levels off. However, the electrons continue to scatter
off and transfer energy to the background neutrals. Ultimately
the hot electrons cool to the neutral temperature. The time-
scale for equilibration can be estimated as follows. From fluid
theory, the temperature evolution is represented by a heat
exchange term in the energy equation

dTe

dt
� −me

mn
ν(Te − Tn), (10)

which gives an equilibration time τeq � mn/meν, i.e., several
thousand collisions times for electron-Helium collisions. For
electrons with temperatures of a few eV and Helium at
STP, τeq is of order several ns. Figure 3 shows the electron
temperature as a function of time for the MCC simulation.
The electrons are seen to cool significantly over a few ns
after the electric field is shut off at t = 0.5 ns. (Note the
much faster equilibration of the electron temperature when
the applied field is turned on; this process does not depend on
electron-neutral energy exchange.) Recall that in the σ-model
the electron temperature is only a function of the instantaneous
E/nn value. The transient equilibration effects in Figure 3 are
therefore not captured in that model.
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Fig. 2. Results of LSP MCC swarm simulation of He at STP in a constant electric field of 10 kV/cm. Seed electrons are introduced with a constant density
of 109 cm−3 and initial temperature of 300 K (0.026 eV). The results are compared with results from the Boltzmann code EEDF and the LSP conductivity
model. The plots shown are (a) electron temperature as a function of time, (b) electron drift velocity as a function of time, (c) steady-state isotropic eedf√
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Fig. 3. Results of LSP MCC swarm simulation of He at STP. Seed electrons
are introduced with a constant density of 109 cm−3 and initial temperature
of 300 K (0.026 eV). The simulation is run with a constant electric field
of 10 kV/cm up to t = 0.5 ns. The electric field is then shut off. Electron
temperature Te is plotted as a function of time. The electron temperature to
seen to equilibrate on a timescale of several ns with the cold background
neutrals.

C. Breakdown in oscillating applied field

We now repeat the simulations of He at STP but give the
applied electric field a frequency of 1 GHz. In this case the
conductivity model must resolve the RF frequency. A time
step of 3 ps is chosen for this method. The time step for the
MCC method remains 1/30 ps. The results are displayed in

Fig. 4. In plot (a) the electron temperature is again shown
as a function of time. As discussed above, the conductivity
model calculates the electron temperature as a function of
the instantaneous E/p value, so Te drops to near zero when
the electric field goes through a null. The MCC model, on
the other hand, correctly captures the transient heating and
cooling behavior as the field oscillates. One could improve
the conductivity-model calculation of Te by using Eq. 10 to
put a lower limit on the rate of decrease in Te. Figure 4(b)
shows the early-time ballistic acceleration of the electrons in
the MCC model until, after a few collision times, both the
MCC and conductivity models follow the sinusoidal variation
of the field. In Fig. 4(c) a histogram of the electron energy
distribution function is shown at time t = 1.835 ns, when the
electron temperature is at the cycle-averaged value of ∼ 5 eV.
This particle histogram comes from the MCC method: the
conductivity model does not carry any information on the
shape of the distribution function.

Figure 4(d) shows the effective electron ionization rate as a
function of time as calculated by the MCC and conductivity
models. Both models show the same qualitative behavior.
Ionization increases noticeably twice per cycle when the
electric field is relatively large and heats the electrons, but
subsides when the field value is small and the gas cools. Note
that for the LSP-σ case, the drift velocity vd in Fig. 4(b) is
directly proportional to the electric field. Comparing plots 4(b)
and 4(d) shows that, for the conductivity model, the regions
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Fig. 4. Results of LSP swarm simulation of He at STP in a 1 GHz electric field with a peak value of 10 kV/cm. Seed electrons are initialized with a constant
density of 109 cm−3 and initial temperature of 300 K (0.026 eV). The results of the Monte Carlo collision model and the conductivity model are compared.
The plots shown are (a) electron temperature as a function of time, (b) electron drift velocity as a function of time, (c) isotropic eedf at t = 1.835 ns, and
(d) electron number density as a function of time.

