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A qualitative difference in the way irregularities in two-component and multicomponent plasmas decay is
demonstrated. In particular, it is shown that in a multicomponent plasma with hot electrons (electron
temperature much greater than the ion temperature) ion density discontinuities can develop. The discontinuities
can develop in a plasma with either positive or negative ions. Diffusive evolution in the nonfinear stage can
occur in several stages; the final stage can be controlled by the low ion temperature.

1. INTRODUCTION

The evolution of ion and electron density irregularities in
a two-component plasma (containing electrons and one posi-
tive ion species) is described by the ambipolar diffusion
equation. This equation is linear in the plasma density and
describes the decay of irregularities on the time scale L?/D,
(where L is the characteristic length and D, is the ambipolar
diffusion coefficient). However, the linearity of the ambipolar
diffusion equation results from complete cancellation of a
number of nonlinear effects. When a current flows through
the plasma and the mobility of the components depends on
the field, the evolution of a nonuniform plasma is highly
nonlinear and can be accompanied by the development of
discontinuities.! A similar effect also occurs in a multicom-
ponent current-carrying plasma. Extremely nonuniform time-
independent density profiles in the current-free nonisothermal
plasma of the positive column were obtained in electronega-
tive gases.2® Tsendin* interpreted this phenomenon as the
formation of discontinuities, while Daniels et -al.5:6 used
boundary-layer theory. It remains unclear how universal this
phenomenon is, how such profiles develop during the process
of evolution, and what the role is of the boundary conditions,
plasma chemical reactions, and transport processes in their
development. In the present work we show that the disconti-
nuities can arise even in the absence of plasma chemical
processes and far from the boundaries in a multicomponent
current-free plasma when the electron temperature 7, is much
greater than the ion temperature T;. This situation is encoun-
tered, e.g., in gas discharges. The thickness of the disconti-
nuities is determined by the ratio 7;/T,. The initial ion and
electron density profiles which give rise to a jump are deter-
mined by the condition that the time for formation of the
jump be much less than the time required for an electron
profile to smooth out. We show that discontinuities develop
in three cases:

1) when the ion mobilities are very different (for a plas-
ma with negative ions less mobile than the positive ions);

2) when the initial ion density gradients are larger than
those of the electrons;

3) for a plasma containing negative ions the discontinu-
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ities develop near walls with zero boundary conditions.

The diffusive (current-free) evolution of a small pertur-
bation in an m-component nonuniform plasma corresponds to
m — 1 values of the relaxation time. If these times are very
different, then we can distinguish m — 1 stages of the diffu-
sive evolution.)) The nontinearity can give rise to convective
motion of the plasma irregularities, an increase in the nonuni-
formity of the ion component in the course of evolution, and
also to new stages of the evolution.

2. FORMATION OF DISCONTINUITIES IN A
MULTICOMPONENT PLASMA

Let us consider a quasineutral plasma containing two
types of ions whose density will be denoted p and n. In this
case the evolution is described by the system of equations

an a a on
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everywhere in what follows the upper sign corresponds to the
case in which the n ions are negative and the lower sign to
that in which they are positive; n, is the electron density.

From the condition for the absence of current in the
system we have

_Dp FDn - Dpn, 5
T bptbatidn, @

From (2) it can be seen that if the electron density and its
gradient are not too small, then the electrons are described by
a Boltzmann distribution.

We assume T, >> T;. Ion diffusion can be disregarded
if the electron density gradient is not too small:
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FIG. 1. a) Density profiles of the positive ions p (1, 2, 3, 4) and electrons », (1’, 2', 3, 4’) for D = 0.1, T;/T, = 0.01 at four
times 7 = 0, 12.8, 20.5, 300. b) Plot of y = [maxld"'n,/dlel'1 as a function of time. The initial profiles were p(x, 0) = 4(1 +
cosx), nfx, 0) = n(x, 0) = 2(1 + cosx). c) Evolution of a plasma with positive ions. The initial density profiles of the less mobile
ions: 1) p(x, 0) = 4 exp(—xz); of the more mobile ions: 1') n(x, 0) = 1; 2) p(x, 1) for r = 5; 2') n(x, 1) for t = 5; the ratio of
mobilities was D = 0.1.
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Measuring the spatial coordinate in units of the characteristic The self-similar solution for + >> 1 takes the form
length scale L of the electron density and the time in units of n ‘—x
12 1 —t_= - a7 }
T,L%D,T,, we find PN bix—x)® ( = t)' (4)

%‘% = VDpV Ia (n), %’ti =V (Dp+n)Vin(n),

s ©))
a—’:= F¥VaVin(n,), n,=p¥n,

where D = D,/D,. We begin by considering the case D <<
1.

