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INTRODUCTION

Numerous applications of low-pressure gas discharges have recently prompted an
interest in mechanisms of electron heating and power deposition in the plasma main-
tained by radio—frequency (rf) electric fields. A modern trend in plasma technology
aims at decreasing the gas pressures down to the millitorr range. For these low pres-
sures it is easier to maintain uniform plasmas with well controlled parameters. Due to
the large value of the mean free path (MFP) the main mechanism of electron heating
turns out to be a collisionless one rather than the conventional Joule heating dominant
for higher pressures.

Being initially studied for a capacitively coupled plasma', this mechanism is now
widely discussed in application to inductively coupled plasmas (ICP), ECR plasmas, etc.
2. Initially collisionless heating was studied in a 'kick’ model: electron obtains velocity
kick in the strong electric field at the discharge periphery, then the phase of velocity
kick is randomized either due to collisions in the bulk or due to non-linear mechanism
of randomization (Fermi acceleration). As a result diffusion in velocity space arises,
and this corresponds to collisionless heating.

In general case the electric field is presented in the whole discharge volume and
the separation on periphery region where electron gains energy and a bulk without
electric field is not applicapable. The other subject of investigation is the heating of
trapped in the discharge center electrons in non-uniform plasma buy ambipolar electric
field. These electrons also can be heated by collisionless mechanism by weak electric
field in the plasma field. For this situation kick model is also not applicable. In this
particular situation the use of rigorous quasi-linear theory is necessary. It is based on
well known mechanism of collisionless power dissipation - Landau damping (see e.g.
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3). The resonance particles moving with a velocity close to the wave phase velocity
intensively interact with wave fields and receive or lose energy. The result of particle <
wave interaction depends on the shape of the particle distribution function in velocity
space. For Maxwellian distributions the wave amplitude decreases, while the particle
energy increases. If many waves are excited the power dissipation should be summarized
over the spectrum of waves. Such a theory was developed for a weak turbulence in
order to explain the mechanisms of anomalous transport phenomena in hot plasma of
thermonuclear fusion (see e.g.®%).

But it can also be applied to stable plasmas, when small scale fields with a wide
spectrum of wave numbers are excited by an external source. This situation is realized
in the cases of Debye screening of longitudinal electric fields or cases of anomalous skin
effects for transversal fields. A local spectrum of small scale Langmuir waves appears
also in the region of plasma resonances for inhomogeneous plasmas interacting with
electric fields capacitively coupled with plasmas (CCPs).

The only particles which are in resonance with a wave are heated by collisionless
mechanism. It means that in the regime of collisionless dissipation the form of the
electron energy distribution function (EEDF) is sensitive to wave spectrum. If the
wave phase velocities are confined in some interval the plateau in the EEDF can be
formed>®.

The problem of the plateau formation in the EEDF in the quasilinear theory was
investigated first in®7. In® it is shown that collisionless heating due to localized plasma
oscillations results in plateau formation in the region of high electron energy. Collisions
smooth out the plateau and lead to an increased number of high energy electrons®. The
effect of collisions on electron heating by local plasma oscillations were investigated in
9. The numerous investigations of EEDF by using a kinetic equation for electrons of
a plasma slab with oscillating rigid walls have been performed in'®'2. This treatment
yields a power law energy dependence in the EEDFs. The experimental study of EDF
for CCP have been carried out in'3'4.

A quasilinear approach to collisionless electron heating in the regions of plasma
resonance in low pressure discharges, sustained by electromagnetic surface waves, is
developed in'®'. In'" it is demonstrated that — in view of experimental situations —
self-consistent modeling has to account for nonlocal effects'®!? as well as for collisionless
heating. The classification of variuos regimes of collisionless heating were performed in
20

In view of the history of successful use of the quasilinear approach as a well es-
tablished method, particular in hot plasma physics, this paper aims at systematically
applying this method also to study collisionless heating in various low temperature
plasmas and to summarize existing results using a common basis as well as to gain
extended new results. The paper intends to demonstrate that the quasilinear theory is
a powerful and easily applicable method for investigations of these type of problems.

