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The Space-Time-Averaging Procedure
and Modeling of the RF Discharge,
Part II: Model of Collisional

Low-Pressure

Igor D. Kaganovich

Abstract— A self-consistent equations system for the low-
pressure RF discharge is formulated and qualitatively analyzed.
If the plasma and sheath dimensions exceed the electron-energy
relaxation length, a simple spatially averaged kinetic equation can
be derived that resembles the conventional one for the local case.
Since the energy-diffusion coefficient for the slow electrons that
are trapped by the average electric field in the discharge center is
small, the distribution function slope decreases significantly with
the energy growth. Analytic estimates are derived and reasonable
agreement with the experiments of Godyak is obtained.

1. INTRODUCTION

N Part I of this study [1], the time-averaging over fast-
Ieleclron-motion method was proposed for the description
of the self-consistent stationary electric field which deter-
mines the ion motion and plasma profile in RF discharge at
medium and high pressures. The oscillatory field E(x.t) was
determined by the ion profile and RF current-conservation
condition. Since in this case the characteristic scale was
large compared with the electron-energy relaxation length,
the electron distribution function (EDF) and excitation and
ionization rates in any given point depend on the local value
of E(x.t). Therefore it was possible to use numerous results
of the EDF calculations in spatially homogeneous RF fields.

The case of low-pressure RF discharge is far more com-
plicated. The main difficulty is connected with the effects
of nonlocality that are significant in He, for example, at
pLo values as high as ~ 10 torr cm [2]. Existing analytic
estimates [3] are based on rather crude assumptions about the
plasma profile and do not permit the quantitative comparison
with experiment. The EDF in this case, even in the simplest
plane-parallel geometry, becomes a complicated function of
four arguments: time, spatial coordinate x, and two velocity
components, v, and v, . Since the stationary and oscillatory
fields are to be calculated self-consistently, a straightforward
numerical approach even for simplified models becomes an
extremely troublesome problem [4]—[8]. The necessity of a
relatively simple theory that would permit calculating self-
consistently field and plasma density profiles and the EDF is
greatly stimulated by recent experiments [9] where the EDF
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in the central plane of the RF discharge was investigated
and the considerable enrichment of the EDF low-energy part
was observed in the nonlocal regime. We shall demonstrate
here how spatial and temporal averaging [1] that analytically
excludes fast motions can lead to considerable simplifications
in the nonlocal case also.

The electronic motion is characterized by several frequency
scales: RF field frequency w, electron-transport collision fre-
quency v = n,va, inelastic collision frequency v* = n,vo™,
electron plasma frequency wy,, and electron bounce frequency
), = v/Ly. Electron spatial scales are distance between elec-
trodes 2Lg, sheath thickness L, electron free path A, and
distribution-tail energy relaxation length, \* = /o/o* A
(o* = inelastic cross section). Usually,

woe > max(\/m.w). w > . v>vt (1)
and the potential difference in the sheath Uy considerably
exceeds characteristic electron energies e. From the condition
el > ¢, it follows that the moving boundary of the electron
density profile is sharp compared with the sheath thickness
L [1], [10]. If the first of the inequalities (1) holds, this
moving boundary separates the quasi-neutral plasma with the
low oscillatory field and the region of ion space charge with
high field. So if wy; < 111;1x(w.(w1/i)1/2) {11}, [12], where
Vi ion collision frequency, the ion displacement during
RF period is small, and for the calculation of the averaged
field that determines the ion motion in the sheaths, it is
convenient to introduce z = wt(x)—the equation of this
moving boundary [1, eq. (18)]. From inequality w > v*, the
stationary of the EDF follows [13}].

We restrict ourselves by the nonlocal case when the dis-
charge dimension 2Ly is less than A™ (the energy relaxation
length for the bulk electrons A, considerably exceeds A* [14]).
If \y is small compared with Lo, local approximation is valid

when the EDF! can be factored to a form n(x)f,(v. E(x)),
and f.(v. E(xr)) is parametrically determined by the local
value of oscillatory field E(x). In the nonlocal case such an ap-
proach is erroneous, and if Ly < A*, the EDF depends only

on the combination & mv?/2 + ed(x). In the collision-

'By EDF we denote the particle density in the phase space that coincides
with the probe current second derivative of the potential.
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dominated case, A < (L. Ly), the standard two-term approx-
imation for EDF is valid.

The EDF is determined by the energy gain from the electric
field and energy loss in collisions. So even in the free-flight
discharge where A > Ly, the collision terms in the kinetic
equation are important. If elastic collision frequency v exceeds
the inelastic one v* (1), the elastic collisions with small energy
losses isotropize the EDF. Their direct influence on the energy
balance is as a rule negligible for not too high pressures.

