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It was previously discovered that a high-frequency (hf) capacitive discharge may be
characterized by two values of the normal current density. The causes of the inhomogeneity of
an hf discharge across the current flow at intermediate pressures under the low-current

regime have been investigated. It has been shown that the stability of a discharge is strongly
dependent on the type of electrodes: in the case of metallic electrodes the stabilizing influence of
the sheaths at the electrode boundaries is four times weaker than in the case of electrodes

coated with a thin dielectric layer. Perturbations extending along the current, which do not affect
the sheaths at the electrode boundaries, are most dangerous for instability associated with
stepwise ionization. Both these findings indicate that an assessment of the stability on the basis
of the slope of the current—voltage characteristic may be erroneous. It has been concluded

on the basis of a comparison of calculations and experiments that the low-current regime in argon
and nitrogen is associated with superheated instability and that the main type of instability

in helium is not thermal. It has been shown on the basis of an analysis of the boundary between
the plasma region and the periphery that in the case of superheated instability of a discharge

with dielectric electrodes, the normal current density is 1.5 times greater than the value of the
current density at the minimum of the current—voltage characteristic, while the
corresponding voltages differ only slightly. The structure of the transition region is important
when discharge regimes with two minima on the current—voltage characteristic are

considered. In particular, it has been shown that under certain conditions the stable states may
not adjoin one another, and the multiplicity of the forms of the normal current density

may result in a dependence of the form of the discharge on its history. © 1994 American Institute

of Physics.

1. INTRODUCTION

It is widely known that a high-frequency (hf) capacitive
discharge at intermediate pressures can fill only part of the
electrode gap in the transverse direction to the current and
that it may be unstable toward transverse perturbations. The
processes involved in the formation of two-dimensional
structures in an hf discharge have been studied to a small
extent. In some cases two minima corresponding to two val-
ues of the normal current density j,; <j,, were observed ex-
perimentally on the current—voltage characteristic.! This
raises the question of the nature of the instabilities which
lead to specific spatial forms of a discharge. In a weakly
ionized plasma of inert gases there are several instability
mechanisms, which can, in principle, lead to confinement of
a discharge. It is often difficult to single out one of them,
since the regions for the existence of instabilities of different
types may overlap. At the same time, a quantitative descrip-
tion requires exact knowledge of the instability mechanism
realized under given conditions. One of them, viz., the ther-
mal mechanism of instability in an hf discharge was dis-
cussed in Ref. 3, but no comparison with experiment was
made.

At very low concentrations of charged particles, at which
a quasineutral plasma does not exist, an instability associated
with a transition from a regime with free diffusion of the
electrons to ambipolar diffusion can appear. This instability
results, for example, in relaxational oscillations in gas-
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discharge tubes at low currents.* In an hf discharge this in-
stability can results in an effect like a normal current density
at ion concentrations ~T,/4weL3, where T, is the electron
temperature and 2L is the electrode spacing. However, in
our experiments a normal current density with j,, was ob-
served at concentrations one to two orders of magnitude
greater. Just as in dc discharges,2 instability can be caused by
instability of either the sheaths at the electrode boundaries or
the plasma itself. The transition of a discharge to the regime
with the high normal current density j , is accompanied by
abrupt restructuring of the sheaths at the electrode bound-
aries. Therefore, it is naturally associated with the transition
of the discharge from the a form to the y form, under which
the current—voltage characteristic of the sheaths becomes
descending.>

The calculation method is described in the second sec-
tion of this paper. In the third section it is concluded on the
basis of a comparison of calculations with experiment that
the low-current regime in Ar is associated with thermal in-
stability of the bulk of the plasma. In He thermal instability
gives a descending current-voltage characteristic at pressures
several times greater than the experimental values. There-
fore, the main mechanism of the instability observed in He is
not thermal. In nitrogen the difference is less significant, but
other instability mechanisms besides the thermal mechanism
must also be taken into account to achieve agreement with
experiment.

The constant displacement voltage V,. between the
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plasma and an electrode in an hf discharge is known to be
caused by the field in the space-charge sheaths at the elec-
trode boundaries.! In an asymmetric discharge the character-
istics of the sheaths are different. Consequently, a constant
potential difference appears between electrodes not short-
circuited at a constant current. If the electrodes are connected
at a constant current, the sheath adjacent to the larger elec-
trode undergoes significant restructuring. Here the electron
concentration profile touches the smaller electrode once dur-
ing each period. In the case of the larger electrode, the sharp
(with a width of the order of the Debye radius) boundary of
the electron profile oscillates far from the surface. Thus a
region of ionic space charge is continually adjacent to the
electrode. A similar situation arises, if the current density or
the ion concentration profile is inhomogeneous along the sur-
face of an electrode (in the Y direction). If a constant current
cannot flow along the electrode (a split electrode or an elec-
trode with a dielectric coating), a profile of constant potential
V4.(y) relative to the plasma forms on its surface. This effect
was observed experimentally in Ref. 5. In the case of a me-
tallic electrode in a plasma that is inhomogeneous along y,
the potential difference V. should not depend on y. There-
fore, the electron profile touches the surface only at certain
points. The parameters of the sheath at those points are the
same as at the dielectric coating, and at other sites the sheath
is thicker over the metallic surface than over the dielectric
coating. Therefore, the stability of an hf discharge is greatly
dependent on the type of electrode employed. It is shown
below that in the case of an « discharge the contribution to
the decrement caused by the stabilizing action of the sheaths
is four times smaller in the case of a conducting surface than
in the case of a dielectric surface. Therefore, the stability of
a discharge cannot, in principle, be evaluated on the basis of
its one-dimensional current—voltage characteristic (which
does not depend on the properties of the boundary surface).

Since the sheaths have a stabilizing influence in the case
under consideration, two-dimensional fluctuations in which
k,>k, and the perturbations of the sheaths are minimal may
be most dangerous. They are also not subject to analysis on
the basis of one-dimensional current—voltage characteristics.

As a result of the interaction between the plasma and the
sheaths, complex two-dimensional structures,® which are not
always confined to the phenomenon of a normal current den-
sity, can form in an hf discharge. For example, as the elec-
trode spacing is smoothly diminished, the discharge column
burning in an « form breaks up into several (~4-6) columns
of smaller size when the electrode spacing becomes compa-
rable to the sheath thickness.