2.1. Evolution in a Multicomponent Plasma with
Very Different Ion Mobilities

a. Negative-ion plasma. From (3) the evolution of a
small perturbation takes place in two stages.® During the first
stage (for 1 << 1) the positive ions remain practically fixed,
the negative ions are gathered together by the field near the
maximum of n,, and the electron profile becomes flattened
out. The second stage is characterized by the slow time of the
same order as the ion ambipolar time (~DT,/T) L.

The case in which the average electron density (n,) is
greater than the initial positive ion density pg(x) at some point
is of interest,* Then as the electron density evens out the
negative ions leave this region and n, approaches pgy(x).
Wherever po(x) > (n,) holds the density n, becomes essen-
tially uniform (Fig. 1, traces 1 and 1’). Consequently, after a
time 1/D >> t >> 1 an n, profile develops which consists of
constant density regions (within which » # 0 holds) and
regions where n, = pg(x), n = 0. At the boundary between
these there is a jump in the derivative dn,/dx (the point 4 in
Fig. 1a). Let us estimate the time for such an n, profile to
form, assuming that the positive ions are stationary. In region
II the density n, equilibrates at a characteristic rate v; ~
(n/n,)32py/dx? due to ambipolar diffusion of the electrons and
negative ions. In region I, where n, - py(x), the negative ion

" density approaches zero at a rate y, ~ d2py/dx2. At the
boundary between these regions a kink in the electron density
profile develops. Near this point (point A in Fig. 1a) the py(x)
profile can be replaced by the linear function po(x) = 1 +
b(x — x4), and from Eq. (3) for the electrons we have
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where $(— o) = 0 and $(+ o) = 1. From (4) we see that
the radius of curvature of the n,(x, r) profile must decrease
linearly as a function of time. Figure 1b shows the time
dependence of max |32n,/3x?| obtained by solving the prob-
lem numerically. The linear portion is shown by the broken
trace.

The next intermediate stage of the evolution is character-
ized by the ambipolar time of the electrons and positive ions,
I/D. In region 1I, where there are negative ions, dn/dx = 0
holds and the p(x, ) profile remains essentially constant and
equal to p = py(x) as a function of time. In region I, where n
= ( holds (to the right of the point A in Fig. la), the posi-
tive ions diffuse according to the ambipolar diffusion equa-
tion. Let us consider what occurs at the boundary between
regions I and II. The positive-ion flux to the left of the boun-
dary (Fig. la), where n # 0 holds, is equal to zero, while on
the right side we have T\, = —D[(p/n,)(3n,/0x)] = —Dadpl/dx.
The discontinuity in the value of the flux is associated with
the fact that at this point a jump develops in the densities of
the positive and negative ions moving toward small values of
I, and large values of p (traces 2, 2’ and 3, 3’ in Fig. la).
The velocity V with which the jump moves must be deter-
mined from the condition for flux conservation in the system
moving with the jump. For x = xj,,, this flux is —Vp —
Ddp/ox = const, from which we have

Doap/ox
e ®
where py = pOjump £ 0), PN = Po(Kjump)-

The electron density cannot be discontinuous, since its
derivative determines the fluxes of positive and negative ions
(a jump in n, would yield infinite fluxes I', and T',). This
means that the jumps in the positive and negative ion densi-
ties are equal: p, — p_ =n, —n_. Butatx = Xjump the
profile of n, has a kink. The velocity (5) of the jump is pro-
portional to the difference in the values of dn,/3x to the right
and to the left of the kink.

. D. Kaganovich and L. D. Tsendin 646



As a result we find that the evolution of the positive-ion
profile is described by the system of equations

3 92
—a% = DFxE’ forx > Zjump
' (6a)

Pp=py(x) forx <ux,

mp-
An additional condition on p,(Xj,,,) at the jump can be
found from conservation of the total number of negative ions,

a“ivmv

% I ndx = 0.