of maximum ionization rate correspond exactly with the
regions of maximum field amplitude. The LSP-MCC curve
exhibits the same general behavior but is different in two
respects. First, there is a temporal lag between the MCC
and conductivity models in the ionization rate. The MCC
model also has a slightly lower cycle-averaged ionization rate
(the slope in Fig. 4(d) averaged over the RF frequency).
Both of these effects are due to the finite time required for
heating and cooling the electrons in the MCC model. The
MCC ionization rate lags the electric field initially since it
captures the finite time required to heat the electrons up to the
ionization threshold. Moreover, this lag occurs every time the
electric field goes through a null. Since the lag time is of the
order of hundreds of collision times, a small but appreciable
fraction of the RF period, the MCC slope is lower on average
than the conductivity model. Unless the heating and cooling
times are much less than the RF period, the assumption of an
instantaneous equilibration between the field and the electron
distribution will yield an artificially larger average ionization
rate in the conductivity model.

IV. COMPARISON OF MCC AND CONDUCTIVITY MODELS

FOR 1-D HE BREAKDOWN

In this section we describe the results of 1-D simulations
for He in an oscillating field. We again compare the results for
LSP with the MCC algorithm and the conductivity model. In
contrast to the 0-D simulation in which the electric field was

specified, the electromagnetic field equations are now solved
as well, that is, the weakly-ionized plasma is allowed to affect
the total field. The field equations are solved using the standard
explicit leap-frog (Yee) algorithm (see, e.g., Reg. [3]. As the
wave propagates through the gas, seed electrons heated by the
field can ionize He atoms and increase the plasma density.
If the plasma density reaches a large enough value, the gas
will ultimately become opaque to the incident wave, i.e., the
incident wave will be reflected at the vacuum-slab interface.
A collisionless plasma becomes opaque for plasma densities
greater than the critical density

nc =
ω2me

4πe2
. (11)

However, as shown in the Appendix, for a highly collisional
plasma significant transmission of the wave energy through
the gas may occur for densities much larger than nc. One
can define gas breakdown as having occurred when the wave
energy transmitted through the slab is significantly diminished
by the presence of the plasma.

The simulations for both methods are set up in 1-D cartesian
coordinates from 0 to 15 cm. The region from 5 to 10 cm
is filled with a uniform 5 cm slab of He at STP with an
initial free electron density ne(0) = 1010 cm−3. A uniform
grid of 150 cells is used (∆x = 0.1 cm). Wave-transmitting
boundary conditions are applied at the ends of the simulation
space, and a forward-propagating plane electromagnetic wave,
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with a 10 ns linear ramp in amplitude and a frequency of
1 GHz, is launched at x = 0. Simulations are performed
with peak incident field amplitudes of 10 and 50 kV/cm. The
time steps used are the same as in the RF swarm calculation,
namely, ∆t = 1/30 ps for the MCC method, and 3 ps for the
conductivity model.

In the conductivity-model simulation, the grid cells between
5 and 10 cm are designated as a conductive medium, and
all gas quantities are advanced on the numerical grid. In
the MCC method, macroparticle electrons, ions, and neutrals
are initialized in the simulation space. In contrast to the
conductivity model, in which the gas slab is fixed rigidly to the
grid, the macroparticles may drift out of their initial cells. For
this reason the neutral macroparticles were initialized over a
wider range (from 3 to 12 cm) than the seed electrons and ions.
These extra neutrals were needed to keep thermal electrons at
the edges of the slab from moving into adjacent vacuum cells
where they would be ballistically accelerated by the vacuum
field. Such an artificial sheath effect results in anomalously
large ionization rates at the front slab edge.

In the MCC swarm calculations, which were performed on
a one-cell grid, the electron and ion macroparticle number
were allowed to grow exponentially during the simulation.
However, for even a relatively small 1-D simulation with
150 cells, it becomes necessary to prevent the macroparticle
number from becoming too large. For this reason the “particle
collapse” algorithm in LSP is used. In this algorithm, pairs of
particles of the same species in a cell with similar velocities
are combined into a single particle. The weight of the new
particle is given by the sum of the weights of the collapsed
pair. In the simulations below, the algorithm was successful in
maintaining a reasonably constant number of macroparticles
while the density increased exponentially.