A discharge burning under the conditions of the low nor-
mal current density j,;, which is governed by a thermal in-
stability mechanism, is considered in the fourth section of
this paper. The value of j; is found for the case of dielectric
electrodes at small degrees of heating of the gas in the quasi-
one-dimensional model (in which the characteristics of a dis-
charge along the current are determined only by the local
value of the current density and the voltage on the elec-
trodes). It is shown that the value of the normal current den-
sity does not coincide with the minimum of the current—
voltage characteristic. The difference between the current
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values reaches a factor of 1.5 [see (32)]. The values of the
normal current density and the corresponding voltage should
be determined from the condition for the existence of a
smooth transition region between the center and periphery of
the discharge, where the concentration of charged particles
tends to zero. Since this transition is determined by diffusion
and heat condition in the model, the parameters of the nor-
mal current density depend on the ratio between them. The
transition itself may have a structure. For example, when
there is little diffusion in comparison with recombination, the
temperature profile of the gas “overshoots” the concentra-
tion profile, and its temperature remains significant in a re-
gion where the plasma concentration is nearly equal to zero
(Fig. 4).

The analysis of the transition region is also important for
analyzing the effects at high values of the current density
j=1Juz In particular, it is shown in the fifth section that under
certain conditions transitions between stable states are for-
bidden. This places some restrictions on the form of a two-
dimensional discharge and results in a dependence of the
form of a discharge on its history.

2. MODELING OF A ONE-DIMENSIONAL hf DISCHARGE AT
INTERMEDIATE PRESSURES

A. Calculation of discharge parameters

We performed quantitative calculations, which made it
possible to evaluate the parameters of a discharge: the
plasma concentration, the fields in the sheaths and in the
plasma, the ratio between the displacement current and the
conduction current, the sheath thickness, etc. The calcula-
tions were performed according to the method in Refs. 7 and
8 using the averaged motions of fast electrons. The averaged
equation for the ion concentration has the form

d

= =(n~(R), M

dn

( _Deff E +Vn
where D is the effective diffusion coefficient, which is
equal to the sum of the ambipolar and high-frequency
coefficients,” V is the velocity of the ions in the sheaths,
which is governed by the mean field of the ionic space
charge (3a), {IY=(n,b,aE) and (RY={(Bnn;) are the time-
averaged ionization and recombination rates, and « is the
Townsend coefficient.

In contrast to Ref. 7, corrections of the order of (w7),
where o is the frequency of the field and
7=71(x)=(4men,(x)b,) " is the electronic Maxwell time,
were included in Eq. (1). These corrections were confined to
the fact that the amplitude of the oscillator field Ey(x) in the
plasma region was calculated from the formula

Eg(x)=jow/(b.n,); w=((w1)’+1)"'" (2)

Therefore, we used the following interpolation for V(z),
where z= w¢, which is valid for w7<1 and gives the correct
expression for the sheath thickness when w™> 1,

V(z)=4b;jow(sin z—z cos z)/w (3a)
and the equation for the boundary of the spatial distribution

of the electrons
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TABLE L

Gas bip bep, c, G, Ao,
10° cgs units(10® cgs units| cm™ - Torr™’ | (Viem-Tom)'? 10" *W/cm-deg
Ar 3 1.3 29.2 26.6 1.8
He | 46 2.6 44 14 15
A -]
Ny 4.6 1.3 24.4 264 2.4
dz ewn(x)
— sin z= — . (3b)
dx Jow

The expression for ionization under the assumption of
local field dependence (2) was written down in Ref. 7 [Eq.
(42)]. Thus, the calculation gave self-consistent profiles of
the ion and electron concentrations and the distributions of
the fields in the plasma and in the sheaths. The errors in the
model are due mainly to three factors: the assumption that
the electronic distribution function has a local character, the
choice of the approximate ionization model [see (5a) and
(5b) below], and the assumption that the electron concentra-
tion profile has a sharp boundary. In other words, it was
assumed that the potential drop in the sheath is much greater
than the electron temperature, so that the Debye radius (over
which n, varies abruptly) is small compared with the sheath
thickness.%”

The calculations in Ref. 3 show that the nonuniform
heating of the neutral gas must be taken into account already
at comparatively small currents. Since the bulk of the energy
imparted to the discharge is utilized to heat the neutral gas
under the conditions considered, its temperature is described
by the equation

d NT dT+ Ej)=0 4
7 MDD = +(Ej)= 4
with the boundary conditions

T(x= iL0)= To.

In (4) the evolution of Joule heat was calculated with
consideration of the fact that the dependence of the plasma
concentration profile on T(x) is mainly due to the sharp de-
pendence of o E,T) [Egs. (5a) and (5b)]. Therefore, in a
zeroth approximation the product £y(x)7(x) was assumed to
be constant, and the profile of E(x) thus calculated was
plugged into (4). The profile of T(x) found from (4) was use
to calculate (7(x)) in (1).

As we shall see below, to evaluate the instability incre-
ment it is very important to know the parameters of the
sheaths with maximum accuracy. Therefore, the calculations
based on Egs. (1)—(3) were performed for the three simple
gases He, Ar, and N,.

The values of the parameters selected are listed in Table
[. The approximations of the Townsend ionization coeffi-
cients for He and Ar were taken in the form ’

_CPTO /G PTo 5
a= T exXp E ’ ( a)

and for nitrogen we used the usual approximation’
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a=—— exp T (5b)

ApT BpT,
T J

where T corresponds to standard conditions.

The « regime was considered, and thus the ion—electron
emission coefficient y was set equal to zero. The thermal
conductivity of the gas A=Ay(T/ T,)'?, where ), is the ther-
mal conductivity under standard conditions. Since the fre-
quency of the field was much smaller than the relaxation
frequency of the electron energy, an oscillator field of the
form E(x,t)=Ey(x)sin wt was plugged into (5), and the re-
sult was averaged over the period of the high-frequency field
after Ref. 7.