0

Noting that in region II we have n = pg(x) — n, and in
region [ we have n, = p,, and taking into account expres-
sion (5) for axjum,,/ar =V, we find

/] 3
b axl X=Xjump+0 + Xjump ﬁp. =0, (6b)

The numerical solution of the system (4), (5) is shown in Fig.
la. We consider the initial stage of formation of a jump for
the case in which the initial profile n.(x) already has a kink:

n(x,t=0)= {p. (x) for x<ux,
Py (%) for x>x,.'
and the po(x) profile is smooth. At r = 0 we have p, = p_,
and the velocity (4) of the jump diverges. At early times ¢
<< 1/D the location of the jump can easily be found analyti-
cally. Then the difference p, — p_ grows essentially due to
the change in p_:

s ap p .
3z B- = P.) = 3L (V + Dixyy) = VB% (since V 3> Dixy,p.).

The position of the jump is determined by the equations
vp.-p)=DL
- P, ax L]
2o -py=vE
atP- P = Vo

from which we have x;,,,, = x4 — V/Dr.

To describe the formation of the jump we rewrite Eq.
(3) in terms of quantities which are conserved as we pass
through the jump: n,, dn,/dt, and the electron flux T,. Ex-
pressing dn,/dx in terms of T, and substituting into the equa-
tions for the ions we find

o, 3 Dp+ndn

aa ox =n ax '
n an, ' @)
on 1 on Dn, i Dn I
== [,l =t .. X X
o Dp+n "3t "¢ Dp+n ]

Near the point A the first*and third terms on the right-hand
side of the equation for » are small, since n(x,) = 0 holds.
Near x = x, it can therefore be written in the form

on an
S tUms=0 ®
where the signal propagation speed is

DU, (92)

UM =~ on v n(I + D)F
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This equation describes the steepening and breaking of the
n(x) profile.® The velocity U(n) increases as n decreases, with
the velocity U in the region of small n < D being larger than
the velocity in the region n ~ 1 by a factor 1/D? >> 1,
Negative ions will therefore be gathered toward the center
with a velocity which increases strongly near the periphery of
the density profile n(x), which is the reason for the formation
of a jump. The time for the jump to form is

ﬂi"_o] -

L :
Jump = min [ an ox

where ng(x) is the negative-ion density profile after the region
n = 0 has formed. Using the expression (9) for the velocity
U, we find for the time of formation of the jump

(1+D)T, dpy/ dx -1
Doy ) (19)

In the limit D << 1 the time for the kink in n.(x, ¢) to form
I8 fymp ~ D << 1, i.e., when a real profile evolves the
jump in » and p develops simultaneously with the kink in the
n, profile.

The jump moves toward large values of py(x).- As time
increases the kink in n,(x, ) [which according to (5) is re-
sponsible to its motion) decreases. At the end of the interme-
diate stage the n, profile flattens out and the profile stops
(traces 3 and 3’ in Fig. la).

The third slow stage corresponds to smearing out of the
remaining irregularity of the ion density profile over a time
on the order of the ion ambipolar time with an effective
diffusion coefficient D g = Tibyb,(p + n)/(b,p + byn).

b. Positive-ion plasma. In this case the situation is
substantially similar to that described above. The main differ-
ence is that the highly mobile positive ions do not collect
under the influence of the field (2) at the point where n, is
large, but rapidly leave these regions. After a time of order
unity (the ambipolar time of the electrons and the mobile
ions) an n, profile can develop with a kink and a jump can
arise in the ion densities. The intermediate stage of evolution
is described by (5) and (9), with (9a) replaced by

ljump: [

DT g, (9b)

U™ = Dn. +n(l-D)F"

Figure Ic shows profiles with a jump that has developed at
the end of the intermediate stage as a result of the evolution
in a plasma with two types of positive ions with very differ-
ent mobilities. These profiles are the initial conditions for
ion—ion ambipolar diffusion.