This paper is organized as follows: In section II, the derivation of the diffusion
coefficient in energy space for uniform boundless plasmas, heated by localized high
frequency field is presented. In section III the collisionless heating in inductively coupled
plasmas (ICPs) is analyzed for semi-infinite and slab geometry. Both cases can be
reduced to the boundless problem with specular reflecting walls. The profile of the
electric field under the condition of the anomalous skin effect is found in analytical
form and the electric field is shown to oscillate spatially with zero average value. As a
result the diffusion coefficient of fast electrons is suppressed, but in the low energy region
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it is enhanced in comparison to the case of an exponential profile. For ICPs in slab
geometry (of width L) it is demonstrated that the second boundary plays a similar role.
In this case the corresponding Fourier spectrum of electric field is discret (k, = 7n/L)
in contrast to a continuous one for semi-infinite geometry. In section IV the quasilinear
theory is applied for capacitively coupled plasmas (CCPs). It is shown that the diffusion
coefficient has a clear resonant structure with a main peak at v = wL /7. An analysis of
the solutions of the kinetic equation for the EEDF in different regimes of plasma heating
is presented. In section V the influence of the ambipolar electric field on the efficiency of
collisionless heating is discussed. The general expression for the diffusion coefficient in
energy space is obtained for cases both of ICPs and CCPs. The presence of ambipolar
electric fields can strongly modify the condition for particle <& wave resonances. As
a consequence the form of diffusion coefficient in energy space is changed, especially
for low energy electrons. In a parabolic potential ® = ax?/2 the bounce frequency
of trapped electrons (y/a/m) is the same for all energies. So the resonance condition
(w = y/a/m) can be fulfilled for one value of a only, and there is no collisionless heating
for other values of a. In the general case of a non—parabolic potential the bounce
frequency is energy dependent. Section VI contains the conclusion and outlook.

KINETIC THEORY OF COLLISIONLESS ELECTRON HEATING
Separation of the Space and Times scales in the Kinetic Description

First we discuss case when collisionless heating occurs in a small region at the dis-
charge periphery of width ¢ < L, L being the discharge gap. In the ICP, § corresponds
to the thickness of the skin layer. In a capacitively coupled plasma, this model corre-
sponds to the sheath width smaller then an electron mean free path. For surface wave
discharges it corresponds to colisionless dissipation in the narrow region of plasma res-
onance. In such low pressure discharges the space scale of the electric heating becomes
small in comparison to the MFP A. Under these conditions it is possible to simplify the
kinetic description of the plasma by separation of the space scales.

The kinetic equation for the electron velocity distribution function F(r, v, 1) is:

oOF oF e ( 1 )8.7—" S(F) (1)

Vo T \ET B 5y T

where e and m are the electron charge and mass, respectively, S(F') is the collisional
integral, £(r,t) is the electric and B(r,t) is the magnetic field.
The fields can be separated into two parts according to different space scales:

E-E+E B=B+B (2)

where E and B have spatial scales large compared to A, while E and B have spatial
scales 0 small compared to A (i.e. § < A). An analogous separation can be performed
for the distribution function:

F(r,v,t) = F(r,v,t) + F(r,v,t) (3)

where F is averaged over a scale in the order of X\ and F describes the deviations of the
distribution function on scales smaller than A. Also the usual quasilinear approximation
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F <« Fis used®®. As a result the kinetic equation (1) can be separated into two parts:

OF oF e 1 OF e 1 OF
EWL'U% m(E—l— vXB>8v m(E+ vXB>8v (4)
OF OF e 1 OF e~ 1 -\ OF
o TV, m<E+ va) 50 E<E+EUXB>a_v+S(F) (5)

In (4) the collisionless term is omitted, since it is small compared to the second term on
the left—hand side: kA > 1. The bar in (5) denotes spatial averaging on scales smaller
than .

The Form of Quasilinear Integral for Weakly Inhomogeneous Boundless
Plasmas

First the case of weakly inhomogeneous boundless plasmas, when E, B = 0 and
E’, B are only RF fields, is considered. It correspond to collisionless dissipation in
narrow region with a gap width larger than a energy relaxation length, so influence of
boundary can be neglected. The electric field is excited at fixed frequency:

B(r 1) = % (B(r) exp(—iwt) + B*(r) expliwt)} (6)

where * denotes the complex conjugation.

