86

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 20, NO. 2, APRIL 1992

Low-Pressure RF Discharge in the
Free-Flight Regime

Igor D. Kaganovich and Lev D. Tsendin

Abstract—The self-consistent equations system for low-pressure
RF discharge in the free-flight regime is formulated. The ex-
pressions for the electron energy diffusion coefficient due to
electron-neutral collisions and to the electron collisions with the
plasma-space charge moving boundary (stochastic heating) are
derived. If electron—neutral elastic collisions frequency exceeds
the inelastic one, the generalization of conventional two-term
approximation for the electron distribution function (EDF) is
possible and the space-time-averaged electron Kinetic equation
can be reduced to the one-dimensional energy diffusion one. The
fast electrons escaped to the electrodes can be also accounted for
in this equation. It’s shown, that in the cases of: (a) spatially
uniform ion profile, (b) for frequencies that are small compared
with the electron bounce frequency, and (c) for frequencies
exceeding the electron plasma one in the sheath, the stochastic
heating vanishes.

I. INTRODUCTION

N this paper we present self-consistent equations system for

description of the RF discharge in the free-flight regime,
when the electron mean-free path A exceeds the discharge
gap 2Lo. As it was pointed out in [1], in such discharges
the stochastic electron heating [2] can be effective and unam-
biguously identified.

This problem was explored analytically in [3] and numer-
ically in [4]-[7]. In an attempt of self-consistent calculation
[3], the inelastic collisions and average plasma field ¢(x)
were neglected. So it was impossible to describe plasma
inhomogeneity and slow electrons’ behavior. In [4] also it
was set, ¢(x) = 0. It implies the uniform ion-density profile
ni(x). But in real inhomogeneous quasi-neutral plasma, the
ambipolar potential ¢(x) always exists. The ¢(z) profile
corresponds to the potential well for electrons. The low-energy
electrons are trapped by this field and do not achieve the
peripheral region, where the stochastic heating occurs. The
heating of these electrons is produced by low bulk plasma
fields and infrequent collisions. So the low-energy electrons
that form the substantial part of the total electron density in
the central region have essentially a smaller energy diffusion
coefficient than high-energy ones. So there are two different
energy scales of the electron distribution and EDF (electron
distribution function) in this regime (and in the collisional
nonlocal case [1]) is enriched by the slow and fast electrons
[8]. The ion-density profile form is also very important for the
stochastic heating’s correct calculation. For example, if ion
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concentration n;(x) is uniform, the speed of the plasma—sheath
boundary is Vi, (t) = j(t)/en;, where j is the discharge
current density. In the noninertial reference frame moving
with the plasma—sheath boundary, the electric force is fuily
compensated by the electron inertia and stochastic heating
in the free-flight limit disappears. For consistent description
of this interesting phenomenon the form of n;(z) profile is
important.

The field profile in the sheath in [3] was treated in rather
crude approximation. The obtained expression for the energy
diffusion coefficient is applicable only if the electron plasma
frequency exceeds a discharge of one w.

In numerical simulations [5], [6], the bounce frequency
) = Lq/v was comparable with the collision one. So it was
difficult to separate the collisional and stochastic mechanisms.
In 7], the totally collisionless one-dimensional case was
investigated. In atomic gases the electron—-atomic collisions
can be unambiguously subdivided into elastic with transport
frequency v, and inelastic ones that are switched on at energy
threshold ¢* and are characterized by collision frequency v*.
At not too high RF field intensities, the distribution tail at
energies that are exceeding ¢* contains a small part of the
total electron number. So in inelastic collision the fast electron
loses almost all its energy. For not too high electron energy,
the inelastic collision frequency v* is small compared with
the elastic one v. That’s why during its energy relaxation time
v*~1 electron undergoes many elastic collisions, and the EDF
tail is close to isotropic (contrary to the model adopted in 3],
{7]). The EDF body (at energies less than ¢*) energy relaxation
time far exceeds v*~1; so we can also consider EDF here as
isotropic.