In Fig. 5 the transmitted electric field is plotted as a function
of time for the 10 kV/cm incident amplitude case. From the
plot labelled (a) it is seen that, after the 10 ns linear ramp,
the transmitted field reaches its maximum incident amplitude.
This remains the case until about 20 ns when the transmitted
amplitude begins to diminish gradually due to the breakdown
of the He gas. The figure shows results for both the MCC and
conductivity models, and the results are seen to be in good
agreement. Figure 5(b) shows the transmitted field between 40
and 50 ns. The conductivity model has a slightly lower field
amplitude overall. Figure 6 shows the transmitted field results
in the case when the maximum incident field is 50 kV/cm. In
this case the gas begins to break down much more quickly.
The transmitted field reaches a maximum amplitude of only
about 23 kV/cm at about 5 ns, before the 10 ns linear ramp
of the incident wave has finished. As the simulation continues
the transmitted amplitude continues to drop to a value of only
a few kV/cm at t = 50 ns, similar to the case with a 10 kV/cm
incident wave. In Fig. 6(a) the agreement between the MCC
and conductivity models is seen to be good in general. In
Fig. 6(b) the region from 0 to 10 ns is expanded. Between
about 5 and 8 ns (the initial phase of the breakdown) the
conductivity model predicts a smaller transmitted wave than
the MCC model in this time range.

In Figs. 7 and 8 the electron density profiles are plotted at
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Fig. 5. History plot of transmitted electric field strength at outlet boundary
(x = 15 cm) for a 1 GHz field incident on a 5-cm thick slab of He at STP.
The peak incident electric field is 10 kV/cm. Results are shown for the MCC
and conductivity models in LSP. History plots of (a) entire 50-ns simulation
time, (b) closeup of range from 40-50 ns.
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Fig. 6. History plot of transmitted electric field strength at outlet boundary
(x = 15 cm) for a 1 GHz field incident on a 5-cm thick slab of He at STP.
The peak incident electric field is 50 kV/cm. Results are shown for the MCC
and conductivity models in LSP. History plots of (a) entire 50-ns simulation
time, (b) closeup of range from 0-10 ns.
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Fig. 7. Electron density profiles for a 1 GHz field incident on a 5-cm
thick slab of He at STP at different times. The peak incident electric field is
10 kV/cm. Results are shown for the MCC and conductivity models in LSP.
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Fig. 8. Electron density profiles for a 1 GHz field incident on a 5-cm
thick slab of He at STP at different times. The peak incident electric field is
50 kV/cm. Results are shown for the MCC and conductivity models in LSP.

different times for both the 10 kV/cm and 50 kV/cm cases.
Recall that for the MCC model the electron density is a cell
quantity calculated at the nodes by summing the weights of
macroparticles in adjacent cells, so the density profile plot
has cell-sized statistical fluctuations due to the finite particle
number per cell. In the conductivity model the electron density
results from solving a rate equation and a smoother curve
is obtained. For the 10 kV/cm case, the MCC model and
conductivity model are seen to be in good agreement at all
times, though the MCC model density tends to be slightly
less than the conductivity model results. This is consistent with
the slightly lower field amplitude for the conductivity model
noted in Fig 5. This temporal lag in density level for the MCC
model is due to the transient effects seen in Fig. 4. The effect
is even more noticeable in the 50 kV/cm case at early time.
Figure 8 shows that the conductivity model clearly has a higher
density at 6 ns than the MCC model. This is consistent with
Fig. 6, which shows a noticeably smaller transmitted field for
the conductivity model near this time. At later times, when the
field values and ionization rates in the slab have diminished
greatly, the difference in density between the methods reduces
as well.