If w>>» Q> v, L < A, the stochastic mechanism of elec-
tron heating by the sheath field is important. It has been
proposed in {15] and explored by Goedde er al. [16] and
Kushner [17]. We shall discuss this case in a forthcoming
publication. Here, we consider the collisional nonlocal case
A* > Lo. L > X when collisional heating dominates.

The nonuniformity of plasma is very important for the
correct calculation of the EDF. In the quasi-neutral plasma,
the ambipolar potential profile ¢(x) always exists. That cor-
responds to the potential well for electrons. So the plasma
electrons are trapped by this field and do not reach the
peripheral region where the oscillatory field E(x. t) and colli-
sional heating are large. The nonlocal EDF in collisional and
free-flight cases depends on the full energy ¢ = mv?/2 +
ed(x) {14]. The steep decrease of the EDF tail produced
by the inelastic collisions occurs at ¢ > &* (¢* = the
first excitation potential). In the peripheral region, ¢ = ¢*
corresponds to kinetic energy values considerably less than £*.
It means that the average excitation and ionization frequencies
are significantly lower here than in the discharge center.
As the time-averaged (E2(z)) values (roughly proportional
to nl-_z(x)) are maximal in the peripheral region, the local
approximation [1] gives the opposite dependence —the max-
imal excitation and ionization by the plasma electrons occur
on the periphery. The nonlocal, collisional energy-diffusion
coefficient is proportional to the space-time averaged (E'Z(z))
and grows with €. So in the collisional case the EDF slope
steeply decreases with energy and the EDF is to be enriched
by slow and fast electrons [18], [19]. The nonlocality condition
L < X* is equivalent to a limit of high thermal conductivity.
So the widely used hydrodynamical description [20] also gives
in this case an erroneous result of uniform mean electron
energy and excitation (ionization) frequencies over the plasma
Cross section.

From exponential dependence of the ionization rate pro-
duced by plasma electrons I, on (E?(z)), it follows that
in the local a-regime, relatively small variations in plasma
density lead to significant changes in the ionization rate [[].
Accordingly, the plasma density varies insignificantly and the
main part of ion flux that reaches the electrode is generated in
the sheath. On the contrary, in the nonlocal case the ion flux
is generated in the central region; ionization in the plasma
periphery and sheath (where E is large) is negligible. So
the ion density in the sheath falls steeply and the ion flux
is almost constant here. Since the field at the electrode surface
is determined by the current density j and is to be screened
in the sheath by the ion space charge, the sheath thickness
in the low-pressure discharge is considerably higher than in
the high pressure one with the same current. The values of

the dc potential difference in the sheaths are also higher
in the nonlocal case.

Since the relaxation length of energetic vy-electrons far
exceeds A* for plasma ones produced by the ~y-electrons,
ionization I [1] in the nonlocal regime also occurs mainly
in the plasma region. Its direct influence on the ion profile,
opposite to the local case, is not very significant. The case
with the contribution of /> dominating in the total ionization
rate was discussed in [21]. Here, we neglect the ionization by
v-electrons, setting v = 0.

In this paper a complete self-consistent equation for the
above-described discharge is derived. It contains the electron
kinetic equation, the equation for ion density, and the Poisson
equation that in plasma takes the form of the quasi-neutrality
equation n, = n;. In the ion space-charge region it can be
also significantly simplified as n, = O here, and the n; profile
is stationary.

In the second section the electron kinetic equation for the
collisional nonlocal case with w > v* is investigated. The
space-time-averaged kinetic equation obtained is sufficiently
simple to be used in self-consistent calculations of RF dis-
charges—it takes the form of the widely known one for the
stationary and spatially homogeneous case; integrals of the
unknown electric field profile appear in the coefficients of
the averaged equation only. The third section deals with ion
motion. Even in such simplified averaged form, the prob-
lem cannot be solved analytically and requires considerable
numerical work. So here we present the problem formula-
tion and results of qualitative investigation of the equation
system. The fourth section is devoted to the comparison
with the experiment. It is fulfilled in a comparatively crude
approximation that can be treated as the first iteration of the
self-consistent procedure. The detailed numerical modeling
and its comparison with analytical approaches is in progress
now and will be reported later.

