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FIG. 2. Output radiation energy € as a function of the firing
nonsynchronism A t of the thyratrons for a laser with the excita-
tion scheme of Fig. la (solid line) and of Fig. 1b (dashed line).

pressure of 2.3:-10° Pa is 350 J, and the average
power at a frequency of 100 Hz is 30 W.

When the laser was operated according to the
scheme of Fig. la the radiated energy was 4060 mJ
and the average power at 100 Hz was 33 W.

the excitation scheme becomes desynchronized be-
cause of the difference in the starting losses in the
thyratrons. In operation at a fixed frequency, how-

It should .
be noted that when the pulse repetition rate is changed “

ever, the processes in the circuits remain steady
for a long time.

In clusion we note that the two-circuit method
of excitation may be used not only for increasing
the pump: energy, but also for optimizing the mass
and sgize parameters of a laser or for attaining higher
repetition rates. The results of this investigation
of a two-circuit method of excitation gives a justifica-
tion for expecting a very efficient and practical real-
ization of a system of excitation with a large number
of circuits.
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Interest in low~pressure rf discharges has in-
creased considerably on account of their use in pre-
paring epitaxial films. For these purposes it is im-
portant to know the dc voltage drop between the
plasma and the electrode, the sheath thickness, and
other of its characteristics. Estimates of these quanti-
ties have been published in Ref. 1. Numerical cal-
culations for the sheath, by a solution of the com-
plete system of equations? is quite difficult. An at-
tempt has been made at an analytical calculation3
based on an incorrect expression for the electron
density. In the present investigation we obtain simple
analytic expressions for the parameters of the sheath
using the method of averaging over the fast electron
motion. *

Let us assume that the sheath thickness L is
small compared to the mean free path of the particles
and the interelectrode gap and large compared to
the Debye length rp, and that the frequency of the
field satisfies wj <« o « min(we, vMaxw), where
vMaxw 1S the Maxwell time and w;j ¢ are the ion and
electron plasma frequency.

In this case the field in the plasma is much
less than that in the sheath and L ~ j/enw. The
displacement of the ions during a period of the field
is small compared to L, since their motion is deter-
mined by the average field. The boundary of the
electron profile (thickness on the order of rp) can
thus be considered sharp, and the potential drop
in the sheath large compared to T. Ionization in
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the sehath and the initial velocities of the ions can
be neglected. Then the ion flux in the sheath is
conserved and Ij = yn,(T/M)%, where n, is the ion
density ahead of the sheath, T is the electron tem-
perature, and vy is a rumber of the order of unity
and depends on the nature of the distribution func-

tion. The density of ions in the sheath is
h(x)=4/V§0(.r , (1)

where A = yN,/T/2e and ¢(x) is the dc potential
in the sheath.

Writing the current density as j = —j, sin wt and
introducing the new variable z(x) = wt(x), the phase
at which the boundary of the plasma sheath reaches
the point x, we find a closed system of equations*
for ¢(x):

df/d-z; = 4),/ (sin ¥ - gcosz),

sine dE 0 = cw A/ 97?), (2)

where z = 0 corresponds to the plasma and z = =
corresponds to the electrode.

The solution is found in parametric form

W(.z:')'/z 2_70/(“,)4)(5/2({*- Vacos 22) Sln 22))
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x=J3/(6%wA?) [-2cosz(3+2e05%2)s Ssinz -3 sindz] . (3)

It is convenient to write the following relation
between the sheath thickness and the dc potential
drop ¢, in the sheath.

L= 5/9 (2/32’)’/2(%3/8242) ’/‘l.

We note that as the discharge current increases
the sheath thickness increases in proportion to j,,
and if the rf voltage is dropped mainly in the sheaths,
then L ~ U /2 ~ 4,

Figure 1 (curve 1) shows the profile of the
de potential in the sheath (3) as compared with the
resutls of numerical calculation 5 (curve 2).

Although the calculation in Ref. 5 was carried
out for the case of a given sinusoidal voltage on
a single sheath, the calculated ¢(x) and the thick-
ness of the sheath for various value sof A and ¢,
differ little from (3) and (4). Formula (3) is ac-
curate up to terms of order (T/e¢)1/2. It can be
seen from Fig. 1 that the function ¢(x)/¢, = (x/Ly°7
(curve 3), which is an accurate solution for small
x, gives a good approximation to the profile over
the whole sheath.