Under conditions, when the frequency of ineleastic collisions v* is small compared
to the RF w (v* < w), the distribution function does not depend on time'?, i.e. F =
F(r,v), and (4), (5) can be simplified to

OF | o OF _ e(E+1va>aF (7)

ot or m v
or
0o = Su(F) + S(F) )

The first term on the right hand side of (8) is well known in the theory of weak turbulent
plasmas as the quasilinear collision integral, describing interaction of electrons with

o Su(F) = _%< <E + 1'0 X B> gf> 9)

where the (...) brackets indicate temporal averaging over the wave period 27 /w.
Equation (7) can be solved by the Fourier method giving:

F(k):_%@_E(k):Evsz(k) .g_f (10)

where F(k), E(k) and B(k) are the Fourier transformations of the functions F(r),
E(r) and B(r), respectively.

By inserting (10) into (9) the quasilinear integral for the one-dimensional geometry
can be written in the form:

0 oF
5 Do) 5 (11)



where the d—function appears as a result of space averaging and reflects the fact of
localization of the heating electric field in the region x ~ xy with a characteristic scale
0 much smaller than A\ and

6271'

Dij(v) = - [ an [E(k) + oo x B(k)]

m2

{E(k) + %v x B(k)

i J

i () (12

is the tensor of the diffusion coefficient in velocity space. By excluding the magnetic
field from (12) with help of the Maxwell equation

B(k) = gk x E(k) (13)

Thus in expression (12) the contribution of the Lorentz force is of the same order of
magnitude as that of the electric field®!. After substituting expression (13) for the
magnetic field one gets:

7 (2m)"e? kik;
Dy = %/dnk Do B(h)5(w — k) (14)
From (12,14) it can be seen that the role of the Lorentz force is changing the direction
of diffusion in velocity space. Without accounting for the Lorentz force the diffusion is
in the direction of the electric field, but with accounting for the Lorentz force it is in the
direction of wave propagation given by k. The same result in an one—particle approach
was discussed in?!. The formula (14) has a general form: it is valid for longitudinal
waves, t00 (E x k = 0). This stems from the fact that the electrons receive impulse from
the wave impulse directed along k independent of the type of heating field (transverse
or longitudinal).

The relation |

Im <m> = —7m0(w — kvy), (15)

corresponding to the phase resonance between traveling wave and moving electron, was
used to obtain expression (14).

It should be stressed that D;; is a nonlocal function of the heating electric field
due to the integral representation

E(k) = / Z—i exp(—ika) B(z) . (16)

This type of nonlocality is also discussed in?2.

The simple physical meaning of expression (14) shall be illustrated by the example
of plasma heating due to the localized field of a longitudinal wave E (E,0,0). In this
case one obtains from (14):

e’ 1 w\ |
Dp="C— |E(k=2 17
m? |vg] < Uw) i)
Expression (17) can be presented in the form
Dy = Ll (A2 (18)
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where Awv is the amplitude of the velocity kick after interaction with the wave field:

+oo
Av = / eE(r = v,t) exp(—iwt)dt = 27T6E </€ = i) (19)

0 Vg Vg
Kinetic Equations for the EEDF

In gas discharge plasmas the anisotropy of the distribution function in velocity
space is small due to the elastic collision frequency v being large compared to the
inelastic one (v*),!? i.e. v > v* *. In this case the conventional two—term approach is
applicable and for the spherically symmetric part of the EEDF F{, one has the following
equation for one-dimensional geometry:

where
() = %83 (ﬁp@)%) 5 (z — x0) (21)
with _
D(v) = %7;2;2 /:o dk /OW sin 1) do) /0% §|vE(ls)|26(w — kvg) (22)

is the averaged (over the velocity angles) quasilinear collision integral Sy (11) and
S*(Fy) is the inelastic collision integral.

Expression (22) like (14) has a general form for all types of fields. The Lorentz force
in (22) for an isotropic EEDF has vanished and the resulting diffusion coefficient (14)
is the same with or without accounting for the Lorentz force. Thus the wave instability
discussed in®?!, which is equivalent to electron cooling, is essential only for anisotropic
or non monotonic EEDF's, where the role of the Lorentz force is essential.

Below we summarize the forms of the diffusion coefficients in velocity space for
various types of discharges:

1. For the case of transverse em waves (k L E(k), k = ke,, E, = e,E(k)) —
corresponding to an inductive discharge — (22) yields

2
or v | E(k = 2)| gingdo dd
D : . 23
®) // o] in (23)

After integration over ® and introduction of yu = cosf = vz /v, one gets

D(v):l”262/1(1_ #)

v 2m?