The electron movement in calculations [7] was not stochas-
tic, because the chaotic motion criterion (see (1) and (29))
was not fulfilled. So the energy diffusion was absent and the
electron energy could not exceed significantly ~ mV2. For
the self-sustained discharge, the sheath velocity was to be

2e;
Vi ~ \ﬁ
m

where ¢; is the ionization potential. Close values were obtained
in [7].

In this paper, the self-consistent equation system for the
free-flight-regime RF discharge is formulated. The space-time-
averaged electron Kinetic equation as a rule can be reduced to
a form of the one-dimensional energy diffusion equation. The
fast electrons losses caused by their attachment to the electrode
surface and by the inelastic collisions are also accounted for.
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The slow electrons are trapped by the stationary electric field
and do not reach the moving of the space-charge boundary. So
their energy diffusion coefficient D, is small—it is determined
by the low oscillatory field in the discharge center and by rare
collisions. The D, for the fast electrons is connected primarily
with the stochastic collisionless heating [2], [3] if

w > Q(M/m)t/? (1)

where M. m are the ion and electron masses, respectively. The
stochastic heating switching can be treated as instantaneous.
The boundary thickness is of the order of local Debye radius.
Accordingly, this heating mechanism switches off if the field
frequency w exceeds wo,, the local electron plasma one in the
sheath. If the opposite to (1) inequality holds, the stochastic
heating is absent and D, is determined by collisions.

In Section IV, ion motion at wp; < w is discussed (wo; is
the ion-plasma frequency). The modified Bohm criterion for
the plasma—sheath boundary position for this case is derived.

1I. SPACE-TIME-AVERAGED KINETIC EQUATION FOR
THE ELECTRON-ENERGY DISTRIBUTION FUNCTION IN
THE FREE-FLIGHT REGIME (HF CASE (w > Q> v))

A. The Trapped Plasma Electrons’ Collisional Heating

It is widely known [1] that the electric field in RF discharge
is very inhomogeneous. It is small in the quasi-neutral plasma
region where n, ~ n; which occupies the central part of the
discharge and steeply rises in the sheath region at the discharge
periphery, where n, = 0. This sharp transition region moves
periodically between z = L, = (Lo — L) and = = Lo, where
L is the sheath thickness. We shall describe this boundary as
a rigid moving wall (Fig. 1(a)). So in the arbitrary sheath
point L, < z < Lo, electrons are present only in the plasma
phase (between the moments ¢1(z) and ta(x); Fig. 1(b)). In
the plasma at —L, < x < Ly, the time-averaged field is

27/
w
(E(x)) = 5 / F(x.t)dt (2)
0
and the oscillatory part of the field is
E(z,t) = E(z.t) — (E(x)). (3)
In the sheath, the averaged electric field that enters in the
electron kinetic equation is
ta(x)
/ B t)dt/(tz ).
hix)

(E(x)) = @)

Introducing potential energy e¢(x) that corresponds to the
field ((2) and (2)), we can write the kinetic equation for the
distribution function f(v,z,t) in the form:

af of eE
8t+b18w <m+

where = is the coordinate in the current direction, v is the
electron velocity, and S(f), S*(f) are the elastic and inelastic

edp \ Of .
mda;)%AS(f)’FS fH @

X
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€
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X

Fig. 1. (a) Schematic dependence of averaged electric plasma potential
(curve) and position of the plasma space-charge boundary (vertical lines) in
various moments. (b) The plasma space-charge boundary motion in the sheath.

collisional integrals, (E) = 0. The averaging procedure
described below represents a generalization of the method
described in [9]. With the substitution

muv2

€x = —2— + 6(254 Ve = 7—’1(6x~37) (5)

(4) takes the form:

of _ (ofN _ p 9f
5 + LI(E)Q = ﬁEll-(‘)E‘r

+S(f)+57(f) (©)

Separating the time-averaged and oscillating parts of (6),
we have:

”<Wﬁ)ﬂ:<£m§£>+ﬂun+9«ﬂ) )

ox €

Uf af ” a(f) 3 */ f

bl hES = ¢Ev, S 8

" +vr(am> Bu, S+ SN +5° (D) ®

where f = f — (f). (f)(x.€z.vy.v:). In order to solve (8),

we admit the widely used approximation for S(f) [10],
S(f) = —v(v)f

where v is the transport collision frequency, v = |¥|. For the

harmonical field E(z.t) = Eo(x)e™", neglecting S*(f) (as

v > v*), for large frequencies w > €2, (8) can be easily

solved:

eEv, Of)

f= T o ©
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So the equation for (f) is

, (0<f>> _ .9 E@Ej(x)
Uy ) —1)1061

VU,

af)
dx 2 v2 + w? Je,
+ S+ ST (10)

In the free-flight regime L <« A, the left-hand side dominates.
It vanishes if (f) is an arbitrary function from only three
arguments: {f) = F(ez, vy,v:).

Let us consider the trapped electrons with €, < e¢y, =
e¢(L,) being the potential of the plasma-sheath transition (see
below, Section IV). The condition v,(€,,z) = 0 determines
two turning points, x4 (e, ) (Fig. 1). Integrating (9) from «x_
to z corresponds to the space-averaging over the part of the
discharge cross section available for a given electron. After
this integration of (9), the equation for function F(e,,vy.v.)
results:

- Jd e?Ei(z) wv, OF
LF = lx— o/ 7w T2
(TOGI 2 w2420,
z_(€z)
&£
+ [ S*(F)dz/v, (11)
where
x4 (ex)
LF =- S(FYdz/vs.
2 (ex)

If the elastic-collision frequency v exceeds the inelastic one,
—S(F) ~ vF and LF dominates in (11). So the main
part of F' depends from the sole argument ¢ = ¢, +
m(z)§+1jf)/2(mdF(e_t,vy.vz) = fo(e)+6F (ex. vy, v;), where
§F/F < 1.LF = 0,LF ~ 2m/Mfy. As a rule, at low
pressure the energy losses in elastic collisions are negligible.
Consequently, the equation for fo(e) is

xy(er)

’ 3 [e2E2 (z)vv, O
dvy dv., dr— |22 = — fole
vy dv; / .L'861|: T 8€f0(f)}
m/2(v2+vi)<e r_(€,)
xr+ "
dr ,
+/——S (fo)| =0.
Vr
Changing the integrating order, we have:
24 (e) 2e—eo(x))/m
2 dz dv, D¢ ( :E)Ungf (€)
Oe Ve ell: 910N
z_(€) 0
x4 (€) V2(e—ep)/m
+ / dz dv,.S*(fo) =0 (12)
z_(€) 0
where
Ey(x))?
De(v,z) = (eEo(x))” v (13)

v +w? 2m?
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is the collisional velocity diffusion coefficient.

If in the inelastic collision integral only one excitation level
with threshold €* is important,

* . (VAT SRS
S*(fo) = —w(w) fole) + YLy
Jw

where w = w(e. z) = mwv? /2. So the equation for fy coincides
formally with the conventional local one [1]:

(w4 € ) fole + €)

O D 9 = T fofe)
—Vw + v (w + ) fole + €*) (14)
where the energy diffusion coefficient is
v (eEp)*w
+w? 3m
and the upper dash denotes spatial averaging:

DF{‘ =

x4(€)
G = / Gdx/(2Lo).
x_(€)

B. Fast Electrons’ Escape to the Electrode Surface

For high-energy electrons ¢ > ey, that contribute to the
electron density in the sheath during the plasma phase of it,
the main part of the EDF is also a function of e. But the space-
time averaging of E? and of the inelastic collision frequency
in (14) are to be fulfilled over the complicated area in the
(x.t) plane (it is bounded by thick lines in Fig. 1(b), where
€2 is the minimal electrode potential (Fig. 1(a))).