The MCC model has a nonzero electron density in a range
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Fig. 9. Electron density profiles for a 1 GHz field incident on a 5 cm thick
slab of He at STP at t = 28 ns. The peak incident electric field is 50 kV/cm.
Results are shown for the MCC model in LSP with cell sizes of 0.1 and
0.05 cm. The total particle number is also doubled for the smaller cell size.

which extends one cell outside the initial slab range of 5-
10 cm. This is due to ambipolar diffusion of the plasma out
of the slab. Mobile electrons heated by the field can drift out
of the slab. The ions are dragged along to maintain a quasi-
neutral plasma. The macroparticles drift only about 1/10 of
a cell during the simulation time of 50 ns. Since neither the
Debye length nor the collisional mean free path are resolved on
the spatial grid in the MCC simulation, it is not clear whether
the round peak, a few cells wide, seen in Fig 8 at the left
slab edge is physical. A simulation with double the spatial
resolution and particle number produces similar features at
the slab edges, as seen in Fig. 9.

In Fig. 10 the electric field strength and electron temperature
are plotted as functions of x at t = 50 ns for the 10 kV/cm
case. The two methods are again in good agreement at this
field amplitude. Note that the electric field is slightly higher,
on average, in the plasma region (5 cm ≤ x ≤ 10 cm) for the
MCC method. This is consistent with the observations made
above. The differences are again more striking in the 50 kV/cm
case. Figure 11 shows the electric field and temperature at
t = 6 ns and t = 24 ns. At 6 ns the field for the MCC
method is much lower than that for the conductivity model,
but the temperature profiles are in fairly good agreement. At
24 ns, however, the electric field data are in good agreement,
while the temperature profiles are quite different. This dis-
crepancy is again due to the lack of transient behavior in
the conductivity model. The equilibrium electron temperature
in the conductivity model increases monotonically with field
value. At later times, when the field diminishes in the slab,
the electron temperature falls instantaneously without the finite
cooling time required for the electrons to equilibrate with the
background neutrals (see Fig. 3). Thermal conductivity is also
neglected in the conductivity model, but a simple estimate
shows that this process occurs on time scales too long to be
significant in this case. Although the conductivity model can
give incorrect results for electron temperatures in RF fields, it
does a good job in this case of predicting the electric fields
and plasma densities.

The conductivity model can use a much larger time step and
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Fig. 10. Snapshots of (a) electric field strength and (b) electron temperature
profiles for a 1 GHz field incident on a 5-cm thick slab of He at STP at
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Fig. 11. Snapshots of (a) electric field strength and (b) electron temperature
profiles for a 1 GHz field incident on a 5-cm thick slab of He at STP at
t = 6 ns and t = 24 ns. The peak incident electric field is 50 kV/cm. Results
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does not bear the computational expense of pushing a large
number of macroparticles. The 1-D MCC model simulations,
which ran for 50 RF cycles, had run times of about 12 hours
on a single processor with 2.5 GHz clockspeed and 1 GB
of RAM. By contrast, on the same machine, the conductivity
model simulations ran for 1000 RF cycles in a few minutes.

V. CONCLUSIONS

We have described the MCC and conductivity models imple-
mented in the 3-D electromagnetic code LSP, and compared
them in detail for calculations of microwave breakdown of
helium gas. The MCC model has been demonstrated to agree
well with a Boltzmann velocity-space code for 0-D swarm
calculations. The conductivity model agrees well with the
MCC model for 0-D and 1-D tests with highly collisional
helium gas. Transient effects due to finite electron heating
and cooling timescales are relatively small in the regime
examined. Thus the conductivity model, which is much faster
than the MCC model, can be used to calculate the electric field
amplitude and the electron density with reasonable accuracy.

The conductivity model is expected to be valid as long as the
electron transport is dominated by electron-neutral collisions,
and the period of the RF field is long compared to the electron-
neutral collision time. Coulomb collisions become important
when the ratio of electron density to neutral density exceeds
≈ 10−3, which does not occur in the cases examined here.
Conductivity models have been developed by the authors
for gases with more complex chemistries: SF6 and air with
different levels of water vapor [8]. We plan to compare these
models to MCC calculations in a future publication.
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APPENDIX