B. Calcuiation resuits

Calculations were performed for He and Ar at pressures
from 50 to 600 Torr and L;=0.5 and 1 cm and for N, at p=4
to 40 Torr and L;=0.5 to 1 cm. These values corresponded to
the experimental range of variation of the parameters. When
these values of the parameters were taken, the exponential
functions in Egs. (5a) and (5b) were of the order of 10, and
thus the ionization rate was a strong function of the field. It
follows from (1) that the exponents are then weakly (loga-
rithmically) dependent on the parameters of the discharge.
The sheath thickness is determined by the sweep of the
electrode-boundary trajectory of the electrons moving in the
oscillating field Egsinwt® Since the reduced field
EoT/pyT, is weakly dependent on the conditions in the dis-
charge, the amplitude of the electron oscillations, which
equals
2b.pET/poTy

*

2Ud,

w w

also varies weakly with the current, the pressure, and the
electrode spacing. It is proportional to w™! and depends on
the kind of gas. The calculations gave the following values
for the sheath thicknesses at a frequency of 13.6 MHz when
w7r<€]: L=1 mm for He, L=4 mm for N,, and L=0.6 mm
for Ar.

These data are in satisfactory agreement with the experi-
mental results in Ref. 7: L =1.7 mm for He, L =3 mm for air.
When w7<€1 the current in the plasma is carried by electrons.
There is a strong field in the sheaths, which draws ions to the
electrodes and results in the formation of a profile of n(x)
decaying from the center toward the electrodes. However, in
the plasma phase nET=const(x). Therefore, according to
(5), ionization increases strongly already when there is a
small drop in the concentration.® As a result, the concentra-
tion at the plasma—sheath boundary generally drops to no
less than half (see also Ref. 7) of the concentration in the
center of the discharge. The concentration at an electrode is
even smaller: for nitrogen [approximation (5)] the ratio of
the concentration in the center of the discharge to the con-
centration at an electrode was equal to 2-2.5, while in the
case of He and Ar [approximation (5a)] this ratio varied from
4 to 6. The oscillator fields in the plasma phase were stronger
than the fields at the center of the plasma by roughly the
same factor. This ratio is far smaller than the value at low
pressures, at which the ionization process is concentrated at
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FIG. 1. Profile of the ion concentration normalized to the plasma concen-
tration at the center of the discharge: n,, is the plasma concentration at the
center of the discharge; the gas is helium; p =100 Torr; half of the electrode
spacing Ly=0.5 c¢m; j,=1 (Z) and 3 mA/ecm® (2); n,=1.5x10° (I) and
1.7-10' em™3 (2); wr=3.4 (1) and 0.33 (2). The sheath regions are hatched.

the center due to its nonlocal nature and the values of n are
tens of times smaller in the sheaths than at the center.'” How-
ever, the simplifying model with a spatially homogeneous
profile of n(x) is too rough, and the decrease in concentra-
tion in the sheaths must be taken into account to calculate the
sheath thicknesses. For example, for He the thickness of the
layer of the sheaths with a constant ion concentration equal
to the concentration at the center would be 3—4 times smaller
than the value calculated with the real ion concentration pro-
file. Typical ion concentration profiles are shown in Fig. 1.

We note that due to the exponential dependence of the
ionization on the concentration, the profile of the latter in the
bulk of the discharge is strongly flattened even without con-
sideration of the ionization (curve 2 in Fig. 1 for He).

If wr>1, the discharge current in the plasma is mainly a
displacement current. In addition, the field in the discharge is
almost uniform, so that the ionization term in (1) is simply
proportional to the concentration. Since the coefficient of hf
diffusion is small for wr>1,"" when L is much greater than
the sheath thickness Z, Eq. (1) reduces to the usual equation
of ambipolar diffusion with a nearly zero boundary condition
at the electrodes. Therefore, the concentration in the sheaths
drops practically to zero. The departure of ions in the sheaths
is much slower than in the case of wr<¢1; therefore, the fields
in the sheaths when wr>1 are weaker than the field in the
plasma phase when wr<1. As a result, the sheath thickness
is somewhat smaller in the case of w7>1 than in the opposite
case. For example, in the case of helium at a pressure of 100
Torr, L=0.3 mm when w7 at the center equals 1.7, and
L=0.8 mm when wr=0.3 (Fig. 1).

Table 1I presents a comparison of the experimental and
calculated results. The discrepancies are apparently attribut-
able to the inaccurate approximation of the Townsend coef-
ficient in (5).

The discharge extinction current j, is an important char-
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TABLE II.

Gas | Lo Jo, P, v, Va, | Ve, Q.
cm 2 |- wr 2 | ang
mA/cm’ Torr V) W) v W/em
Ar 1 i3 200 20 3085 70 0.5 1.5 0.7
255* 1.3* 1.0*
He 1 8 100 165 &5 142 0.1 - 1.6
230* - 0.9*
Ny 1 21 4 160 130 84 0.5 0.06 1.3
200* 1L1*

A{ou.Hm¢iu{wpluse:hiﬁbetwemdnemmmdmevoluge;0isﬂlepomdme
duclmpperunnmexpeximumlthnmmrkedbyanmk.

acteristic. If wr>1, extinction occurs when the ionization
frequency v;(Ey/p), which depends on the current density
[vi(Eq/p)=vi(47jy,,/p®)], becomes smaller than the fre-
quency of the loss of charged particles D (2L o/m)>. Since v,
is strongly dependent on the reduced field (E4/p), the quan-
tity joex?/ w=Ey/4wp varies weakly with the pressure and
the frequency. Knowing jg.., we can find the relationship
between wT and the current density j;. When T=T,,

w-rjowascoﬂst(]‘o) = Joex ©)

Discharges with w7>1 burn in a narrow range of variation of
the current density. When the latter decreases from v2j,, to
Joex> the value of (w7) increases, according to (6), from unity
to infinity. The calculation gives the amplitude values of j,,
at a frequency of 13.6 MHz and a pressure of 100 Torr,
which are equal to 1 mA/cm? for He, 10 mA/cm? for N,, and
2.3 mA/cm? for Ar. We note that this discharge is often un-
stable due to the lack of the stabilizing influence of the
sheaths (see Sec. 3C).