II. SPACE-TIME-AVERAGED KINETIC EQUATION FOR THE EDF

It is widely known that the electric field in RF discharge is
very inhomogeneous. It is small in the quasi-neutral plasma
region, where n. = n;, that occupies the central part of the
discharge, and it steeply rises in the ion space-charge part of
the sheath region, with n. = 0. The sharp transition region
(its thickness is of the order of the Debye radius) [3], [10],
[22] moves periodically between z = +(Lo— L) = £L,
and z = £Lo. We shall describe this boundary as a rigid
moving wall z(x) (Fig. 1). So in the point of the sheath
L, < x < Lg, electrons are present only in the plasma phase
(between the times ¢; () and t2(x); Fig. 1(b)). In the plasma
at —L, < x < Ly, the time-averaged field is

27 fw
(B(z)) = — / E(z.t)dt (2a)
2r
0
and the oscillatory part of the plasma field is
E(x.t) = E(x.t) — (E(z)). (2a")

In the sheath the averaged electric field in the plasma phase
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Fig. 1. (a) Schematic dependence of the averaged plasma electric potential

(curve) and position of the plasma—space-charge boundary (vertical lines) at
various times. (b) The plasma-space charge boundary motion in the sheath.
Electrodes are at |z| > Lo.

that enters in the electron kinetic equation is [22]
ta(x)
)= [

t1(z)

E(x.t)dt/(ty — t1). (2b)

Introducing the potential energy ed(x) that corresponds to
the field ((2a) and (2b)), we can write the kinetic equation for
the EDF f(¥,x,t) in the form:

o 4 ?i—(ﬁﬁd"s)af = S()+ 8°()

ot + ””am m  mdz | vy
3)

where z is the coordinate in the current direction, ¥ is the
electron velocity, S(f), S*(f) are the elastic and inelastic
collision integrals, and (E) = 0.

If X is small compared to the characteristic spatial scale,
the two-term approximation is valid, f(z,¥,t) = Fo(e.z.t)+
Fy(e,z,t) cos(?), where ¥ is the angle between the electron
velocity and z-axis between the directions of plasma inhomo-
geneity and RF current. The equation for Fy(e, z.t) in plane
geometry is (J,, J. = space and energy fluxes)

aFO 6JI 8J€ — ZV[—V;(U})FO(E'I)
k

v R Oe

+ %u,’;(w +er)Fole + sk,,)] 4)

eEvOF,
(v +iw) 0e

’U(‘)FQ

Flz_(l/+iw)0$ B
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where v(w), v (w) are the transport and excitation collision
frequencies (dependent on the electron kinetic energy w),
& = 2m /M, and e, is the excitation energy of level number k).
If it is possible to neglect the energy losses in elastic collisions
(second term in the expression for J.) and the last term in the
right-hand side of (4) (it’s determined by slow electrons that
have lost energy ¢y in inelastic collisions and at not too high
E is significant only in the low-energy region), (4) has the
form of a two-dimensional diffusion equation with coordinate-
dependent diffusion coefficients and absorption coefficient
Sviv = viu.

Slow electrons with ¢ < e¢s, cannot reach the sheath
boundary. So the boundaries x4+ (g) that restrict their motion
are time independent. Fast electrons (¢ > edqn) penetrate
into the sheath during the plasma phase. The boundaries
x2+(¢) for the electrons are constructed from stationary and
time-dependent parts (the available area for such electrons
is dashed on Fig. 1(b)). The electrons’ reflections from the
moving part of these boundaries can lead to stochastic en-
ergy diffusion [15]—[17]. The boundary velocity V ~ eE/
m(v + iw) coincides with the electron drift velocity at the
space-charge—plasma boundary. From v > v*, it follows
that chaotic velocity v > V and the energy portion that
transforms from directed into chaotic form in collisions with
the boundary and with molecules are both of an order of
AémuV. As in the collisional regime where collisions of fast
electrons with boundary are less frequent than with molecules,
the energy diffusion coefficient D. ~ Ae?v is determined by
the latter process. Stochastic heating dominates in the opposite
case—D. ~ Ae2Qy. The E values in the sheath exceed the
plasma ones. So for the collisionless sheath, it is possible that
fast electrons at the plasma periphery acquire directed energy
mainly in collisions with the moving boundary, and transform
it into the chaotic form in collisions with the neutrals [17]. If
the nonlocality conditions A\* > Lo and w > v* are fulfilled,
the energy relaxation is slow compared to spatial diffusion
and FE(t) variation. So the isotropic part of EDF Fy(e,z.t)
dependence is to be of the form:

Fole.x.t) = fole) + fP (e z, 1) (6)

where fo(e) is the EDF Fy(e.x.t) space-time averaged over
the dashed area on the Fig. 1. The small terms fél) < fo are
determined by temporal and spatial inhomogeneity and are of
an order of (v* /w) fo, (Lo/A™)? fo [13], [14]. Integrating the
kinetic equation from =z (e.t) to z_(e,t) (z+(e,t) are the
equations of the left and right boundaries of the dashed region
on Fig. 1—the coordinates of turning points for electrons with
the total energy ¢), we obtain:

24 (s,t)

or g
2 / vkodr + [_UFO‘—; + Jp = Je $:|

at 9 de ],
z_(e.t) -(et)
a T4 T4
+ P Je(e,x, t)de = /US*(FO) dx. (7)
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Since energy relaxation at v >> v* is slow, the directed elec-
tron velocity is small compared to the chaotic one (Fy > F).
So the position of real turning points differs insignificantly
from x4 (¢). For the stationary part of x4 (. t) boundaries for
fast clectrons (and on the whole length of .ry(e) for slow
ones), the first term in square brackets (7) vanishes and the
last two terms, representing the particle source at w = 0, are
equal to zero also. For the nonstationary parts of w4 (e.t), the
sum of the first two terms in brackets in (7) equals zero—it
is the flux at = = x4 in the reference frame moving with
the velocity dixy /dt. As dxy/de = 0 here, the expression in
square brackets of (7) equals zero. So averaging (7) over time,
we obtain a one-dimensional equation that formally coincides
with the well-known local one:

| ———
gg’u(Ds(e)) fflf)

= (vv*(e)) fole) ®

where space-time averaging of the energy diffusion coeffi-
cient

D.(w.¢) = e*? <E2( )>/[3(w2 +1%)] 9

and of excitation frequency v*(w) is to be performed accord-
ing to

T xy(e

2L0 / / G(E*fiaﬁ(w))drdt.

0 r_()

(10)

For simplicity, the term with 6 = 2m /M in (8) is neglected.
So the EDF in this approach depends on the potential profile
¢(x) only parametrically. The main distinctions between such
nonlocal and traditional local approximations for the dc pos-
itive column were discussed in [14], [23], [24]. As in the dc
case, the longitudinal electric field E, does not depend on the
coordinates, and the EDF in the local case can be factorized:
Fy = n{r)fo(v). So when the EDF is investigated by the
standard probe method of measuring the second derivative
i = d%/dU? (i.U = the probe current and voltage), the
functions ¢”(U) in different points of discharge coincide if
their arguments are shifted by the space potential in the probe
position. In the nonlocal case, the unshifted functions (V)
coincide in different points of the tube cross section [24],
[25]. The steep decrease of the EDF due to inelastic collisions
begins at € = ¢* (excitation potential). In the peripheral points,
this value corresponds to the kinetic energy w values that are
considerably less than e* (Fig. 2). So in these points significant
depletion of the EDF tail arises [25]. On the contrary, in
the discharge center, tail depletion begins at ¢ = w = &*.
But at a ¢ slightly exceeding ¢*, the discharge area where
for the electron with a total energy ¢ value of v*(e.x) # 0
(dashed on the Fig. 2) is small compared to the entire available
area (practically the entire discharge cross section). So the
cross-section averaged value (vi*) is considerably less than
in the local case-—the EDF depletion “switches on” more
softly. As near the excitation threshold v* ~ (w —¢*) and
the potential profile in the center is parabolic, the dependence
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Fig. 2. Potential profile ®(.r) and electron energy plot for trapped electrons
in discharge. Dashed area corresponds to the region in (:..x) space, where
inelastic collisions occur.

{vr*)(e) in the vicinity of * is ~(e— e*)2
and ~(c — =*)*? for planar, geometry.

The second peculiarity of the nonlocal EDF in RF discharge
arises from the averaging (10). As ion density n(z) in the
peripheral region is small, the RF field amplitude E in the
plasma phase which is roughly proportional to n~1(z) is large
here. So for electrons with small energy ¢ which cannot reach
this region, the averaged energy diffusion coefficient (vD,)(¢)
(9), (10) is small. On the contrary, high-energy electrons are
penetrating into the high RF field region and their energy
diffusion is large. Consequently, the EDF slope is large at
low energies and diminishes with the energy growth. Such an
EDF was observed in [18].

The complete equations system for electrons contains the
kinetic equation (8), expressions for electron density

for cylindrical,

47r
m

o 1/2
ne(e) = / fo<>[ (E‘e¢(x))] de (1)

ep(z)

and electron current density

y _ AreElt) ] e — o) dfo ,_

v+ iw de

el 3m?

ep(r)
=en.Ve(x.t) = josinwt. (12)
The quasi-neutrality condition and the current conservation
equation, together with (11) and (12), are connecting the dc
and RF fields with the EDF.