CRITICAL DENSITY FOR COLLISIONAL VS.
COLLISIONLESS PLASMAS

For a given RF frequency ω, the wave number of a plane
wave propagating in a plasma is given by:

k =
ω

c

√
ε =

ω

c

(
1 − ω2

p

ω(ω + iνm)

)1/2

(12)

where ωp is the electron plasma frequency given by√
4πn2

e/mee2, and νm is the electron-neutral momentum
transfer frequency. In a collisionless plasma (νm = 0), there
is an abrupt transition between propagating and evanescent
modes at the “critical density”, nc, given by Eq. 11. Reaching
this density is sometimes used, incorrectly, as the condition
for breakdown in a gas such as air [12]. As an example,
consider the parameters in Table II. A plot of the wavenumber
normalized to the free space wavenumber kfs is shown in
Fig. 12. For a collisionless plasma (subscript “nc” in the
figure), there is an abrupt change from a purely real to a purely
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TABLE II

SAMPLE PARAMETERS FOR COMPARING COLLISIONAL AND

COLLISIONLESS PROPAGATION.

RF frequency (ω/2π) 1 GHz

Free space wavelength (λfs ) 30 cm

Free space wavenumber (kfs ) 0.21 cm−1

momentum transfer frequency (νm) 1012 s−1
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Fig. 12. Plot of real and imaginary parts of propagation wavenumber
versus plasma density for a non-collisional plasma (subscript “nc”) and for a
collisional plasma (subscript “c”) with the parameters in Table II.

imaginary wavenumber at the critical density nc = 1.24 ×
1010 cm−3. However, for a collisional plasma (subscript “c”)
with a momentum transfer frequency typical of atmospheric-
pressure air (1012 s−1), there is no qualitative change in the
behavior at nc. Instead, the wavenumber is always complex,
with the imaginary part increasing with plasma density. While
there is no sharp change in the wavenumber at a particular
density, one can define a density ncoll at which the real and
imaginary parts become comparable. For ω � νm this occurs
when ω2

p ≈ ωνm, or

ncoll = nc
νm

ω
(13)

For the parameters in Table II, this gives a density two orders
of magnitude larger than the collisionless critical density.

REFERENCES

[1] Y. B. Zel’dovich and Y. P. Raizer, Pysics of Shock Waves and High-
Temperature Hydrodynamic Phenomena. Mineola, NY: Dover Publi-
cations, 2002, pp. 341–343.

[2] LSP is a software product of ATK Mission Research (http://www.
mrcabq.com).

[3] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation. New York: McGraw-Hill, 1985.

[4] M. Surendra, D. B. Graves, and I. J. Morey, “Electron heating in low-
pressure RF glow discharges,” Appl. Phys. Lett., vol. 56, no. 11, p. 1022,
1990.

[5] C. Birdsall, “Particle–in–cell charged–particle simulations, plus Monte-
Carlo collisions with neutral atoms, PIC–MCC,” IEEE Trans. Plasma
Sci., vol. 19, no. 2, p. 65, 1991.

[6] R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles. New York: McGraw-Hill, 1981.

[7] D. R. Welch, “Hybrid implicit algorithms for IPROP and LSP,” Mission
Research Corporation, Tech. Rep. MRC/ABQ-R-1942, 1999.

[8] N. Bruner, T. C. Genoni, T. P. Hughes, C. Thoma, and D. R. Welch, “Nu-
merical model for microwave-induced gas breakdown,” iCOPS 2004,
paper 5P12 (http://ewh.ieee.org/cmte/icops/ICOPSprogram.pdf).

[9] A. Napartovich, “EEDF user’s guide,” (unpublished).
[10] C. B. Opal, W. K. Peterson, and E. C. Beaty, “Measurements of

secondary-electron spectra produced by electron-impact ionization of
a number of simple gases,” J. Chem. Phys., vol. 55, p. 4100, 1971.

[11] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, “Simul-
taneous potential and circuit solution for 1D bounded plasma particle
simulation codes,” J. Comp. Phys., vol. 104, p. 321, 1993, several codes
are available for download at (http://ptsg.eecs.berkeley.edu).

[12] A. D. MacDonald, Microwave Breakdown in Gases. New York: Wiley,
1966.