3. DISCUSSION OF DISCHARGE INSTABILITY MECHANISMS
ON THE BASIS OF A COMPARISON OF THE RESULTS
OF CALCULATIONS AND EXPERIMENTS

A. Influence of the boundary conditions on the stabllity

In this section we shall also examine a discharge in the «
form, in which the ionization by 7 electrons in the sheaths
may be neglected. Under these conditions the current—
voltage characteristic of the sheaths is ascending,’ and they
are stable with respect to an increase in the transverse per-
turbations. Therefore, we attribute the instability of the dis-
charge observed when j~ j; to the instability of the plasma
itself. This is also confirmed experimentally, since the first
normal current density corresponds to a discharge in the «
form.>

The mechanisms of these instabilities have been thor-
oughly studied (see, for example, Ref. 2). They are associ-
ated with the dependence of the ionization frequency on the
temperature of the gas or the concentration of metastables.
The corresponding instability increments are presented in the
Appendix. The instability decrement may be determined by
various processes: heat conduction, recombination, diffusion,
and the stabilizing influence of the sheaths.

Let us calculate the instability decrement associated with
the last mechanism. Let the x axis be perpendicular to the
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electrodes, and let the y axis be parallel to them, the value
x=0 corresponding to the center of the discharge gap. We
assume for simplicity that the unperturbed profile n(x) is
homogeneous. Let us consider the evolution of a perturbation
of the plasma concentration having the form

n' = én(t)cos(ky)cos(xx), @

under the assumption that the function 8n(?) is slow in com-
parison with the period of the hf field. Let the total current
I(1) (and the unperturbed field in the plasma) depend on the
time as sin wf. Then the current density in the sheaths
J=Jjosin(wt+8y) is also a harmonic function of the time,
but it may be phase-shifted with respect to I(t) by s(y). If
wt<], the divergence of the electric current in the plasma
equals zero:

~div(nyg+n')(—V¢'+E, sin wr)
on
=A¢' +xE, P~ sin wt sin @x cos ky=0, (8)
0

where ¢’ is the perturbation of the hf potential.

The relationship between k and x is determined by the
conditions on the plasma-sheath boundary.

We first consider the case in which an electrode is cov-
ered by a thin dielectric coating. Assuming that each sheath
is one-dimensional (kL <€1) and that the plasma concentra-
tion in it is uniform, we find the potential difference between
the plasma and the electrode

417]'0)2 (1£cos(wt+ 8(y)))?
47ren

Vene = ( P
2meEZ,bin (3
=—T itwa(wt+6¢(y)) . 9)
If the higher harmonics are neglected here, E , is the ampli-
tude of the x projection of the hf field in the x direction in the
plasma at the electrode:
'
Ex0=Eq— ox
The plus and minus signs correspond to the sheaths at posi-
tive and negative values of x, respectively. The total voltage
on both sheaths at the fundamental frequency is

V,=8meE2b*n/w?.

Perturbations of the concentration, the hf field, and the
current density vary V. . Since the variable potential dif-
ference between the electrodes does not depend on y, an
additional variable voltage appears on the plasma:

¢'(x=Lg)—¢'(x=—L,)
2
= ——7 [(nE)'|s=s1, cos wt

+nE58¢ sin ot]. (10)
The solution of (8) has the form"
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,  xEg on .
e =masm w! sin xx cos ky + (A sh kx

+B ch kx)cos ky cos wt. 11

Since each electrode is equipotential even in the pres-
ence of a perturbation, the boundary conditions which should
be taken are

@' (x=—Lo)+Vi-=¢'(x=Ly)—V},+=0, (12)

where a prime indicates an addition due to the perturbation.
The values of the phase shift between j and I equal

ad'
5¢(y)=—[m(—a- /EO). (13)

Substitating (11) and (13) into (12), we obtain the equa-
tions for A, B, and ». Owing to the symmetry of the problem,
A =0, and the equation for k has the form

x tg XLO _ V:
(K= s)KLE cth kLo V&'
where U, is the unperturbed value of (9) and Uz=2E,L is
the voltage drop on the plasma.

Linearizing Eq. (1) for the concentration, we easily ob-
tain the expression for the decrement vy,

ya=— vt (kP + x?), 15)

(14)

where v; is the ionization frequency and #;=d In v/d InE,.
It follows from boundary condition (14) that when
kL <1,

xLo=kLoV NV + V2 (16)

and a one-dimensional analysis may be employed. When
kLy>1 and U ,~Upy, we have xLy=mn/2. The decrement as-
sociated with the influence of the sheaths decreases propor-
tionally to (kLO)_z. This is natural, since the concentration
perturbation én~cos(xx) tries not to “touch” the sheaths
when xL j=7/2. If the increment would not depend on k (for
example, in the case of an instability associated with step-
wise ionization or with a mechanism of maxwellization of
the electron distribution upon interelectronic collisions), the
fluctuations with large values of k would be most dangerous.
Consideration of essentially two-dimensional perturbations
would then be necessary to analyze the stability. On the other
hand, when £L>1, the increment of the thermal instability
is proportional to k2, and in this case the perturbations with
small values of k are most dangerous. If the dimension of the
discharge across the current 4 is greater than the electrode
spacing Lo, the minimal value k;,~2m/d<Lg', and the
one-dimensional approximation can be used to analyze the
thermal instability.

Now let us consider the case of metallic electrodes. They
are also equipotential at a constant potential. Therefore, due
to the nonlinear nature of the sheaths, a concentration pertur-
bation creates a perturbation of the quasistationary potential
similar to (12):

6w
d)",c“—-z)-z- (nE%))" ch kx cos ky/chkL,. a7
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The appearance of the field — V¢, induces a quasista-  TABLEIIL
tionary electron current. The electrons drift toward the higher

potential and tend to flow over into a region with a high 2Lo | p Jo v lva |v. lor @ un ¢
plasma concentration. This current may reach an electrode Calculation T 1 1so] 12 | 2801 260 | 78 § ooa] 12 | 1.4
only as a result of variation of the time-averaged electron Experiment 1 | 1s0| 10.7] 208 085 | 09
flux incident to the electrode. The plasma—sheath boundary Calculation 2 | #05] 11 | 290§ 270 94 } 026 | 11 3 12
hould th b dditi 1l d 1 d d ¢ l o Experiment 2 105 11.5 230 1.1
should then be additionally displaced over a distance (n3jo) Calculation v | 2sol 18 | 3e0] 323 106] 037 20 | 1s
so as to satisfy the condition for the flow of current. When Experiment v | 250] 135 270 20 | 08
the displacement / is taken into account, Eq. (9) for Vg is Note. Bere ¢ is the phase shift between the current and the voltage; Q is the power of the
modified: discharge per units area.
T 20+1,\°
Vo= o (Jo/w)*| 1xcos wi+ 12 ) (18)  B. Instabllity mechanism leading to the first normal current
density

where L is the sheath thickness and L is the small (of the

order of the Debye radius) thickness of the boundary be-  (ions are most dangerous. The one-dimensional approxima-
tween the plasma and the space charge, which ensures equal-  jon can be used for perturbations with wave numbers across
ity of the mean electron flux onto the electrode to the flux  (he current k<< Lgy'. When heat conduction and diffusien are
from the unperturbed plasma.® The mean change in the elec- disregarded, the instability corresponds to a descending
tron current during a period j equals (I’ is the jon flux onto current-voltage characteristic. The product (E,T) is approxi-
the electrode) mately constant in the plasma. As the current increases, the

heating of the gas increases, its temperature increases, and
’ (19) the field accordingly weakens. This accounts for the de-
T, scending current—voltage characteristic of the plasma. In the
case of dielectric electrodes covered by a thin coating, the
stability boundary is specified by the condition®