2.2. Formation of Jumps in a Multicomponent Plasma
with Ions of Comparable Mobility (D ~ 1)

From the system of equations (7) we see that jumps can
also develop in the case D ~ 1. In this case, however, the
time for the electron profile to flatten out is comparable with
the time scale on which p(x, r) evolves, so that the kink in n,
and the jump may be able to form only for a particular choice
of the initial conditions. Over the characteristic time r,, ~
[Dd2n,/ndx?]~1 the electron profile flattens out and the
subsequent evolution of the ion profiles occurs only on ac-
count of ion ambipolar diffusion, which is not included in
(7). Consequently, the condition £, < /,, for the formation
of a jump after the substitution (9a) reduces to

I. D. Kaganovich and L. D. Tsendin 647



0

1 2 x

FIG. 2. a) Density profiles of the negative ions in an electron n,. The initial density profiles: 1) negative ions n(x, 0) =
2exp(—11(x — 7/2)%); 1') electrons n(x, 0) = 2(1.1 + cosx); 2) profile of n at ¢+ = S5; 2') profile of n, at 1 = 5. b) Density
profiles for two species of positive ions (p are the less mobile, and » are more mobile, D = 0.5). The initial density profiles were:
1) p = 1.5(1 — tanh(5(x — 1))); ') n = 0.5(1 + tanh(5(x ~ 1))); 2y p fort = 2.1; 2y nfor¢ = 2.1.
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where n, is the electron density at the point where a jump
forms and N, is the total number of electrons | n.dx. From
condition (11) it follows that a jump can develop in three
cases: 1) in the case D << 1 already treated; 2) for D ~ 1,
provided that dng/dx 2 dn,/ox holds; and 3) for D ~ 1,
when 7, is small at the point where the jump forms.

From (9b) we see that jumps do not form for D = 1 in a
plasma with two types of positive ions. This case corresponds
to ordinary ambipolar diffusion. Figure 2a shows the evolu-
tion of the initial negative-ion and electron profiles ng(x) =
2exp((—x — 7/2)%/0.1) and n, = 2(1 + cosx) for D = 1,
The condition for the absence of transmission (vanishing of
the derivative) is imposed at the bounds. The negative ions
are displaced toward the maximum in the electron density.
Since the velocity U(n) given by (9a) and (9b) decreases as a
function of density, a jump develops at the trailing edge.
Steepening of the trailing edge of the negative-ion profile and
flattening out of the leading edge are clearly exhibited in Fig.
2a. As already noted, the system of equations (7) is un-
changed to within signs under interchange of negative and
positive ions. Jumps should therefore also form in a plasma
containing two types of positive ions. Figure 2b shows the
evolution of the initial positive-ion profile p, = 1.5(1 —
tanh5(x — 1)), p, = 1.5(1 + tanhS5(x — 1)), b, /b,, = 0.5.
Just as in the case when the ratio of the mobilities was small,
the more mobile ions attempt to leave the region where the
less mobile ions are located. In consequence, a plasma with
two types of ions tends to separate into regions with only one
type of ion.3

Thus far we have restricted ourselves for simplicity to
the case of solid-wall boundary conditions dn,/dx = 0. Let us
consider the more realistic zero boundary conditions, which
describe rapid plasma recombinations at the walls. According
to (10), a jump should develop in a plasma with negative ions
near the wall. Figure 3 shows the formation of such a jump.
The initial ion density profiles have the form py(x) = 2(1 +
cosx) and ng(x) = 1 + cosx for D = 0.5.

Just as in the case of the problem of transport with a
nonlinear velocity,®19 the thickness of the jump is determined
by the small terms with the highest derivatives discarded in
Eq. (3). They correspond to violation of quasineutrality and a
small ion diffusion (determined by ion temperature 7, <<
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T,). Let us consider the case in which the Debye radius is
small compared with the thickness of the jump, so that quasi-
neutrality holds everywhere. Then in the coordinate frame
moving with the jump velocity V, the ion fluxes are con-
served at the jump, and taking into account ion diffusion we
have

on T,
=0l _udn, o n,=p-n,

(12)

=-Dp. DT op
L, n, ox T, ax+Vp'

The boundary conditions can be written in the form
np->n; p, for x» %o,

an, on,

———— P
0x ox 1=

From the boundary conditions it follows that the jump veloci-

for x =+ * .

“ty should be determined by the values of the boundary densi-

ties and the derivatives dn,/dx. To lowest order in T/T, we
find in analogy with (5)

D on, D an,

V=_Dp_+n_ 6x|*=—Dp.+n.K" 13

Using the value (13) for the velocity, we can easily
obtain an equation from (12) for the change in # at the jump:

T,on _ (1 + D)on/oxl, (n—n)(n_~n)
T, ox Dp_+n_ ptn

(14)
For the cases considered above we have n, = 0, and the
length scale at the jump is equal to