In order to demonstrate the difference in spatial distri-
bution of ionization produced by plasma electrons in the
local and nonlocal cases, let us calculate the ionization fre-
quency (vig,(z)) averaged over time and EDF in differ-
ent places of the plasma cross section. The excitation and
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Fig. 3. Time-averaged ionization frequency in various points of model RF discharge in argon. (1) = Maxwell—Boltzmann; 2) =
nonlocal approach, with fo(<); and (3) = local approximation. The sheath is dashed.

ionization frequencies vv*, vy, were laid proportional to
(w—e*), (w—e;) with the coefficients that correspond to
argon: vv* = g*(w — &*); Wion = gi(w~g;); g* = 2 -
101p(eV) ! ems™2; g = 4-10p(eV) ! cms™2 (p = pres-
sure (torr)). In the model case (vD.) = const(e), the EDF
at e < g% is

fo=A(eo —¢) (13)

where €9 > ¢* is determined by the matching of (13) with the
solution of (8) at £ > *. The “absorbing wall” approximation
v* — oo corresponds to g9 — €*. At e > £*, a steep decrease
of the EDF occurs. The EDF part at (¢ —¢*) < &* that
corresponds to the majority of the inelastic collisions is of
special interest. At such energies it is possible to use parabolic
approximation of the dc potential profile e¢(x):

ed(z) = xe*(z/Ly,)"

where L, = (Lo — L) = the plasma—sheath boundary posi-
tion, » ~ 1. In the absorbing wall approximation, the EDF
(13) corresponds to

*

€ e*
T. = %/53/2(6*—6)(18//(6* ~eWede = 2
0 0

- e*.
For crude estimate of the plasma density profile
n = ngcos (nz/2L,)
and Boltzmann potential ¢ = (T¢./e)In(n/ng), we have » =
72 /28.

According to (10), the inelastic collision-frequency averag-
ing reduces to

2 ¢ L
Zet— *_1)922
TRV

(vD)G(efe* — 1)7,

{vr7)

g=3/2. (14)

At e* > e —&* > 0, the EDF is
fo = (e/e" = 1)/’ BKy(gu2)
e =0 VG 1+ a2)]) a9)

where eg = e*(1 + 3/x),

T ( e*at2(y ) 1+4/2
2sin T (£3) \(a+1)°

7r (@+1*\""
= d ) . B=Aey/x.
2sin %F(ﬂi) erat2G

0=

g+2

The local case corresponds to ¢ = 1. The time-averaged
over the EDF (15) direct-ionization frequency (vion(z)) is
presented in Fig. 3. We took vD, 2 - 10(E?*(x))/p,
that corresponds to argon at w <« v. The model discharge
was characterized by 2Ly = 1.6 cm, jo 8.2 mA/cm?,
p = 0.1 torr, and w = 13.56 MHz. Self-consistent values of
U="1715V,ng =210 cm~2, and L = 0.42 cm were found
using the calculated (vion(x)) profile according to Sections III
and IV. ~

The ion density profile in the discharge gap and the E(z)
dependence in the quasi-neutral region were calculated using
the Maxwell-Boltzmann EDF according to [12], [26]. The
electron temperature was determined by the energy balance
and was found to be 2.5 eV. With this F(z) profile, local and
nonlocal EDF were calculated; the dependence (E2(%)) on e
in the nonlocal case was neglected and the value corresponding
to € = €* was taken. Surprising is the close coincidence
of Maxwell-Boltzmann and nonlocal kinetic results. The
nonlocality of the EDF criterion is equivalent to the limit of
high thermal conductivity. So this coincidence is of the same
origin as that one noted in [20] and [27] of hydrodynamic and
kinetic results. The local approximation leads to (Vion) values
in the discharge orders of magnitude lower than kinetic ones.
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Self-consistent numerical simulation of the simplified model
for such a nonlocal discharge was performed in {8]. The
main differences with Fig. 3 are that n(z), (Vion(x)) profiles
in [8] were almost flat in the plasma region, and the EDF
was enriched by slow electrons. The main reason of these
discrepancies to our opinion is the approximation of constant
(vD.) used in our calculation (see below). The transition
from the local to nonlocal regime with pressure decrease was
also observed in [8]. It was accompanied by the shift of the
plasma source from the sheath-adjacent region to the plasma
center; the central plasma density for a given current value
was almost pressure independent. Accordingly, the ion flux
from plasma decreases in the nonlocal case, and the sheath
thickness considerably increases.