Owing to heat conduction, long-wavelength perturba-

where V(¢ = 0) is the change in the voltage due to the
displacement I.

Using (17) and (19), we write the condition of equality
between the electron currents in the plasma and at the elec-
trode

J 2 2
a(VR‘FVS):O. (24)

The derivation of condition (24) and its generalization

L with the consideration of diffusion and heat conduction are
bk th kLo| ¢4+ T Vi(t=0)| =TV, (¢=0)/T,. Presented in. the appendix. Si_an: the voltage in the sheaths
d increases with the current, it is seen from (24) that the

(20) sheaths have a stabilizing influence on a discharge.
It follows from (20) that under the condition Solving system (1)—(3), we can construct the one-
dimensional current—voltage characteristic of a discharge
I, b(Vg/T)'? and find the condition under which instability condition (24)
T.b.kL, th kL, ~%5 kL, th kL, >1 (21) is satisfied. The characteristics of discharges were measured
eve e

in the experiments at the normal current density (j,;). In our

the plasma is equipotential at a constant current. Since the calcula_ltions we idffﬂ.tiﬁed Ju With the current density corre-
ratio b,/b, is very small, inequality (21) is almost always  sponding to the minimum on the current—voltage character-

satisfied. istic. As we shall see below in Eq. (37), these values may

We find the decrement of the instability in the quasi-one-  differ by a factor of 1.5, which exceeds the errors of our
dimensional case (kL oy<<1). From the condition that the elec-  calculations. A comparison of the discharge parameters for
trode is equipotential at a constant current Ar is presented in Table IIL. It is seen that the agreement is

fully satisfactory. In He and N, condition (24) was not satis-

, 27rj§ 1 200+1)\? fied in the experimental range of pressures. This raised the
dc onw? [5 + ( 1+ 7 = const(y) (22)  question of the exact determination of the cut-off pressure,
below which condition (24) does not hold.
it follows that the change in the amplitude of the hf potential If the variations of the sheath thickness are neglected,
at the fundamental frequency equals the current-voltage characteristic is linear: U~ j,L/w. If the
recombination rate in the plasma (R) in (1) is proportional to
, 1 47reb§ ), - the square of the plasma concentration,
¢'= 73— (nEy)". (23) jo aVe AT 1

AR (25)
Equation (23) gives a voltage change four times smaller R 9o o 7

than the change given by Eq. (9). This means that the insta-  where »;=d In »;/d In E>1 and AT is the temperature drop

bility decrement in the case of metallic electrodes is four ~ between the center and the electrode.?

times smaller than in the case of dielectric electrodes. Condition (24) reduces to the quadratic equation
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FIG. 2. Calculated current-voltage characteristics of an a discharge in ni-
trogen: half of the electrode spacing L,=0.5 cm; p=4 (1), 14 (2), and 30 (3)
Torr; U,; and j,; are the parameters of the normal current density.

( v, )2_2+(AT).+1 0 (26a)
= e —=U. a
VRrio Jo Tojo Jo Vi

A family of calculated current—voltage characteristics is
presented in Fig. 2. At small values of P and L the current—
voltage characteristic has no descending branch. This is due
to the stabilizing influence of the sheaths with an ascending
current—voltage characteristic.

Instability should appear under the condition

£> 2Vs 27
Ty VRQi'i,

under which Eq. (26a) has two roots j;, and j..., which
correspond to the minimum and the maximum of the
current—-voltage characteristic. In the case of dielectric elec-
trodes, when L>L, condition (27) reduces to

72 Lyw(E/p)* /(8 NToL)>1. (28)

In the case of metallic electrodes, the unity on the right-
hand side should be replaced by 1/4. For example, under the
conditions 2L(=1 cm and 2ww=13.6 MHz the cut-off pres-
sure in the case of a metallic electrode is p,=200 Torr for
He, p, =50 Torr for Ar, and p,=7.5 Torr for N,. In the case
of short discharges, in which L,~L and U,/Uy
~ (wr) IL/Ly ~ (wr)_”z/\/f/_,», the terms of order (w7)*
must be taken into account to calculate the cut-off pressure.
This was done in the appendix.

Confinement of the discharge was observed experimen-
tally at pressures below the cut-off value given by (28):
down to p, =50 Torr for He, down to p, =50 Torr for Ar, and
down to 4 Torr for N,. The difference is apparently attribut-
able to the inadequate accuracy of the model of ionization
and recombination. The discrepancy between the vibrational
temperature and the gas temperature should apparently also
be taken into account for nitrogen.? In He stepwise ionization
and the influence of conversion in the ions on recombination
may be significant. It has been reported that the recombina-
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tion of He; with He occurs to a very small extent and in-
volves a vibrational level with an energy of 0.6 eV.!? Since
the population of a vibrational level is strongly dependent on
the gas temperature, this may also influence the confinement
processes. In the case of He the descending current—voltage
characteristic may be specified by the mechanism of max-
wellization of the distribution function.? This requires® that
V,en =V > 6y, where v,, is the frequency of interelectronic
collisions, v* is the frequency of inelastic collisions, and §»
is the frequency of energy loss upon elastic collisions with
the atoms. This criterion gives current densities orders of
magnitude greater than the observed values. The purity of the
gas in the experiments was ~3X10~% If nitrogen or argon
were present as an impurity, the ionization process might be
determined by the impurity due to the large difference be-
tween the ionization potentials (~8 eV). Therefore, in con-
trast to the case of a pure gas, confinement can occur in such
mixtures at electron concentrations approximately 3X10°
smaller. However, even such a relaxed criterion gives exces-
sively large values for the plasma concentration.

