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Fast expansion of a plasma beam
controlled by short-circuiting effects
in a longitudinal magnetic field
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Abstract. The transverse expansion of a plasma beam with finite ion gyroradius
injected along a magnetic field has been treated analytically and numerically in low
β plasma. It has been demonstrated that the transverse expansion of a beam is
much faster than predicted by standard ambipolar diffusion owing to the
short-circuiting currents in the system. In the vicinity of an injector, plasma expands
with the sound speed while at larger distances the transverse velocity tends to zero
and a cylindrical shape of the beam is formed.

The propagation of a fully ionized plasma beam along
a magnetic field with an ion gyroradius large compared
to the beam transverse width is an important problem
related to the space plasma, plasma beam injection into
magnetic traps, active experiments in the ionosphere and
the magnetosphere, plasma of vacuum arcs and unipolar
arcs in tokamaks, etc [1].

In the one-dimensional case of an infinite inz (alongB)
direction cylinder, the transversal expansion can be simply
obtained as follows. Owing to their large gyroradius, ions
are trapped by the radical electric field. Consequently, an
ambipolar (currentless) radial potential corresponds to the
Boltzmann distribution of ions8 = Ti ln n. The difference
between the ion and electron diamagnetic azimuth velocities
is given byueϕ −uiϕ = c[Te/eB(∂ ln n/∂r − e/Te∂8/∂r)].
The azimuth friction forceνeime(ueϕ − uiϕ) results in the
formation of radial fluxes. Using the expression for electric
potential one can receive radial ion and electron fluxes:

nuer = nuir = −cmeνeiueϕ/eB = −D⊥∂n/∂r

whereD⊥ is the classical diffusion coefficient:

D⊥ = (Te + Ti)νei/meω
2
ce (1)

whereνei is electron–ion collision frequency.
According to conventional wisdom the two-dimensional

situation should be similar to the one-dimensional case: the
transverse expansion of the plasma beam is to be controlled
by ambipolar diffusion. The plasma moves alongB with
large supersonic velocity and expands in a radial direction
with the ambipolar diffusion coefficientD⊥. Moreover, it
seems evident that the beam shape is to be a sort of a cone
[2] with the width increasing alongB as l2

⊥ = D⊥z/u

where thez-axis is the coordinate alongB and u is the

beam velocity alongB. But such a simple picture is
totally incorrect. The reason is that ambipolar (currentless)
diffusion requires a specific ambipolar potential that should
be Boltzmann’s for electrons alongB and also Boltzmann’s
for ions acrossB simultaneously. Such a potential
profile can exist only if the plasma density profile can be
factorized:n(r, z) = f1(z)f2(r) and the potential is the sum
8 = ln f1(z) + ln f2(r). In any other case the diffusion is
non-ambipolar and is accompanied by the short-circuiting
currents in the plasma. We shall consider such a situation
of a plasma supersonic beam, which is injected alongB
from a small source. Electrons close to the beam axis
move alongB faster than ions diffuse acrossB and return
backwards alongB at the beam periphery (see figure 1).
Shorting the polarization field accelerates injected ions in
the transverse direction in the vicinity of the injection point
and decelerates them at largerz. Thus, only the global
ambipolarity condition is fulfilled, which means that only
when integrated overz are the transverse fluxes of ions
and electrons equal to each other. Furthermore, the plasma
near the injector expands across a magnetic field with the
velocity of the order of sound, which is much faster than
the ambipolar diffusion velocity. Far from the injector the
beam has a cylindrical shape and its transverse expansion
is determined by electron diffusion.

A supersonic quasineutral beam with parallel velocity
u large compared with the ion sound speedcs , injected at
z = 0 parallel to the uniform magnetic field, is considered.
Particle gyroradiiρci, ρce are related to the transverse beam
width l⊥ as

ρce � l⊥ � ρci . (2)

It is assumed that acrossB ions can move faster than
electrons, so that

cs

l⊥
� D⊥

l2
⊥

. (3)
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Figure 1. The scheme of non-ambipolar diffusion
accompanied by short-circuiting currents. Arrows show the
electron and ion motion. The arrow length represents
schematically the value of particle fluxes. (a) The
hypothetical ambipolar expansion. (b) Real non-ambipolar
fluxes.

Then the condition (3) is equivalent to

λ � ρciρce/ l⊥ (4)

where λ is the ion mean free path. The inertial and
gaseous pressures are supposed to be small compared to the
magnetic pressure and therefore the magnetohydrodynamic
(MHD) effects of magnetic field disturbance are neglected.

The basic equations in the cylindrical geometry read:

∂n/∂t + div(nui ) = 0 (5)

divj = 0 (6)

mi

dui

dt
= −e∇8 − Ti∇n/n (7)

nuer = −D⊥(∂n/∂r − en/Te∂8/∂r)/(1 + Ti/Te) (8)

jz =−σz(∂8/∂z−Te/e∂ ln(n)/∂z) σz =1.96ne2/meνei .