III. IoN MOTION

The ion motion in the collision-dominated regime at w >
w?;/v: was analyzed in [12]. In plasma it is determined by
the system:

/ 5 7 S—
i’n,U = (Vion)n:  n(x) = 47rt\/_ fole)Ve — eplr) de
dx m3/?
eo(r)
Mu? = 2%, (16)
wdx

Since ionization in the plasma-sheath boundary vicinity
is negligible, the ion flux from plasma I' = nU|.=r, can
be found with a zero-boundary condition for plasma density
n(x =L,) = 0.

The system (16) can be easily solved for three limiting
cases:

a) The Maxwell-Boltzmann EDF for all electrons:

¢ = —% In(n/no):

27r;r/(3 3Lp) = %{%ln (1+U)

{Vion) = const(x)
9

U2-U+1

20 -1
+ V3 arct g }

V3

*

=a/x

+ ™
6v3
S\ —1/3

n= 710(1 + U‘{)

1/2
- 3V3(ML,)
I=U| — 1 =U/U” 17
where U* = the characteristic ion velocity in plasma. From
(17) the ion flux at the plasma—sheath boundary is determined

by

I'=noU". (18)

b) (Vion)n = const. This case corresponds to a situation
when the majority of electrons are slow [9]. Now the ¢(r)
profile in plasma is determined by their small energy, and
influence of this field on the fast electrons that are responsible

for ionization rate is negligible. So the ionization (v, )n in
this case is w-independent. We suppose for simplicity that slow
electrons have the Maxwell—Boltzmann EDF:

n{r) =ng (l - (.1‘/1,1,)3)1/2

T, A\'?
(ML,,?) "o

. 3 T 12
F=nlll=r, = (F ML ) "o
+ P

(Vion)n =

(19)

As nonlocality leads to a peaked profile of (o (), it’s useful
to consider the limiting case of ¢).

¢) n{Vion(r)) = Té(x). The ion flux in plasma nU =T is
constant. If the bulk electrons have the Maxwell-Boltzmann
EDF, the plasma profile is n ~ exp(—e¢/T.). From (16) we
have

dlnn

2T, M /M =7l
ar
So
. M

'né —-n?= ;/\TQ;IT (20)

and
T
= gy =2 21
r 1y 7rJ\IL,, (2n

differ from (19) only by the factor 371/2. Since b) and c) rep-

resent the limiting cases of ionization spatial inhomogeneity,

the real dependence between ng and I' is between (18) and

(20). For the ion profile in the sheath we have [1], [10], [12]
dz ewl

—sinz = —
du Ujo

={r)
12 Y )
Ur) = (%j‘\j[o) / (cos 2 — cos z)l/z dz' .

0

(22
From (22) we have for the sheath thickness
_ 0.9jo
N [V TN
where the ion density at the electrode surface is
wM \V?
Ny, = L.1T - . 23
il (8(1/\,‘]()) ( )

The density in the sheath is of the order of ngy:
Lo
/ ndr =22ngyL.
L,
The density profile in plasma (20) and the sheath (22)
together with (11) and (12) determine the oscillatory field

profile E(a-.t). Calculating the source term (Vjo,)n with the
EDF (8) completes the self-consistent problem formulation. So



contrary to the local case [1], the main discharge characteristics
are nonsensitive to the value of n,—the ion density at the
plasma—sheath boundary x = L,. The ionization rate and
ion flux I' can be found from the diffusion equations (16),
(19)—(21), with a zero boundary condition, and the ion profile
in the main part of the sheath is determined by (22), where
the diffusion is neglected. Nevertheless, since some discussion
took place and discrepancies exist between the n, values
given by [1], [10], [12] and since the system (22) leads to
discontinuity of the density profile at z = 0, we will treat this
problem in some detail.

In [1], [22], it was demonstrated that in the vicinity of the
plasma—sheath boundary the transition region exists where the
averaged fields of thermal (diffusion) and nonthermal origin
are comparable. The width of this region is

. 1/5
€Jo”"D
b~ | ——= , 14 L
< T, ) D > Tp L Ly

where 7p(np) = the Debye radius in the transition region.
So the junction of the diffusion-dominated plasma profiie and
(22) can be performed precisely in the standard boundary
layer scheme. If we want, as it is usually done, to match the
plasma profile and (22) in some point x = L,, n = np, an
error of order of unity arises in the transition region. In our
opinion, the simplest way to do so is to define the boundary
position in the point where U values obtained from the plasma
equations and from (22) coincide. It corresponds to the choice
of the boundary position in the point that is situated at a
distance 6 (extrapolated length) from the point where the
diffusion profile n(x) = 0. The sheath profile (22) begins
from the corresponding values z,, Up. In these terms the
procedures proposed in [10] (where the extrapolated length
instead of § was chosen as 7p(n;)) and [12] (where the Bohm
criterion for the collisional case was postulated) can lead to a
more significant error in the transition region compared to the
proposed scheme. If the value of 4 (21) is small compared to
i, the Bohm criterion for n; is valid.