If we neglect the higher harmonics generation (according
to [11] and [12] for harmonic dependence j = josinwt, the
higher voltage harmonics are of an order of several percent),
the voltage between the discharge center and electrode can be
approximated as

U(t) = Up(l — coswt) + €3. (15)

For the high-energy electrons it is necessary to introduce
two additional terms in (14) that describe the fast electrons’
escape to the electrons at € > €2, and the stochastic heating
at € > e@gp.

At energies € > €, electrons abandon plasma. To do so for
an electron in a given place x in a moment ¢, it is necessary
to get after scattering into the escape cone. Accordingly, the
EDF at € > ¢, becomes anisotropic f(e. €, ). The escape cone
is determined by €, > eo. If

€— €9

< -1

€2
this cone is small, and if the electron scattering is isotropic, the
EDF outside the escape cone is also isotropic, f(€,€.) = fo(e).
Income to the escape cone term in the kinetic equation for
fle.ex) is v(w)fo(e). Electrons with energy €, > €2 at
wt = 27n (n = integer) abandon plasma with frequency:

1

Lo
dx
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in the moments when ¢, > U(t). The space- and time-

averaged escape frequency is (Ves) = ves(e,.2) 2 arcsin

(Cr - 52)1/2
Vo
So the EDF in the escape cone is
v(w)
J€p) = —_— 16
fleea) = fole) )+ o) (16)
The average escape rate is
L7
€ .
m_! dJ,/Wf(F.EI)<Ves(EI~I>>
= fo(e>[7—ﬁ} (17)
where
ﬁ . V Ves
Tes | Dt
A R o7
v Veg )A€
_ d . es €T .
2L0_L/ l/ ((Ves) + )/ — edla)

At € > ¢, this expression is to be added to the first term in
the right-hand side of (14):

Vv fole) = [V o7 + (Viofr) fol). (18)
The value of €5 can be found from:
3 L ¢ —_
el / h(e){ fﬁJ de =T, (19)
€2

that expresses the equality of electron and ion fluxes from
plasma; the ion flux I'; will be calculated in Section IV.

III. STOCHASTIC HEATING IN THE NONUNIFORM
FREE-FLIGHT RF DISCHARGE PLASMA

A. Stochastic Energy Diffusion Coefficient

The fast electrons which collide with the moving
plasma-sheath boundary can be heated by another heating
mechanism—stochastic heating. In this section we shall
discuss the main distinctions between stochastic heating in the
simple Ulam model [13] and in real self-consistent fields.

As the ion concentration decreases steeply in the sheath,
the majority of electrons are reflected by the strong field only
during relatively short time intervals [—¢1 (¢); t1(€)] (Fig. 1(b)).
So the value of the sheath velocity

dgp
dt

in the moments of electron collision with the strong field
boundary (and the intensity of stochastic heating) grows with €.
It is known [13] that the electronic motion becomes chaotic if

Vin =

the electron kinetic energy in the collision moment with a har-
monically moving sharp boundary does not exceed mwLyg Vs(ho) .
If the EDF anisotropy is small, the kinetic energy in the
collision moment (¢ — edgy,) is determined by the isotropic
motion and exceeds V2 /2 that is determined by electron
drift. It follows that considerable stochastic heating is possible
only if

w>Q  Ly> L. (20)

In the absence of the plasma oscillating field E(m.t)(ii), the
stochastic velocity diffusion coefficient in this case is [3]

ti(ex)

Dgi(er) = 2wQ(e,) / VAt dt’ 21

sh

0

where the exact expression for bounce frequency is

-1
Qe ) = {f d\l] 27
V2(er —eg(x))/m

The expression for Dy (21) is to be added to D.(v) in
the integrand of (12). As the energy losses are connected
with inelastic collisions and fast electrons escape, the electron
energy variation is slow compared with the elastic collision
frequency (1), and the EDF is close to isotropic in this case
also. So the argument of the EDF is ¢ and (12) can be averaged
OVer vy, vy, to give the total averaged energy diffusion
coefficient:

\/EDEE = \/E(ch
1 L
5/

0

+ Dsst)
d

€

/q@%@f@)

v eEy(z))?
‘ [1/2 + w? : Eor(r;)) ok DSL(GI)]. @

As in the free-flight regime, the electron collisions with sheath
are more frequent than with molecules, Dy > D..