We note that at low pressures and plasma concentrations,
at which recombination is insignificant in comparison with
diffusion, the left-hand side of inequality (28) should contain
the additional factor (kpy;,L/m) 2, where kp,~1/d is deter-
mined by the transverse dimension of the discharge (for a
cylindrical geometry k.;,=5.5/R, where R is the radius of
the discharge). The stability of the discharge drops signifi-
cantly at large values of (L/wd)>.

C. Stability of a discharge when w1
In the general case, regardless of the value of wr, equal-

ity (24) may be written in the form
AT L2 DegkbytBn 0
Ty (wr)’Li vy,

(26b)

It is seen from Eq. (26b) that a small temperature in-
crease (AT/T(~0.1) can destabilize a discharge. Inasmuch
as the sheaths cease to stabilize the discharge when wt>1,
an increase in (wr) is accompanied by a decrease in stability.
Since #;~10, when w7~1, instability appears already with a
small degree of warming AT/T~10%. A regime with wr>1
was not observed in our experiments, possibly due to the
small value of (kL /), which causes instability of the dis-
charge upon even very small temperature increases.

Experimental verification of the different stabilities of
discharges with metallic and dielectric electrodes requires
the existence of a stable discharge with (w7)<1. The stability
limit of this discharge is determined by conditions (11) and
(23). 1t follows from expression (26b) that a stable discharge
with 1<l  exists only wunder the condition
L/Lo<((Dgk2in+ Bn)/v; )2, Rewriting these conditions
for the pressure, we find that

Lga 1/2
1<P/Pb<( ) ’

L,
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where a =1, if the loss of particles is determined by recom-
bination (under the condition (D,,, gv;b.eE*/NToB)<1),
and in the opposite case, in which the loss is determined by
transverse diffusion, a =k ;L /7.

4. PARAMETERS OF A DISCHARGE BURNING UNDER THE
LOW-CURRENT REGIME (DIELECTRIC ELECTRODES)

Let us consider the case in which a regime with a normal
current density is realized with little heating of the gas at
small values of wr. This situation is possible, if the thickness
of the sheaths and the voltage drop in them are small and the
gas pressure does not greatly exceed the threshold value
given by (28). We assume that the characteristic scale of the
variations across the current is smaller than the characteristic
scale along the current. We write model equations for the
concentration and temperature in the center of the discharge:

d’n
D o Ef=n(ﬂn— v{(ET)); v{ET)

d*T w \? JoEo
A W—x(m) (T-Ty) - 5. (29)

The electric field € corresponds to the extinction current
v(eT)= 72D 4/(4L}),

and the concentration
n0=)\0T0'n‘2/(2ebeszL8)

corresponds to a temperature difference AT~T,. Since
wr<l, the voltage drop in the sheaths V =2v2eLgn/n,,
where the characteristic value of the concentration

)
n =
" Vimelb,

corresponds to wr=L/(Ly2v2).
Taking into account the condition U <U, we rewrite’the
expression for £, in the form
Eo=nv 2
0_2L0 (n/nl) ’
when diffusion is neglected, Egs. (29) take on the forms
exp[ 7(A — (n/n,)*+T/Ty—1)]—nB/v{(eT)=0,

a*r
_(2Lo/’ﬂ')2EZ="T0/"0"(T-T0), (30)

where A is determined by the voltage on the discharge:
A= ( 2— £ ) /€.
Ly
The current—voltage characteristic of the one-dimensional
discharge analyzed in the preceding section corresponds to

the homogeneous solution of (30)

A=—n/ny+(n/n;)*+ % In(nB/v(eT)). (31)
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FIG. 3. Dependence of the “potential” ® on @ for discharge parameters
corresponding to the normal current density.

Under the condition

n 2,.
—_— Vi>>1
ny

the last term in (31) may be neglected, and the minimum of
the one-dimensional current—voltage characteristic corre-
sponds to

nminzn%/zno; Amin:: _("1/2'10)2- (33)

(3

Thus, if n;<<ng, in the vicinity of n=n_,, the increase
in the gas temperature in the discharge and the voltage drop
in the sheaths are small. The normal current density j,, and
the corresponding values of U ; and n; must be determined
on the basis of the condition that a stationary solution of (30)
corresponding to a smooth transition from n,, to zero exists.

Expressing n in terms of T from the first of Eqgs. (30)
and introducing the dimensionless variable

we obtain the equation for ©

- [2Lg\? d*© .
e W=Q(®), (34)

where
dd
Q(®)= d—®—=®—n(@)/n0.

Under condition (32)

n;vA+©® when ©>-A,

35
0 when ©O<—A. (35)

n(@®)= [
Equation (34) is completely analogous to the equation of
motion of a particle, the role of the time being played by the
coordinate, the role of the force by +Q, and the role of the
potential by ®. The choice of A is determined by the condi-
tion
de
R = 0

y=%w

along with the remaining derivatives, i.e., the “potential” @
in Eq. (34) should have the form schematically shown in Fig.
3, and
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FIG. 4. Schematic representation of the profile of the reduced concentration
n=n/ny and temperature T=46/6;. The profile of T “‘overshoots” the pro-
file of n.

enl
B(0)~ $(O1)= fo (0.(0)/n)d®=0,  (36)

where @, is the root of the integrand.

In other words, the maxima of the “potential” ®(®)
should have identical heights. From (36) we find that under
the low-current regime

3 (n)? 3n} 3
Anl'—__l_g(;;) S =g = g M (37)

It is seen from a comparison of (33) and (37) that the
voltage at the normal current density differs only slightly (by
~10%) from the minimal value, while the plasma concentra-
tion n,; and thus the current density are 1.5 times greater
than the values for the corresponding minimum on the
current—voltage characteristic. The transition region from
n=n,; to n=0 corresponding to the solution of (34) and (35)
is schematically shown in Fig. 4, which presents concentra-
tion and temperature profiles. A similar situation is observed
in a dc discharge.'?