IV. THE COMPARISON WITH EXPERIMENT

A detailed investigation of the EDF in Ar and He was
performed in [9], [28] at the pressure range of 0.1 + 3 torr
at a frequency of 13.56 MHz and discharge gap 2Ly = 6.7
and 2 cm. The characteristic sheath thickness was of an order
of 1 cm. It corresponds to the collisional local and nonlocal
cases. So stochastic heating doesn’t in our opinion play a
significant role in most of the experiments [9], [28]. Let us
compare the derived formulae with the experiment. In the
high-pressure case a local EDF is formed. For example, at
p =3 torr, 2Ly = 2 cm, and jo = 2.8 mA/cm?, the electron
density in the plasma center was 0.6 - 10'° cm™3 and the
plasma oscillatory electric field amplitude according to (12) is
Eq =24 V/em. For energy gain from zero to €* = 11.5 ¢V,
the time 7 = (2¢*/7)%/ D, ~ 0.4 ps is required, where D is
given by (9). The spatial displacement during 7 is (4D'r)1/2 ~
2.4 - 10! cm—small compared to the characteristic space
scale (2Lg/7). The displacement of energetic electrons with
w = 13 eV during the inelastic collision time—u*~! equals
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Fig. 4. The local EDF for argon: (a) f = 13.6 MHz, jo = 2.8 m.—\/cmz,
p = 3torr, 2Ly = 2 cm; (b) f = 13.6 MHz, jo = 1.0 m:\/cmz.
p = ltorr, 2Lp = 6.7 cm. Dashed lines = experiment [9] and solid lines
= calculation.

to (4D/1/*)1/2 ~ 1.7 - 1072 cm—also is small compared to

2Ly /m. As energy losses in elastic collisions are negligible,

the isotropic EDF is determined by the local equation:
;u;ng(w.z)% +or(w)fo=0

that formally coincides with (8). The only distinction from the

solution (13), (15) consists in replacing £ with w and g = 3/2

with unity.

The approximation (v®/v) = const was used for argon.
Figs. 4 and 5 present the local EDF in the discharge center
for the absorbing wall approximation v* — oc with w = 27 -
13.56 s71 < v, jo = 2.8 mA/ch, p=3torr, 2Ly =2 cm
@), and jo = 1 mA/em?, p = 1 torr, 2Ly = 6.7 cm (b).
The values of E profile were determined according to (12)
using experimental 7o values. The discrepancy at higher
pressure (a) is mainly due to energy losses in elastic collisions.

In these calculations we ignored the nonzero energy values
after inelastic collisions (second term in the right-hand side
of (5)).

Calculation of the nonlocal EDF is a far more difficult
problem than the local one, because the EDF now depends on
the entire density and potential profile. We restrict ourselves
here by the purely collisional case L,, L > A. The cases L,
L, < A, when the stochastic heating dominates, and L < A <
L,, when fast electrons gain energy from oscillating sheathes
and dissipate it collisionally, will be discussed elsewhere.

We consider the case epg, < €*; this inequality holds as in
reported in [9], [28] experiments. For qualitative description
we assume the following model for the spatially averaged
energy diffusion coefficient (9):

— e2u(e)ed/? 2\%?
DIE) = (772) = 57 ey ()
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Fig. 5. The local EDF for argon for the same conditions as in Fig. 4(b).

E?
I - D,ate <ep 24)
Ejg Dyiate>ep
" where the boundary energy between slow and fast parts of
EDF e, > eypsy, is defined by

o) = 4mV2 [’ [ foleE= de

T’ 1/2
[ w
P,

where ng, is defined by (23), and expression (20) is used.
The square of averaged-oscillatory electric field slow and fast
electrons is determined by the simplified current conservation
equation E(z,t) = Egng cos(wt)/n(z) instead of (12), and by
the real density profile (19) in the plasma and uniform density
(23) in the sheath. Such an approximation is based on the fact
that in the investigated cases, the ratio ng/n, was of an order
of 10, while the ratio ny/ng, didn’t exceed 3.
So we have

<EQ> = 0.4E2[1 + In(ng/ny)]"* / Lo

- 2
-2 ‘
<Ef> = O.OSZ(EOnO) L/ Lo.
Nsh

Since the slow electrons’ energy diffusion coefficient is
smail (Ds/Djs ~ (nsn/n0)°Lo/L ~ j63/2 < 1), they are
retarded at low e, where values of D, are smali [29]. The
electron energy flux