For uniform ion density in the sheath (¢(|z| > Ly,) =
const), integrations in (21) are trivial and we have:

2 3/2
Do) = % {%} [2—} 23)

m

the result obtained earlier in [3]. But due to the ion-density
profile inhomogeneity, the real boundary motion is very an-
harmonic [11], [12]. For the collisionless sheath,

l‘sh(z :"‘Jf) - LP

L 11 .
= —|-2(3+2cos?z)cosz + 5sinz — ?SiIIJZ:'. (24)

S
The boundary displacement during —7/2 < z < 7 /2 is small:
(Tsh(£m/2) = L,) = L/9.

On the contrary, the sheath motion (24) in the second half-
period is fast and the maximal sheath acceleration value 3.6
times exceeds (w?L/2)— its value for harmonic law. In the
inhomogeneous plasma the electron motion at a given total
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energy € is restricted by the rather complex boundary that
consists of stationary and moving parts (Fig. 1(b)). Only
the electron reflections from its moving parts may result in
the energy diffusion. The averaging (21) and (22) can be
easily fulfilled only for high-energy electrons € > eggy.
For these electrons the whole boundary is oscillating (24),
and averaging for the harmonic current dependence gives
an additional factor of 1.58 in (23). The third significant
distinction between the real situation and the conventional
rigid wall model consists in the finite boundary thickness. If
the field profile in this region is exponential, with thickness
equal to the local Debye radius [14], the energy gain in single
reflection is Ae = 2m Vi (z)v/ch(w/woe(zsn)) decreases with
the frequency growth (wge(xsn), the local electron plasma
frequency in the reflection point). So the problem of the
stochasticity criterion is rather complicated and will be dis-
cussed in detail elsewhere. In (21), the oscillatory plasma
field E was neglected. In numerical calculations [6] it was
demonstrated that the influence of E leads to the reduction
of D¢, up to 20%. In order to reveal the origin of this
reduction, let’s consider the case of constant ion density in the
sheaths and the inhomogeneous profile in the plasma n;(x).
The oscillatory field in the laboratory frame is

dji(t)

en;(z) dt

As the sheath velocity Vin(t) = j(t)/(en;(wwm(t))), in the

frame moving with the boundary the effective field is

m dVy, s_m 1 1 dj

— +F= - .
dt ni(zen) mi(z)|dt

The mapping of electron velocities at successive reflections is

~ m

E(z,t)=—

E(z.t) = (25)

thsl

Av=vp11 — Uy = — /

where z(t) is the electron motion in the average field ¢(x).
So field E slightly lowers the velocity variation Av, and
consequently the stochastic velocity diffusion coefficient.

t).1) dt

B. Absence of Stochastic Heating for Trapped Electrons
and High-Frequency w > wp, Fields

For trapped electrons with € < edg,, the problem of
stochastic heating is more complicated. Interaction between
the RF field E and the stationary one d¢/dz can in principle
lead to stochastic heating. It is evident that the movement in
the “rigid wall” potential,

_fo, z € [0.L]
o) = { z =10.L]

o,

(26)

and RF field £ = Eysinwt is equivalent to the classical Ulam
model, where the free particle is colliding with the walls which
are oscillating with velocity,

V = —
m

E dt.

It is well-known that the stochastic heating arises in this
system.
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But the real potential ¢(x) does not have such a strong
peculiarity as (26), and as a result there is no stochastic heating
for trapped electrons. In order to prove it we use the resonances
overlap criterion [13].

The trapped electrons move in the potential e¢(x)+ U (t. x),
where U(t,.x) =e [ E(x.t) dr. 1t is convenient to introduce
the action-phase variables for Hamiltonian,

NLU

Ho(I) = 5

+ ep(x)
which are

Ho(I) = /Q(I)dl: 6 = Q).