2

(k=)
2|p|

du . (24)

*It corresponds to the case, when a localized em field is excited with a broad spectrum of wavenumber
Ak. So the corresponding time of diffusion through the region of wave—particle interaction (Av =
“/e2 Ak)—t; ~ (Av)? /D is large compared with the collision time vt; > 1. The steady state condition
is established on a time ¢t ~ v*~'. The opposite case corresponds to large anisotropy of the EEDF
and can even lead to current drive??
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2. For the case of a longitudinal electric field (k || E, k = ke,, E = Fe,) —
corresponding to a capacitive discharge and plasma resonance heating in surface
wave plasmas — (22) reduces to

1 w22 (1 w

3. For the case of a circularly polarized electric field (k = ky e, + k;e,, E =
E.e; + Eye,, E, = iE, = E;) — corresponding to SW sustained discharges
— (22) gives

2

du . (25)

w—kyovy 2 ~
1 w2e2 (v 2 (vy +03) | Eo (kz )‘ sin 0 df d®
pw=-5"5 [ )
v2 m? Jy Jo vz | 47

where k,, is the fixed wavenumber of the surface wave and E(k) corresponds to
the Fourier transformation of the electric field profile Ey(z).

To obtain the EEDF, (20) should be integrated over a small vicinity of the point
x = xy. One gets as result:

2
g | 3 (o 5
2 92

3v(v) Oz v? Ov v

r=x0-+0

) (27)

In obtaining (27) symmetry of plasma heating and EEDF with respect to the space
position x = x is assumed. Relation (27) should be considered as boundary condition

for the equation
112 82F0
——— —S*(Fy) =0 28
3v(v) 0x? (Fo) (28)
describing the space evaluation of the EEDF outside the region of RF power input.
By representing the collisional integral S*(Fp) in the form

S*(Fy) = —v*(v)Fy(v, ) (29)

one obtains from (28):
Fav.2) = Fovyexo (1), (30

where A\, = v/4/3v(v)r*(v) is the energy relaxation length. Substituting (30) into the
boundary condition (27) now results in the equation for the EEDF:

Equation (31) has previously been analyzed for the case of localized longitudinal RF
fields in the ionosphere? and SW produced plasmas'®. The character of the solutions
of (31) essentially depends on the diffusion coefficient D(v). For its determination the
space spectra of the heating EM fields have to be known.

In contrast to boundless plasmas considered above gas discharge plasmas are always
bounded. Thus, in the next section a procedure of reducing the bounded problem to a
boundless one will be developed.




SPACE SPECTRA OF HEATING ELECTRIC FIELDS AND DIFFUSION
COEFFICIENTS FOR INDUCTIVELY COUPLED PLASMAS
The Semi—Infinite Plasma

In order to use the results of boundless plasmas, specular reflection of the electrons
from the discharge wall (x = 0) is assumed:

F(vg, vy, 05,0 < 0) = F(—vy, 2y, v,, 7 > 0) (32)

To reduce the semi-infinite problem to boundless one the continuation of Eq. (7) into
the complete x-range (—oo < = < oo) can be performed. Now the reflected electron
is represented by one passing to the region x < 0). The kinetic equation is symmetric
with respect to electron reflection if the fields are continued by the following ansatz see
Fig.1:

B,(r < 0) = —B,(z > 0)
E,(r <0)= E, (x> 0)
Ey(z < 0) = —E,(z > 0) (33)

and the problem reduces to the case of boundless plasmas *.

Now the possible regimes of shielding the transverse EM field by the semi—space
plasma are addressed. In the case of weak collisions (w > v) the field penetrates into
the overdense plasma (w < w, = (4we?n/m)”*) over the depth &, = ¢/w,. For such a
regime the frequency of the electric field should be sufficiently high (w > vr/dy, with
vy being the thermal electron velocity). A regime of collisionless plasma heating is
possible, if the skin length d; does not exceed the MFP A, i.e. if vy > v - dy. In this
case one should use the following form for the electric field, continued into the complete
x-range to calculate the diffusion coefficient for semi-infinite plasmas:

B, () = Eyexp (-'(%') , (34)

with the Fourier spectrum given by

FEido

k)= ———=~. 35
() (1 + k263) (3)
It should be noted that result (34) corresponds to the absence of power dissipation,
accounting for low power dissipation either due to small collisionality or colisionless
dissipation results in weak spatial field oscillations and a small EM power flux into the
plasma. Substitution of (35) into (22) yields the expression for the diffusion coefficient
D(v):