We note one interesting feature of the solution of (34)
and (35). The plasma concentration on the periphery of the
conducting region is strictly equal to zero at a finite gas
temperature. This situation can easily be understood on the
basis of the following reasoning: in the region where n=0
the field is insufficient for self-sustaining of the discharge.
An increase in T increases ionization, while an increase in n
diminishes it according to (30). Therefore, up to ®=—A the
concentration is practically equal to zero (point y, in Fig. 4).

The discharge burns in a certain region so as to pass the
current assigned by the generator, and in the remaining re-
gion n=0. The states with the plasma concentrations n=n_,
and n=0 and the voltage U=U_, are stable. The region in
which an abrupt transition from n, to zero occurs should
also be stationary. The values of n,; and U, are also deter-
mined from this condition.

Since Eq. (34) corresponds to variation of the tempera-
ture with a transverse scale of the order of the electrode
spacing, the quasi-one-dimensional model describes the
structure of the transition region only with accuracy to the
order of magnitude. However, the qualitative results should
be correct. The parameters of a discharge with the normal
current density (U,,n,,) should be somewhat greater than
the parameters corresponding to the minimum on the
current-voltage characteristic. They are determined on the
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basis of the condition that the transition region from n=n_,
to n=0 is stationary, i.e., that the integral sources of particles
and energy for this region equal zero. If the temperature
increase in a discharge with a normal current density is large
(AT=T,), the problem takes on an essentially two-
dimensional character, since the bending of the force lines
must be taken into account (in the case of little heating, the
transverse fields contribute second-order terms with respect
to AT/T, to the absolute value of the total field). This prob-
lem can be solved only numerically.

The difference between the minimal and ‘“‘normal” volt-
ages and current densities can be determined experimentally
in the following manner. The current under the normal-
current regime is increased until a current at which the dis-
charge fills the entire electrode gap is attained. Then, de-
creasing the current by moving along the stability branch of
the ascending current-voltage characteristic (Fig. 2), we can
reach a point on the current—voltage characteristic with
U<U, and j<j,,. The possibility of such a transition is
closely related to the influence of the boundary conditions
with respect to y. This regime should have been observed in
a coaxial geometry, where there are no edge effects. In a
planar geometry this effect may be strongly suppressed due
to the influence of the electrode edges.

5. CONFINEMENT OF A DISCHARGE UPON TRANSITION
FROM THE « FORM TO THE y FORM

Contraction of a discharge upon the transition from the o
form to the vy form was observed in the experiments in Refs.
5 and 6. When the ionization in the sheaths begins to be
sustained by <y electrons, the sheath thickness may vary
greatly. If the value of L under the low-current regime is
greater than the energy relaxation length of the fast y elec-
trons, the ionization rate may be assumed, as before, to be a
local function of the field. In this case ionization by v elec-
trons increases the ion concentration in the sheaths.>’ The
values of the field in the plasma phase of the sheaths de-
crease accordingly. This results in a decrease in the deriva-
tive 3V3/9in comparison with the discharge in the a form, in
which L ~const. Under certain conditions the derivative can
even change sign, and the regions next to the electrodes may
become unstable. As a result, an additional minimum associ-
ated with the transition from the « form to the y form may
appear on the one-dimensional current—voltage characteris-
tic, and the discharge may undergo a transition to a new
two-dimensional form. In the experiments in Refs. 5 and 6,
different types of burning of a two-dimensional discharge
were observed, depending on its characteristics. In a narrow
range of parameters (L ~L,) the a discharge divided up into
five or six “spots,” which “wandered”’ over the electrode
surface. In some cases, in which the width of the discharge in
the transverse direction to the current was comparable to L,
the discharge burned in the form of a truncated cone in the
regions next to the electrodes. However, in most cases, the
discharge burned under a normal-current regime. Upon the
transition from the a regime to the y regime, a bright spot
with a current density corresponding to the y regime of the
sheaths at the electrode boundaries (n =n,;,) appeared, and in
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some cases the remainder of the discharge gap was filled by
an « discharge, while in other cases there was no burning of
the plasma (n=0) on the periphery.

The discharge consisted of two (of the three possible)
“phases’” with the concentrations 7,,, n,;, or 0 and a narrow
transition region between them. Let us consider the neces-
sary conditions for the coexistence of these phases on the
basis of a model equation like (34). In a homogeneous dis-
charge Q(n,U)=0:

d’n 4P

W——E;-Q(n,‘/). (38)

Figure 5a contains a schematic representation of the de-
pendence of the discharge voltage on the plasma concentra-
tion at the center of the discharge n (n is proportional to the
electron current, which equals the total current under the
conditions of an a— ¥ transition, under which wr<1. Seg-
ments ab and cd are unstable. Therefore, when the current
increases at points a and ¢ or when it decreases at points b
and d, the discharge should undergo a transition to a new
inhomogeneous state. When the current at point a increases,
the discharge undergoes a transition to the regime with the
first normal current density, the voltage U, and the concen-
tration at the center of the discharge »,;. This transition was
considered above in Sec. 3B.

When the current at point ¢ increases, the discharge may
undergo a transition to different inhomogeneous states in the
transverse direction to the current. The voltage U, or U,
may be established on the discharge, and the discharge itself
may consist of regions with the concentrations 7, and n; or
n,, and 0. The number of different forms of the discharge
increased, since the number of stable branches of the
current—voltage characteristic increased. The state with the
lowest concentration may now have a zero concentration, or
it may be one of the states on branch bc. The discharge can,
in principle, exist in any of these forms; the specific form
realized depends on the properties of the “potential”
O(n,U).