In these variables,

— A

E Tk sin(kf £ wt).
k=1

The movement equation for Hamiltonian H = Ho(I)+U(t. )

becomes:

. OU
I= —L—ZAACO'% k6 £+ wt)
@7
6 =)+ dl’
B oI
For phase randomization, the fulfillment of w = @ is

necessary. So the resonances occur at Kyes = w/QIR1. The
resonance width is

A0\ 1Y?
<o fo )

From k{1 e,) = w, the distance between neighboring reso-

nances is
a2
61 = Q)| kyes—5 ) 28
afed)
The motion is chaotic when A7 = 61 {13]:
> 0?
Ao N ————.
= kpes(dQ2/dI)
For example, for the potential (26)
2eFyLg on?] 2muv Ly
o= . Q) = —. = —,
K k (1) 2m L2 2r
L=V/w. V = eEy/mw

and (28) in variables V. L. Lo, v, can be rewritten in well-
known form [13]:

v~ Van(Lo/L)Y2. (29)

For the smooth potential ¢(:z), coefficients Ay, are proportional
to e */k, where k* ~ 1 [13]. It is evident that (28) can
be fulfilled only for very low values of €2 that correspond to
very slow electrons. So the chaotic motion of trapped electrons
in the potential ¢(z) is practically absent and the stochastic
velocity diffusion coefficient (21) Dy¢(e;) =0 for €, <
e¢sn. The transition scale between the plasma and space-
charge regions is of the order of the Debye radius. So at
frequencies w > woc, the corresponding potential becomes
soft and, as was mentioned above, the stochastic heating also
“switches off.”
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C. Combination of Electron-Atom and
Electron-Sheath Collisions

If the stochasticity condition (29) is not fulfilled but w >
2, Lo < A, the combined mechanism [4], [15] of the fast
electron heating exists. The electron with ¢, > ey acquires
directed velocity Av, = +2V;, in the moments of collisions
with the space-charge boundary. The randomization occurs in
the electron—neutral collisions. It leads to the velocity diffusion
with Dy ~ V2v. As the ion density in the sheathes is small
compared with the central one, the values of V;, exceed the
oscillatory velocity in the bulk plasma, and D; can exceed the
conventional collisional coefficient.

The stochastic heating in the collisional regime Ly > A
manifests itself as the so-called “wave-riding” phenomenon
that was found in Monte Carlo simulations [4], [15]. If
A(e) = (x4(e) — L,)—the penetration depth of the electron
with energy e into the sheath—is great compared to A, the
collisional heating dominates. As the value of Vi,(A(e))
coincides with the oscillatory electron velocity in the plasma
phase, and interactions with the boundary are seldom com-
pared to the electron—neutral ones, the total energy diffusion
coefficient is determined by collisions [1]. So the “wave-
riding” is significant only if A(e) < A—the collisions in the
sheathes where F is great are almost absent. In this case, the
great directed velocity acquired in sheathes is dissipated in
the plasma volume where the value of E (and conventional
collisional heating) is small. If gap Lo is small compared to
the fast electrons’ energy relaxation length

AY = v /fve-

the corresponding term is to be added to the averaged energy
diffusion coefficient in (22) [3], and EDF depends only on e.
In the opposite case, the EDF is enriched by fast electrons at
distances < A* from electrodes {4], [15].

At low frequencies w < (2, the subsequent electron reflec-
tions from the space-charge boundary are correlated and the
stochastic heating vanishes. The usual collisional mechanism
is also strongly suppressed in this case.

IV. IoN DENSITY PROFILE AND BOHM CRITERION

The EDF can be calculated if the values of e (19), (34),
¢sh (33), and profiles ¢(x), E(z,t) are given. But these values
are to be found self-consistently via EDF. The ¢(x) profile at
w K wge can be found from the quasi-neutrality condition:

4m(2)1/?
m3/2

/ fole)(e=ed(x))/2de = ny(x). (30)

ed(x)

ne(r) =

The spatial dependence of E(x.t) is determined by (9) and
RF current conservation:

i) = e/vzdv,dvydvzf

_ Ane?B(x.1) ]°

3m

6f0 3 (31)

de v+ w ¢

ep(x)

The expression for ion density n;(z) is to be substituted

into (30):
o [t

where I(x) is the ionization rate in point z.