(26)

dfo
I.=D-—=—
- de

0 5 n 1% a0 25

30 ¢ ()

Fig. 6. The experimental normalized values (fo\/?/no) [28] are plotted
for He at f = 13.6 MHz, p = 0.1 torr, and 2Ly = 6.7 cm. The current
density values (111A/<-1112) are: (1) = jo = 0.085; (2) = 0.22; (3) = 0.38;
(4) = 1.3; (5) = 3.0; and (6) = 8.8.

at € < epq, Is conserved. So the ratio of the EDF slope
at € > e¢gn to the one at € > e¢gy, increases with current
as ~j3/2. In Fig. 6 experimental values of fo\/z in He for
different currents are shown. The EDF slope at low energies
steeply increases with jo.

Such an approach overestimates the energy diffusion of
slow electrons (as the average field square is replaced by its
maximal value (26)). But at low energies in the experimen-
tally investigated situations, the electron—electron collisions
dominate, forming the Maxwellian EDF here.

For an approximate account of the electron—electron col-
lisions, we use the collision integral for fast electrons with
Maxwellian ones [30]. In two-term approximation, it reduces

to
m 0 3 dfo
‘7%{“ {”eﬂ(f“Te%)}

drnee*ln A
ee =

S\ = @7)

where

m2v3

is the Coulomb collision frequency. The error of (27) is
maximal when the distribution of slow electrons is non-
Maxwellian, but in such a case this term in the kinetic equation
(8) is small.

For experimental conditions p = 0.1torr Ar, jo =
2.65 mA/cm2, 2Ly = 2 cm using the experimental value
ny = 1.3 % 10" em™3, we have from (22), (23) ngyy =
0.66 - 10° em™ and L = 0.26 cm, which is close to the
experimental values.

The characteristic fast-electron energy relaxation time 7.5 =
e*2/Dy ~ 2.5-107% s is small compared to vz! =2-107° s,
On the contrary, 7es ~ 2.5 - 10~* s for slow electrons near
the Ramsauer minimum considerably exceeds vz '. So the
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approximate averaged kinetic equation instead of (8) is
D, = nLTwSV(,E) = const(e).

9fo

—(D5+DP)§ = D.fo/T. =T.. ate < g
J
—Dfd—];o:l—. atep < e <",

The EDF in the absorbing wall approximation fy(*) = 0
for energy-independent D,, D, is as indicated in (28), below.

As in the electron—clectron collisions energy is conserved,
T, is determined by

:‘f: 0
/ D,a—ﬁ) de = T'.ey. (29)
0

We assume the approximation

18.108923/2 ot -
1/(5):{4'8 10%p=3/2. ate, <« (30)

3.8-107pel/2. atg > e

where ¢ is in electronvolts, and p is in torr. From veeTes 3> 1,
it follows that D, > D,. So from (28) and (29) we have for
T., &p:

T.\? ng 16 T, D, (T,
(5*) T ong 15 Ve, Dy (5—*3
e—b/Te _ ZTGDE(TE;). 31)

e De(T0)

From (31) it follows that 7, = 0.037¢* = 0.42 ¢V;
and e, = 3447, = 1.40 eV. In Fig. 7, calculated elec-
tron—electron collisions and the experimental EDF are plotted.
The qualitative agreement is clearly seen. The coincidence of
the EDF tail at ¢ = ¢* demonstrates that the numerical value
of the energy diffusion coefficient (24) is close to the real one.
The sharp knee between slow and fast parts of the calculated
EDF is mainly due to the step-wise approximation (24). The
role of the electron—electron collisions is demonstrated in
Fig. 8, where the calculated EDF for the same conditions
with and without electron—electron collisions is presented. The
EDF for fast electrons (28) for argon is close to (13), and the
maximum on the calculated fo/z arises at € = €*/3.

As in He, the Ramsauer effect is absent, and the EDF slope
ratio at low and high energies for equal currents is less than
in the case of Ar. The effect of growth of the relative number
of slow electrons with current is less pronounced here. Fig. 6
demonstrates that the enrichment of the low energy part of the
EDF in He also grows with current. The enrichment of the
slow part of the EDF in the absence of the Ramsauer effect is
also demonstrated by the calculations [8].
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Fig. 7. The experimental [9] (dashed) and calculaleq (solid) EDF for argon:
f=13.6 MHz; 2Ly = 2 cm, jy = 2.7 mA/cm?, and p = 0.1 torr.

)

104

0
EeV)

Fig. 8. The experimental [9] (dashed) and calculated (solid) normalized EDF
for the same conditions as in Fig. 7: (a) with ¢ —¢ collisions; and (b) without
¢ —¢ collisions.
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