D(v) = whpvrg < - > (36)

wdy

*It should be mentioned that the approximation of specular boundary reflection (v, = —v,, z = 0)
may not be valid in real plasmas, where electrons reflect from the sheath region and penetrate into
the sheath by a length A(vr) ~ rp (rp being the Debye radius). If this length is small (i.e. A(vr) <
vp/w K 9), the sheath region is not important and formulae for specular reflection are valid. For the
opposite case § > A(vy) 2> vr/w the velocity kick (and thus the energy dissipation) is smaller?*.
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Ed(x)

Figure 1. Scheme of electric field continuation: (a) transverse electric field; (b) longitudinal electric
field.



where vg = eEy/mw and

g(?) = 41173 [(2+ 7%) In(1 + %) — 267 (37)

which should be used in the kinetic equation (31) for obtaining the EEDF Fy(v).
In the region of low electron energy (v/wdy < 1 — © < 1) one has

g(0) ~ —v°. (38a)

o(0) ~ = (38)
For lower frequencies w* < w < vr, /0y the case of anomalous skin effect? is realized
(w* = v*¢®/wlvre), independent of the relation between w and v. In this situation the
depth of the electric field penetration becomes less than the MFP A and electrons are
heated in a collisionless manner.
If one uses a description of the electric field in the form

E,(z) = Eyexp (—%) (39)

where \gx = (¢2)/(iw) is chosen from the condition of a correct representation for the
power deposition into the plasma with the surface impedance Z = 2/36(1 + Y5v/3i),
where § = b 7 is effective skin depth see Eq.(44) the diffusion coefficient D(v) is:

v
D(v) = wévig <E> (40a)
41 /(1 8 3+ (1+ Z2)”
90) =53 <<§ * 27172> In 1 -

O [ R R I

The function ¢g(v) has the following approximation in the region of high electron energy
(0 =v/wd > 1):

4 In(?)
V) R — 41
and in that of low electron energy (o < 1):
(9) = 9 (41b)
= 128

The exact Fourier transformation of the electric field obtained from the kinetic

approach? yields:
E
E(k) = — (42)
mLa (K2 — i)
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where
B drwe? oF

b= —— | v,—
c2m, yavy

In the case of a Maxwellian EEDF one has:

§(vy)dv (43)

B 2¢*nw 27

b= 44
c? mT (44)
where n is the electron density and
2(v3+1
Ly = 2(V3+4) _ (45)

3%p

The space dependence of the electric field penetrating into the plasma over the
region 0 < x < vp/w has the form:

E m . \/g 1 1 1
E,(r) = ﬁkobl/‘% {g [(\/gz +1)exp (ZT - 5) zb 4 exp (—xb /3)]

50 —gbls
— 2 ]€ gexp1<_ z: (S) d¢ (46)

The last term on the right—hand side of (46) represents the contribution of the
branch point £ = 0 and the exponential terms are a result of the poles in the integration
when the inverse Fourier transformation of expression (42) is performed. A plot of E, (x)
is presented in Fig. 2. The electric field profile has a oscillatory structure which reflects
the existence of power flux into the plasma due to collisionless dissipation. It should
be noted that at large distances from the plasma surface (x > vp./w) the influence of
electron thermal motion is not important and the electric field penetration becomes
purely exponential with a scale length dy = ¢/w,. But this effect of changing the regime
of field penetration can be neglected because at this distance E,(z) has decreased to a
small fraction of its value at the surface if the frequency w is in the range w < (vr/c) w,
where the anomalous skin effect is applicable.

By substituting expression (42) into (22) one obtains:

v

D(v) = wévig <E> (47)

where

(%) = 635 {\/3 [arctan (2“27;1> + %] - 6—1211&(1 +5% —In (%)} . (48)

In the region of large values of the argument ¢ > 1 the function ¢(v) decays and
can be approximated by:

9r 1

v) ~ — 49a
9(0) » o 77 (49a)
For small values of o < 1 (44) goes to zero by the law:
(0) ~ A (49b)
R 128
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Figure 2. Plot of the electric field at anomalous skin effect as a function of normalized coordinates

x/dp. The solid curve corresponds to the exact profile of the electric field (46), the dashed one to the

exponential profile (34) and the small dashes represent the impedance approximation (39): (a) Real,
(b) imaginary part of the electric field intensity.
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Figure 3. The normalized diffusion coefficient g = D/ %‘)wv% as a function of the dimensionless
velocity @ = v/wdy for various models of electric field profile. The solid curve corresponds to the
exact profile of the electric field (46), the dashed one to the exponential profile (34) and the small
dashes represent the impedance approximation (39).