With the potential profile ¢(x) that has been
found it is easy to find the ac field in the sheath

(4)

L
£(z, t):(m;, /w)- (7t coswl) - yae f ndx (5)
x
or with the use of (2)
£(x,t)= (4-’7',1",/54)(.':03@: - cos z(x)), (6)

whre z varies with wt to .

Integrating (8) we find that in a discharge be-
tween identical plane-parallel electrodes (symmetric
case) the total rf voltage drop in the sheaths is

V(wt) = » >
/I”'f%’[(f(COSUt—wsl) *j‘ (cosaz‘rcosz)) da:(z)/dl di’]. (7)
wt (7))

FIG. 1.

dc potential and density in the sheath.
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A curve of U(wt) is plotted in Fig. 2. It can
be seen that U(wt) is an anharmonic function. Since
U(wt) is an even function and U(r/2 — wt) = =U@/2+
wt), we have expanded U(wt) in the functions
cos[(2n + 1)wt]. For example, the amplitude of the
third harmonic (n = 1) is 2.3% of that of the first
harmonic. The voltage in the discharge is 3.3 times
higher than the dc drop in the sheath. This is very
close to the value 7 predicted and verified experi-
mentally in Ref. 1.

Result (7) is not difficult to generalize to the
case of an arbitrary nonsinusoidal periodic variation
of the current density. If we assume that j = j f(z),
where f(z) = —=f(—2z), we obtain instead of (7) the
result

,
Totys 2ot [ [ (Fr- £} acarde

ar ol

- {F(ﬂ'-wt)—/‘(l‘)}ﬂ(fjdi‘] , Flz)=- [F(z)dz,

(7r-wt) *

Az)=-F(s) [#(2)dz f2re (a 7y a2, ®
-4 o

It can be seen that it is a much more complicated
matter to detrmine f(z) for a sinusoidal U(z) then
to find U(z) for a sinusoidal f(z) [expression (7)].

The case of a highly asymmetric discharge has
been studied in detail in Refs. 2 and 5. In these
cases practically all the voltage U is dropped in the
sheath adjacent to the smaller electrode. In the case
of a sinusoidal variation

V(wt) = Uy *+ Yycos &,
rae U, =-Gr (V2 in (2rmpm)+ (Vo) in(4e22/7), ()
the current density will be highly nonsinusoidal.

Let us examine qualitatively the form of this depend-
ence,

For 7/2 < wt < 3n/2 the potential drop in the
sheath is large and the boundary of the electron pro-
file is located where n(x) falls off sharply (1). The
distance from the smaller electrode to this boundary
differs little from the total thickness L of the sheath.
Therefore the displacement current density to the
electrode is

~(I/L)3U/at.

FIG. 2. rf potential drop in the
sheath of a symmetric discharge.
The dashed line corresponds to a
sinusoidal dependence.
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It can be seen from the numerical calculations of
Ref. 2 that near the phase wt = 0, where eU ~ T and
the electrons approach a distance ~rp from the elec-
trode, features appear in the displacement current
behavior. On this scale, the ion density can be con-
sidered constant nj = nj(x = L). By integrating
Poisson's equation we find the electric field at the
electrode

eP(e
)= 2 (brons (Tate 7 25)-000) 2, (10)

where @)= U(?)+(77ge)2n( 287, /r27') is the potential
difference between the electrode and the plasma, and
U(t) is given by formula (10).

The displacement current at the electrode is

ONE=I IO}

-‘F@)ilz(l-dxp (e¢(z‘)/7-))

= . 11
f)=z (exp(e®@)/T)~T-e®(r)/7)Ve (n

The function G(t) is plotted in Fig. 3. Far
from wt = 0 the function j(t) depends only weakly on

t, but near the time that wt = 0, foreZj; r< (M/g,,,)'/z/h

the displacement current increases sharply in a time
of the order of

. -
wi =(_2?3—z)/z , vhere 5= #E=0) gor |ewte-0){>7
U T/e for |e¢(t=0) IS T (12)

in agreement with the resutls of Ref. 2 (see Fig. 3).
In the opposite case expression (11) also gives a
sharp increase in the displacement current for wt
However, at this intant the electrons are conduct-

~ 0.
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FIG. 3. Dimensionless displacement current (6) as a function of

w t in xenon for the following values of eUp/T: 1) 17; 2) 48; 3)
199. The solid lines show the calculation from formula (11) and
the dashed line is the calculation from the formula of Ref. 2. In
cases 1 and 2 the resuts of (11) and of Ref. 2 coincide. The
arrows show the times defined by (12). '

ing, so that the displacement current at the electrode
is much less than the electron current.
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