(9)
The Lorentz and friction forces are neglected in equation (7)
according to inequalities (2) and (3). Since the electrons
are magnetized, their radial flux is determined by azimuth
friction forces. They are proportional to the electron
azimuth velocity, which is the sum of the diamagnetic drift
andE×B drift. Equation (8) determines the electron radial
flux which follows from the transverse components of the
electron momentum balance equations neglecting electron
inertia. Indeed, the radial momentum balance for electrons
reads

en∂8/∂r − Te∂n/∂r − enueϕB/c = 0.

In this equation the radial friction force is also neglected
with respect to the pressure gradient. It follows from the
estimate for the friction forcenmeνeics in combination with
the inequalities (1) and (2). So the azimuth electron velocity
is given by

ueϕ = −cTe/eB[∂ ln(n)/∂r − e/Te∂8/∂r].

The ion azimuth velocity is negligible sinceρci � l⊥. From
the azimuth component of the momentum balance equation
for electrons one obtains:

uer = cmeνeiueϕ/eB.

Combining the equations for radial and azimuth electron
velocities, one comes to equation (8). The radial ion drift
produced by the azimuth friction force is neglected because
their radial velocity is much larger—of the order of the
sound speed, as follows from equation (7). Temperatures
are assumed to be constant. The boundary conditions are
given by

z = 0 : nuez = nuiz = 0(r)

z = zA : nuez = nuiz. (10)

Here zA is the right boundary of a beam (in space
applications zA → ∞). These conditions imply that
no current is flowing through the boundaries. Since
the electron conductivity is very high, forzA �√

l⊥Te/(csmeνei) from equations (5)–(9) it follows:

8 = Te/e ln n + 9(r) (11)

where9(r) is an arbitrary function which determines the
electron radial flux according to equation (6). This function
is determined by the condition of global ambipolarity:∫ z

0
nuer dz =

∫ z

0
nuir dz (12)

which follows from equation (6) and the boundary
conditions given by equation (10). Equation (12) means
that the total transverse current integrated along the
magnetic field direction is equal to zero. Substituting
equations (8) and (11) into (12) and combining with (7),
one obtains
∂uir

∂t
+

(
uir

∂

∂r
+ u

∂

∂z

)
uir

= − c2
s

(
∂ ln n

∂r
+

∫ z

0
nuirdz

/ ∫ z

0
D⊥n dz

)
(13)

where cs = √
(Te + Ti)/mi . Since the parallel ionic

velocity is supersonic and usually [2] large compared to
sound,uz ≡ u = constant, equation (13) together with the
continuity equation (5) completes the system.

It can be easily seen from equation (13) that the solution
for the plasma, expanding radially much slower thancs , can
be obtained only if the density is factorized

n(r, z) = f1(z)f2(r). (14)

Equation (14) follows from the fact that ifuir � cs the
right-hand side (RHS) of equation (13) is almost zero while
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Figure 2. Isodensities ln ñ = constant at τ = 1.25 (practically the steady state). ζ = z/zA, ρ = r/l⊥. In the right-hand side the
radial profile at ζ = 1 is compared with the predicted profile; the solution of equation (17) is represented by the broken curve.

Figure 3. Streamlines G = constant at τ = 1.25, G = 2π
∫ r

0 nuir dr/I . ζ0 corresponds to transitional region of length l⊥u/cs zA.
The arrow shows the characteristic angle of plasma expansion with sound velocity 2 = tan−1(cs/u).

the last term is a function only ofr. The potential profile
in this case is given by

ϕ(r, z) = Te

e
ln f1(z) − Ti

e
ln f2(r) + constant. (15)

If f1(z) = constant the solution given by equations (14)
and (15) corresponds to the well known case of the infinite
in the z direction cylinder. Here the pressure gradient of
ions is almost totally balanced by the radial electric field.

The resulting small ion velocity is equal to the electron
diffusion velocity given by equations (8) and (15).

For a real plasma injected from the source the situation
is more complicated. It can be easily seen that near the
injector, where the plasma is expanding both radially and
in the z direction, the density profile cannot be factorized
according to equation (14). Furthermore, it is clear that the
plasma near the injector expands radially withuir of the
order ofcs until the profile given by equations (14) and (15)
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is formed. The length of the transition regionz0 is given by
z ≤ z0 � zA, as it will be shown below. Atz � z0 the RHS
of equation (13) is small and the density is factorized, see
equation (14). Since there is no characteristic scale along
z, the cylindrical profile withn = nc(r) is created. Thus,
integrating the continuity equation (5) overz and inserting
equation (15) into equation (8) for the main contribution to
the integral, we have

∂N

∂t
− 1

r

∂

∂r

(
rD⊥

∂N

∂r

)
+ un(r, zA) − 0(r, 0) = 0 (16)

N =
∫ z

0
n dz.