[13] D. A. McArthur and J. W. Poukey, “Plasma created in a neutral gas by a
relativistic electron beam,” Phys. Fluids, vol. 16, no. 11, p. 1996, 1973.

[14] D. Rapp and P. Englander-Golden, “Total cross sections for ionization
and attachment in gases by electron impact. I. Positive ionization.” J.
Chem. Phys., vol. 43, p. 1464, 1965.

[15] M. Hayashi, “Recommended values of transport cross sections for elastic
collision and total collision cross section of electrons in atomic and
molecular gases,” Institute of Plasma Physics, Nagoya University, Tech.
Rep. IPPJ-AM-19, Nov. 1981.

Carsten Thoma received the B. A. degree in
physics from the University of Michigan-Flint, Flint,
MI, in 1991, and the Ph. D degree in physics from
the University of Connecticut, Storrs, CT, in 1997.
He spent a number of years working in industry on
the theory and modeling of surface acoustic wave
devices. From 2001 to 2005 he was at ATK Mis-
sion Research, Albuquerque, NM. He is currently a
physicist at Voss Scientific, Albuquerque, NM. His
research interests include numerical simulation of
plasmas and charged particle beams.

Thomas Hughes received the B. Sc. in physics
and mathematics from the New University of Ulster,
Coleraine, Northern Ireland, in 1976, and the Ph. D
degree in plasma physics from Cornell University,
Ithaca, NY, in 1981. From 1980 to 2005 he worked
at ATK Mission Research, Albuquerque, NM, where
he was group leader of the Computational Physics
Applications Group. He is currently at Voss Sci-
entific, Albuquerque, NM. He has worked on a
variety of problems relating to the acceleration and
propagation of high-current electron beams, using

both numerical and analytic techniques.

Nichelle Bruner received the B. S. degree in
engineering physics from the United States Mili-
tary Academy, West Point, NY, in 1989, and the
Ph. D degree in physics from the University of
New Mexico, Albuquerque, NM, in 1999. She was
a member of experimental collaborations in high en-
ergy physics first at the Fermi National Accelerator
Laboratory, then at Brookhaven National Laboratory.
From 2003 to 2005, she worked in the Computa-
tional Physics Applications Group of ATK Mission
Research, Albuquerque, NM. She is currently a

physicist at Voss Scientific, Albuquerque, NM. One of her main areas of
research has been the physics of relativistic electron beam generation and
transport in pulsed-power x-ray radiography sources.



IEEE TRANSACTIONS ON PLASMA SCIENCE 11

Thomas Genoni received the B. S. degree in en-
gineering from the United States Military Academy,
West Point, NY in 1965, and the Ph. D degree in
physics from the Rensselaer PolyTechnic Institute,
Troy, NY in 1976. From 1986 to 2005 he was
at ATK Mission Research, Albuquerque, NM, and
participated in theoretical studies of neutral particle
beam (NPB) applications, excimer laser kinetics,
high power microwave sources, and electron beam
transport in high energy accelerators. He is currently
a senior scientist at Voss Scientific, Albuquerque,

NM.

Dale Welch received the B. S. degree in nuclear
engineering from Northwestern University, Chicago,
IL, in 1980, and the M. S. and Ph. D degrees
in nuclear engineering from the University of Illi-
nois, Urbana-Champaign, IL in 1982 and 1985,
respectively. From 1985 to 2005 he was with the
Computational Physics Applications Group in the
Plasma Sciences Division at ATK Mission Research,
Albuquerque, NM. He is currently at Voss Scientific,
Albuquerque, NM. His has investigated beam trans-
port, laser plasma interaction and plasma modeling

in pulsed-power machines. He has made several contributions to the beam
transport field involving advances in the simulation of high density plasma,
laser plasma interaction, electron beam propagation and ion beam transport
in a fusion chamber.

Robert Clark is a senior programmer with the
Computational Physics Applications Group at ATK
Mission Research, Albuquerque, NM. He has over
thirty years experience as a scientific computer pro-
grammer. His expertise lies in the areas of computer
simulations and diagnostic techniques.