- n - Ttnt (n + nl)
Ly = onfax ~ Tpn_onjox |+

In our calculations (see Figs. 1-3) the thickness of the jump is
generally determined by numerical diffusion. The steep por-
tions of the profiles correspond to from one to three grid
points. Since at the jump n varies from n_ to 0, for n_ >>
n, the length scale /(x) decreases sharply as n approaches
zero. Hence the function n(x) becomes markedly steeper. It is
possible in principle for jumps to exist in which n, = 0
holds. However, such jumps result only for special initial
conditions, when the initial density profiles are very nonuni-
form,
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FIG. 3. a) Density profiles of the negative ions. The initial density profiles were: negative ions # = (1 + cosx); positive ions p=
2(1 + cosx); ratio of mobilities D = 0.5; zero boundary conditions were used. The numbers label the density profiles of the nega-
tive ions at times (/): 1) 0; 2) 1; 3) 5. b) Density profiles of the positive ions; conditions as in Fig. 3a.

3. EFFECT OF PLASMA CHEMICAL PROCESSES
ON THE POSSIBILITY OF JUMP FORMATION

In many practical applications it is important to take into
account processes by which electrons and ions are converted
into one another. These processes tend to establish a plasma
with equilibrium composition. At the jumps the electron
density remains discontinuous, while the ion densities break
up. The processes by which ions and electrons are converted
into one another, so whether or not a jump can form depends
on which takes place more rapidly, profile steepening due to
transport on the time scale (10) or establishment of a plasma
chemical equilibrium.

Let us consider the effect of the processes encountered
most frequently in electronegative gases: attachment and
detachment of electrons. Equations (7) take the form

_p0pn
ot D

dxn, ox’
(15)
on - ilan-
at ax n, 9x + an, — fn,

where o and 8 are the electron attachment and detachment
probabilities. Expressing dn,/dx from the first equation,
substituting into the second, and discarding terms not respon-
sible for the formation of a jump, we find {similar to (8) and
(%))

%=—U(n\g—:+ap—(a+ﬂ)n. (16)
The first term describes the formation of the jump, while the
second describes the establishment of equilibrium between
electrons and negative ions over a time of order (8 + «)™!
with constant negative-ion density. Let us consider the forma-
tion of moderate-sized jumps, from which n differs little from
the equilibrium value n, = (8 + o)p/a. Then for a small
deviation # = n — n, Eq. (16) can be rewritten in the form

& (vmy+ ¥ a7

on -
Y n ax—(a+B)n.

LALLM

Using the substitution x = £ + U(ny)t, fi = ce—(@+8Y and 7
= (1 — e~ @+®/(a + B) we find from (17) and equation
for c(x, 7):

dc _ 13U ac
9T T 2 9n e, 0k (18
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Since 7 < l/(a + () holds, a jump can form only if we have

ong
— >
v, 3% a + .

_U
an

Thus, in a three-component plasma plasma chemical
processes compete with breaking of the profile and cause the
jumps to decrease or disappear. When more than two types of
ions are present in the plasma and plasma chemical processes
can be separated into fast and slow processes, more compli-
cated jumps can develop, similar to shock waves in a gas
with chemical reactions.?:!0 The structure of a jump is then
determined by ion diffusion and the fast plasma chemical
processes. Situations are possible in which the density pro-
files in the jump consist of steep and gentle sections (similar
to the viscous jump and relaxation zone of a shock wave in a
reactive gas). This situation was considered by Tsendin et
al.1.® for the case of a semiconductor plasma with a current
consisting of four types of charged particles (electrons, holes,
charge centers, and traps).

4. STEADY PROFILES IN A BOUNDED MULTI-
COMPONENT PLASMA WITH PLASMA
CHEMICAL REACTIONS

It is well known that smooth quasisteady solutions con-
taining regions of sharp variation can develop in two cases:
because of nonlinearity in the dependence of the flux on
density and because of the effect of boundary conditions. In
the former case these regions were called jumps, and in the
latter case boundary layers. However, intermediate cases are
also possible, in which a region develops where the density
changes abruptly due to both factors. Such solutions were
found by Tsendin* and Daniels et al.>® in analyzing the
positive column of a negative-ion discharge. Just as in the
case of a jump, the scale length on which the functions
change within this region is shorter than in the surrounding
plasma. On the other hand, like a boundary layer, these
regions result from the presence of boundaries.