In Fig. 3 plot of ¢(¢) for different cases of electric field representation is shown.
The difference of the diffusion coefficients (49) to (38,41) (see Fig. 3) is essentially
due to the oscillating structure of the em field penetrating into the plasma, which is
very important for resonant interaction of particles with the field. The reason for this
structure of the electric field is the nonlocality of the conductivity o(k). Due to the
plasma conductivity an electron current arises and produces magnetic and electric fields
in a direction opposite to that of the external em fields. In the local case (o does not
depend on k) this leads to a monotonic decrease of the sum of all em fields, while in
the nonlocal case these em fields are shifted towards the plasma and as a result the
oscillating structure of the em fields appears.

Another feature of exact description is that

/OO E(z)dx =0 (50)

Note that it follows from (46) that the Fourier component E(k = 0) should be
equal to zero, which is in agreement with (42).

The integral of the electric field fooo Edx — 0, since the electron current has to
vanish at large x, where the average electron velocity is determined by this integral.

Diminishing of the diffusion coefficient (47) in regions of a high electron velocity
v > wd has a transparent physical meaning. To the electron with such a high velocity
the electric field appears as a stationary one. The increase of the electron energy by
interacting with the localized electric field is equal to zero, since the spatial integral
over electric field is zero.

In the region of high electron energy the diffusion coefficients D(v) (36), (40) decays
much less than in the case, when the electric field is described exactly (48). This is a
consequence of the fact that in the former two cases the long wave part of the Fourier
spectrum of the electric field does not vanish and E(k = 0) # 0.
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The Slab Geometry

Now the case of a uniform plasma slab (of width L) bounded by two plane walls
with specular reflection of electrons is considered. For the case L > A collisionless
heating of overdense plasmas occurs only in the nearest vicinity of the walls, while
between then the usual Joule heating takes place. By using the method of continuation
considered in the previous section the following solution for the EEDF is obtained

cosh (x;—%> 51)
cosh (i)

generalizing the result (30) for the case of plasma slabs with symmetrical heating on
both walls. The kinetic equation for the EEDF Fj(v) instead of (31) now has the form:

or | L Fy(v) = Mﬂ <UZD(U) M) (52)

Fy(v,x) = Fy(v) -

202 ov ov

The diffusion coefficient D(v) in (52) is defined by (22). The limit L > A. corresponds
to the case of semi-infinite plasmas and (52) changes to (27). In the opposite limit of
thin slabs (L < 2).), on the right-hand side of (52) a large parameter 2)./L > 1 arises
corresponding to more effective heating. In this case (52) takes the form:

Vo) = o o (0 20 )

Equation (52) expresses the fact that losses of electron energy by inelastic collisions in
the plasma volume balances the collisionless heating. It should be noted that in this
limit the EEDF is spatially uniform and is equal to Fy(¢) in spite of the localization of
energy input regions near the walls. This limit corresponds to the so called “nonlocal”
heating regime of plasmas with space dimensions less than the length of of electron
energy relaxation A\ !%19,

If the slab width does not exceed the MFP (L < A < A.), the kinetic equation for
the EEDF has a form identical to (53) but with the diffusion coefficient

melL 4D )
DW) = oo Z / sm19d19/ B 6 (o= ) )

where
E 1/LE() (Fna) d (55)
= — x)cos | —=nz) dx
L), 7

is the Fourier transformation of the periodically continued—in accordance with (33)—
electric field E,(z) (with period L).

Expression (54) shows that only particles being in resonance (v, = wL/mn) con-
tribute to the collisionless heating in contrast to semi—infinite geometry, where all par-
ticles contribute to the heating, as can be seen from (14). The reason for such a discrim-
ination lies in the way of stochastization of the em field phase?’. In the semi-infinite
case all electrons undergo collisions in the periphery of the heating region, so subse-
quent interactions with the em field region happen after several collisions and randomly.
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Vx

Figure 4. (a) Scheme of velocity space, area of averaging and resonance points. Small velocity vy
corresponds to the region of many resonances, medium velocity vs lies in the region of the second
resonance, and large velocity vs lies in the region of the first resonance. (b) Scheme of energy space,
area of averaging and resonance points with accounting for the ambipolar electric field; no resonance
points occur at small energies.