The potential ¢}, of the plasma—sheath transition can be
determined approximately by generalization of the well-known
Bohm criterion. It states that ¢, corresponds to the point
where for the quasi-neutral ¢(x) profile (30), (32) holds

/))1/2 (32)

oy
do —

Performing the Abel transformation and differentiating (30)
and (32), we have:

€Osh d]\/((ﬁ/) d(p/ ~
d¢'  (1—¢'/dan)/2

-1 (33)

where N(¢) = n.(¢)/n.(0) is given by (30). At ¢ > ¢g
the sheath begins, where (32) is not fulfilled and the ion
motion is determined by the averaged field in the space-charge
phase that far exceeds the plasma field ¢(x). In the nonlocal
case, the excitations and direct ionization are concentrated in
the central region [1]. So the significant simplification in the
sheath analysis is possible, if ionization here is negligible. This
being the case, results of [11] and [12] are applicable with the
accounting of the non-Maxwellian EDF,

As the radical in (33) is of the order of unity, it follows
that N(¢n) ~ 1; i.e., the contribution of fast electrons with
€ > e@psy in the central electron density is comparable with
the density of slow ones. The ion flux density at the plasma—
sheath boundary is given by

Osh
1/? dN /
1/2 / d¢'

0

¢’ d¢’

Fi: ben — ¢ )1/2

(34)

The central plasma density 7(0) and scaling factor for E(z,t)
can be found from:

Ly >
ri:_L/ d/) de ww*em(evm (35)

that expresses the charged particles conservation (v;(w) is the
ionization frequency).

V. A SIMPLE MODEL AND ANALYTIC ESTIMATES
As the values of D.x(22) rise steeply with energy, let us
consider a simple model with zero condition for EDF at e = ¢*
[3], and

\/EDez(f {Dl(e), at € < edsn (36)

2(6). at € > eggp.
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In this case the simple estimate of eggp/€*
From (14), it follows that

can be found.

=A | —/——.
!ﬁDE:(f’) G

If ¢ < €, it follows from (33)~(37) that in the lowest
order in ¢g, /",

o/2 2 (1=2 24,
t -1l Zt
/D1 ¢qht){ * Ty (t/2+1) 3

So we have for the power dependencies of Di. D> on ¢ an
estimate:

Gsh/€ ~ V/D1/Dy < 1.

For the numerical estimate, let us consider an example
with constant ion densities in the sheath (ng,) and plasma
(ng) : nen < ng.w > v. It corresponds to

2
D, = M(ﬁ) N
3 mw
2 2
Dy= —=h
2T WamdL,

(39)

(40)
at € > edup-

Such a model for D; = 0 was considered in [3]. Substituting
(40) into (38) and introducing approximation

vie) = vo(e/en)/?. ate < e
vo(e/€0)*/?. ate > €
Yy = 0.42 * 109p € = 1oV

that roughly describes scattering in Ar, we obtain for edqy, <
€0

€¢Sh = 3.9¢" AV Dl/DQ.

It is to be noted that in real low-pressure discharges, the
energy scale of the EDF tail can be considerable (350: €Psh)-
In this case the return term in the kinetic equation (last term
in (14)) is to be accounted for.

As a rule, several inelastic collisions correspond to one
ionizing one. So the electron-energy relaxation time that is
of an order of

€*?

DE\:(E)

is comparable with the ionization time and ion lifetime:

€2 ~\/—7
—_— *IM/L,.
Dg):(ﬁ*)< e*/M/Ly

From (41) we can estimate V. Substituting (41) in (29),
we obtain the stochastic motion criterion in the form of (1).

(41)
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