Consider the structure of such regions for the case of the
steady solutions (15) including the ionization Zn, in the right-
hand side of the first equation (15). These equations can be
conveniently rewritten if we distinguish derivatives only of n,
and n,/p. Multiplying Eq. (15) by the weight coefficients 1/D
and 1, expressing dn,/3x in terms of the positive ion flux T,
= { Zn,x, and substituting these into the equation for the
negative ions, we find
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d®n,

<& = (a+2Z/D)n, = Bn, (19)
Tnt g nzZy = _
BE (B (g @

Let us begin by considering the case 8 >> o >> 1.
Then we have Z = 1 (Ref. 4) and n << n, holds every-
where, so that (20) can be rewritten in the form®

nd Bnn,
dix () = [F-n) @1

This equation describes a boundary layer consisting of an
electron—ion plasma with a scale length

r -
=2~ ™ - o™, 22

corresponding to the transition from n/n, = 0 at the boundary
to n/n, = a/f in the central region of the column. As «
increases the thickness decreases, and for o« ~ 3 the nonline-
arity of the drift velocity [the coefficient on the left-hand side
of (21)] becomes important. It leads to steepening of the n,/n
profile as we move toward the central part of the plasma. In
the limit « >> B >> 1, Z the thickness of the boundary
layer is of order o—1/2, as before.

But the scale of the transition decreases sharply in accor-
dance with (22) when the ratio n/p approaches f/a << 1 as
we move away from the wall. This part of the boundary layer
was therefore treated in Ref. 4 as a jump. The right-hand side
of (19) decreases sharply, which corresponds to the occur-
rence of a kink in dn,/dx, similar to that treated above in
Secs. 2 and 3. Calculations® also show that a kink in dn,/dx
occurs in this case for x = o~ 12,

The structure of this jump which separates the boundary
layer from the attachment—detachment equilibrium region
can easily be found as follows. Taking n, to be constant and
neglecting terms proportional to Z, we find from Egs. (19)
and (20) the equation

n, an, an D
;+'E‘ln(T+B)=T’——x, (23)
Its solution describes an exponential approach to the equilibri-
um n,/p = Bl/a over a distance of order l/a given by Eq.
(22) and a power-law approach [when it is possible to disre-
gard the variation in n,/p in the argument of the logarithm of
Eq. (23)] to an ordinary boundary layer for p/n, ~ 1, where
now it is necessary to take into account the variation of n,.
More complicated structure develops in the case 8 <<
1, « << 1 (Refs. 4 and 5). A linear estimate shows that the
boundary layers of an electron—ion plasma in this case
should merge and occupy the whole discharge cross section,
similar to the behavior observed when Poisseulle flow devel-
ops in a tube. However, the vanishing of I', at the center of
the discharge implies that the drift velocity [the coefficient on
the left-hand side of (20)] becomes very small, a region
occurs in which n(x) increases abruptly, and an ion—ion
plasma forms. The physical reason for this is that the densi-
ties averaged over the cross section must satisfy (m)/(n,) =
a/B, while nearly the entire volume of the column is occupied
by an electron—ion plasma. Daniels et al.> termed this phe-
nomenon column contraction. It should be noted, however,
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that the current density, electron density, and rates of ioniza-
tion and attachment are distributed uniformly over the cross
section — only the n and p profiles are highly peaked. The
boundary between the electron—ion and ion—ion plasmas in
this case can also be treated as a jump.# Its structure is quite
complicated.4* The negative-ion density in the center is ng ~
an,/(Bry), where ry is the radius of the ion—ion plasma.
From (20) in the center of the column we have 8ng = /D,
whence r; ~ o << 1. Over distances of order ry we can
treat n1, as constant. Then Eq. (20) has the solution’

(3-8 (24)

* = n, ez’
(l+a—;)

where B = BD/Z and & = aD/Z.

The solution of (24) describes a plateau for small values
of x:

n=n/@+ (x/3)"P) (25)
and an abrupt transition at x ~ & to the solution which de-
scribes the region x > ry:

_ dn, (x) 1 _
"=T-F ((silix)“’ l)
The typical width of the transition region is n/dn/dx ~ Ba
<< ro.

We are indebted to E. L. Levin and V. A. Shveigert for
assistance in performing the numerical calculations, Yu. E.
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DWe will assume that quasineutrality develops over a time ~(470)~!,
where ¢ is the plasma conductivity (cf. Ref. 7), which is small in compar-
ison with the diffusion time; this stage will not be treated here.
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