The state with the normal current density corresponds to
motion of the “particles” between “potential” humps of
equal height (Fig. 5b). The equality of their heights ensures a
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FIG. 5. Current-voltage characteristics of a dis-
charge when U(n) has two minima and corre-
sponding plots of the “potential” d(n). The
possible values under a normal-current regime
are indicated along the axes.

smooth transition between the equilibrium states, where dn/
dy -0, i.e., under the normal-current regime the voltage is
determined by the condition of the equality ®(n;,U,,)
= ®(n,,,U,»), ie., the maximum values of the “potential,”

which is equivalent to the condition [ :',‘Zan = 0. This
1

condition is an exact analog to the area rule used to construct
van der Waals isotherms or the jump in a shock wave. In
cases in which the current—voltage characteristic U/(n) has
two minima, some transitions may be forbidden. For ex-
ample, when U ;<U,,, the nj—0 transition is not allowed.
In fact, let us examine the potential P for the n,,—n; and
n,,—0 transitions (Fig. 5b). Since the condition 3Q/dU >0
nearly always holds, the points on the current-voltage char-
acteristic U=U(n) (Fig. 5) where U>U(n) correspond to
>0, and vice versa. It is not difficult to see that under these
conditions the voltage U}, for the n;—0 transition must be
between U,; and U, Then the integral [{Q(V',n)dn,
where n.(U’) is the point of the equality U(n.)=U" on
branch bc, is greater than zero when U, > U ,,. On the other
hand, if U}, < U, when U, ,<U,,, an insurmountable bar-
rier appears. Physically, this means that the creation of par-
ticles on segment D' C’ cannot exceed their destruction on
segment B'C’. Thus, when U,,>U,, only the n,—n; ,
transitions are possible, and the n/,—0 transition corre-
sponding to the “usual’ normal current density is forbidden.
If U,,>U,,, the n,—n] transitions may be forbidden when
the minimum on the current-voltage characteristic on seg-
ment CD is sufficiently deep and the creation of particles on
this segment is greater than on segment BC (even when
point B coincides with point b).

Two-dimensional discharge forms corresponding to the
ny—n; transition when U ,>U ; and to the n;,—0 transi-
tion when U}, < U, were observed in the experiments in
Ref. 5 and 6, in agreement with the theoretical conclusions.
Under the condition U}, < Uy, with a not excessively large
difference between them (in the sense indicated above) two
discharge states with U = U,, and U,, are possible. One
has always been observed in experiments, i.e., nature selects
the state with the greater voltage, violating the usual mini-
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mum principle, which prefers the state with the smallest volt-
age.

6. CONCLUSIONS

To analyze the stability of a discharge, the interaction of
the stable and unstable regions of the discharge must be in-
vestigated, and the use of von Engle and Steenbeck’s phe-
nomenological principal of minimal power is inadequate,
since in some cases it gives incorrect quantitative results, and
sometimes incorrect qualitative results.
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APPENDIX

Let us examine the most dangerous long-wave perturba-
tions, under which the ion concentration varies adiabatically
with the current density in the longitudinal direction, the
wavelength in the transverse direction 2#/k is maximal,
k~2r/d, and kL ;<<1. Then integral characteristics, viz., the
resistance of the plasma, the capacitance of the sheaths, etc.,
can be used to describe the electrical properties of the dis-
charge.

We consider a discharge when wr<1. An electron cur-
rent proportional to the plasma concentration then flows in
the volume. Let us consider the fluctuation of the concentra-
tion n'e™®?. This fluctuation causes variation of the electron
current jje’” (| indicates that this fluctuation of the current
is in phase with the original current, and L indicates that it is
ahead by 7/2). We shall omit the exponential factor below.
Since the voltage on the electrodes is constant, the variation
of the potential in the sheaths ®/(j) under the action of
Jj» @1, should induce a current j| in the plasma with a
phase shift of 7/2. Due to j| , the phase of the total current
jo + j| varies, and a varying potential <I>S'" appears in the
sheaths.

Due to the perturbation of the concentration n’ in the
plasma, the voltage drop varies. Let us find it. We introduce
the quantities @, and ®p, which denote the variations of
the potential in the plasma, as well as @, and ®g;, which
denote the variations of the potential in the sheaths. The
quantities satisfy the following relations

jiljio=n"Ing+ ®g/Vg, @g=—Py=jiVi/jo;
Jilio=Pg./ Vs d)llilz_q);L:_jﬁVs/jO’ (A1)

where Uy is the voltage on the sheaths, and Uy, is the voltage
on the plasma.

The first relations follow from the condition that the
electron current j~nUg/L, flows in the plasma, the second
follow from the constancy of the voltage on the electrodes,
and the third follow from relations in the sheaths. Solving
system (A1), we find that

®=n'/ng—aVp/(1+a), a= Vo 9V,
I 0 R 5 VR: ﬁ].()‘

(A2)
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Linearizing Eq. (29) for the plasma temperature and con-
centration, we find the relationship between the quantities
when the instability increment equals zero:

@[/ Vg+T'/To—n'/(¥ing) =0,

—((2kLo/m)*+ 1)T'/AT+n'[ng+ ®g/Vz=0, (A3)

where AT is the increase in the temperature of the gas in the
unperturbed state relative to the walls.

From (A2) and (A3) we find that instability develops
under the condition

—((2kLy/m)*+ 1)1+ a(1+ ;) + 3,AT/Ty>0. (Ad)

If k=0, (A4) becomes the usual condition

9 e
— (V. +Vz)<O0, (AS)
dJo

where
aVv Ve 1— 10 AT/T
—R__RZ T 70 (A6)
djo  Jo 1ty

It is seen from (A4) that if kL, becomes comparable to
unity, heat condition can greatly stabilize the discharge. This
can probably account for the absence of the normal current
density effect in the experiments in Ref. 13, where &Ly~1,
and explains the difference between the critical currents at
which contraction occurs in tubes (kLy=2.4) and in an hf
discharge between planar electrodes (kL y—0). In the experi-
ments in Ref. 12 and 14 contraction occurred in He when
p=100 Torr and j=32 mA/cm and in an hf discharge when
jo=8.2 mA/cm?,

If expression (AS) is rewritten with consideration of the
dependences of AT and dU/dj on the current, we obtain

VEL? [ 2q
-2+ -2
4jL2 | or (@7)

d
a—j<V§+v§>=

X[1-(1+(w1) ) Y2+, ', (A7)

where
g=VaLiw/(8\T,L?). (A8)

If Ly = L¥;/4, expression (A7) has a maximum at w7
=1/g=1, and the instability threshold is determined from the
condition

U 2L
P

If Ly~L, the maximum of (A7) appears when

(A9)

(wn)=q "3~1 and the following condition on ¢ is satisfied:
8L(2) 3/4
>| == .
a>\3512 (A10)

YThe substitution of the solution of homogeneous equation (9) that is pro-
portional to sin @t into Eq. (1) for balancing the concentrations of the
charged particles would result in the appearance of density perturbations
proportional to sinh kx and cosh kx, which do not have form (8). In addi-
tion, the perturbation n’ (8) would not be an eigenfunction of the problem.
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Therefore, only the solution of the homogeneous problem which is propor-
tional to cos wt should be left.
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