For t � zA/u the term with n(r, zA) is negligible and
equation (16) is a diffusion equation with the given source
0(r). SinceD⊥ is proportional ton, the solution could
be obtained only numerically (ifD = constant(n) in the
case of anomalous diffusion, the analytical solution of
equation (16) is well known [3]). The width of the beam
l⊥ increases with time as

√
D⊥t . For t � zA/u the steady

state density profile is established. Sincen(z) is constant,
the shape of the main part of the beam is cylindrical with
nc = N/zA, andnc is given by the equation

−1

r

d

dr

(
rD⊥

dnc

dr

)
+ unc

zA

= 0(r)

zA

. (17)

The characteristic widthl⊥ of the cylinder and the typical
densityn∗

c are easily estimated from equation (17)

l⊥ = √
D⊥(n∗

c )zA/u n∗
c = I/(2πul2

⊥) (18)

where I = 2π
∫ ∞

0 0(r)r dr is the total flux. Resolving
equation (18), one obtains

l⊥ =
(

dD⊥
dn

· IzA

2πu2

)1/4

n∗
c =

[
I

/ (
2π

dD⊥
dn

zA

)]1/2

.

(19)
It is now easy to determine the longitudinal scale of
the transitional region, where the plasma is expanding
practically freely

z0 = l⊥
u

cs

� zA.

The process of the transition from fast expansion to
slow diffusion with n = nc, given by equation (13),
has an oscillatory character. Indeed, equation (13) has
the form of a well known momentum balance equation
with the pressure gradient and external force in the
RHS. Consequently, sound oscillations of the beam with
wavelength of the order ofz0 are expected.

Results of the numerical modelling of equations (5)
and (13) are shown in figures 2 and 3. The dimensionless
variables are defined as:

ζ = z/zA ρ = r/ l⊥ ñ = n/n∗
c 8̃ = e8/Te

τ = tu/zA ũir = uir/uir0

uir0 = zA/ul⊥ =
(

u2 dD⊥
dn

· I

2πz3
A

)1/4

. (20)

In these variables the system of equations (5) and (13)
reads:
∂n

∂t
+ ∂

∂ρ
nuir + ∂

∂ζ
n = 0

∂uir

∂t
+

(
uir

∂

∂r
+ ∂

∂ζ

)
uir

= − c2
s

u2
ir0

(
∂ ln n

∂r
+

∫ ζ

0
nuir dζ

/ ∫ ζ

0
n2 dζ

)
. (21)

The parameters chosen for the numerical simulation are the
normalized sound velocity:

cs/uir0 = cs

/ (
u

2dD⊥
dn

· I

2πz3
A

)1/4

= 10.1

and the normalized source density:

0(r)

un∗
c

= 31.4 exp(−ρ/0.252)2.

Correspondingly,ζ0 = z0/zA = l⊥u/zAcS = 0.1; the
value of the angle2 = tan−1(u/cs) ∼ 0.1, the expected
characteristic angle of expansion coincides well with the
observed one (see figure 3), at the periphery region the
plasma expands with supersonic velocity. As always in
expansion in vacuum, the average velocity is about the
velocity of sound.

One can follow the process of fast plasma expansion
near the injector and formation of a cylinder withn ∼ n∗

c

(ñ ∼ 1). The sound oscillations and the shock formation
are observed. The latter is essential for the hydrodynamic
expansion given by equation (21).

If the ion gyroradius is smaller than the beam transverse
scale, the presented results are also applicable. In this
case the ion transverse unipolar flux is controlled by ion
viscosity:

nur = 1∗
[

0.3nTiνii

m2
i ω

4
ci

(
∂nTi

n∂r
+ e

∂8

∂r

)]

1∗ = 1

r

d

dr

(
r

d

dr

)
− 1

r2
(22)

whereωci is the ion cyclotron frequency [4]. This flux is
larger than the diffusion flux if the ion gyroradius is not too
small:

ρci > l⊥(me/mi)
1/4. (23)

If condition (23) is fulfilled, non-ambipolar expansion still
takes place.

Conclusions

The evolution of a plasma beam injected along a magnetic
field corresponds to the following scenario. If the beam
length zA is not too large, so that its transverse spreadl

is small with respect to its initial width, then the form of
the beam is cylindrical. The cylinder radius is determined
by the source. In the opposite case, due to the short-
circuiting effect, the beam shape in the source vicinity is a
sort of cone. Such a shape corresponds to the sonic radial
expansion. At larger distances alongB the expansion is
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suppressed, and the beam shape is also cylindrical. Its
radius is determined by the transverse electron diffusion
during the ion transit time.

It should be mentioned that the main results of the
theory could be extended to the case of a magnetized
partially ionized plasma.

The cylindrical shape of the plasma beam has been
observed experimentally in vacuum arcs in a magnetic
field [5], where the conditions given by equations (1)
and (2) were satisfied. Unfortunately the lack of
detailed experimental data makes it difficult to perform the
quantitative comparison with the presented theory.
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