Thus all electrons participate in the heating. In the slab geometry (L < \) electrons
return to the same place in a time much smaller than the time between collisions. So
these interactions are correlated and no diffusion in velocity space occurs. The collision
frequency does not enter in the expressions for the diffusion coefficient (22) and (54),
but the presence of collisions (or other stochastization mechanisms) is necessary for
collisionless heating. The situation is similar to the problem of Landau—damping. The
different ways of stochastization in semi-infinite and slab geometry result in different
diffusion coefficients (22) and (54). For a given velocity v the sum in (54) is over the res-
onance velocities v, = wL/mn < v (see Fig. 4). If v < wL/7, only higher n contribute
to the integral. For small v the approximation of hard wall and specular reflection
can be not valid and the real profile of the potential sheath should be considered (see
comment after Eq.(33). It can be shown that the spectrum FE, is always proportional
to 1/n?, independent of the form of dependence of E,(z). This behavior is connected to
the symmetric continuation of E, () and originates from the jump of the magnetic field
component B, = —fd—c% and is easy to check by twice partially integrating (55). For
such a spectrum the sum in (54) can be changed to an integral for low energy electrons
(v <wL/m) and the diffusion coefficient takes the form of (22) with the function E(k)

corresponding to the Fourier spectrum of the electric field

E,(|z]) —-L<z<L

Ey(r) =
0 |z| > L

(56)

In the region of high electron energy v > wL/m) the sum in (54) cannot be transformed
into an integral. To demonstrate this the simple case of an exponential profile of the
penetrating electric field with skin depth d; < L is considered. The spectrum FE,, for
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this case is

Ey%
n = i 2 (57)
L+ ()
(with n* = L/7mdy) and the diffusion coefficient (54)
J v
D) =P g () (59

is obtained, where

g@) == > e (59)

For small & (¢ < n*) the main contribution to the sum in (59) stems from large
n so that the sum can be represented by an integral and the result coincides with the
result (36) for the case of semi-infinite plasmas.

For large ¢ (0 > n*) the sum in (54) yields a smaller diffusion coefficient compared
with that in the case of semi—infinite plasmas. This is connected to the effective cut—off
at small k£ < 7/L for the slab geometry.

From the point of view of the one particle approach formula (54) can be interpreted
as follows. Passing forward and backward through the slab, an electron obtains a
velocity kick. Subsequent kicks are correlated, and the sequence of this kicks leads to
no diffusion. The diffusion in the energy space is only due to resonance electrons which
randomize the phase of velocity kick due to rare collisions. And the diffusion coefficient
reads:

T |va| (Awy - w)? wL singd -
=L Z // Sof o 5<n—7w$> e, (60)

n=—oo

= 2el
Av,, = / —E(x = v,t) exp(—iwt) dt = e
_rm m|v,|

Ve

(61)

It should be noted that (60) is only valid with accounting for collisions. Without
collisions the stochastization for w 2 ™/, usually does not exist, even due to nonlinear
effects?’. The collisions play two important roles:

1. They stochastizate the phase of electron motion with respect to the phase of the
electric field and

2. they transfer electrons from non-resonance velocity to resonance and vice versa.

This complex process of electron motion can be considered as diffusion with diffusion
coefficient (60). The identity of this diffusion coefficient with the one from the one
particle approach is fortuitous, but accounting for nonlinear effects, the results are
different?°. The plot of the normalized diffusion coefficient function g(v) is shown
in Fig. 5. The reduction of the diffusion coefficient due to the second boundary for
™. 2 1, where correlation effects are important, are clearly seen.

The vamshlng of correlation effects for v > wIL was proposed first in?%, but the
conclusion that it can occur without collisions is not correct?>?®. The decrease of the
real part of the surface impedance in the slab geometry compared to the semi—infinite

16



1.0

ooooo L=76
\ o710  L.aa L=276
N P R T T L=1006
analytical
\
S |
©
PN K B
R0.5 N . 0.05 2
NS || 2
K ~ >
\
\
\
1 1 1 1 1
0.0 X 0.00 g - 0
0 10 v/w6
3 b)

Figure 5. Influence of the second boundary on collisionless heating. (a) profile of the inductive

electric field E = Ey exp(—x/d) with second boundary at « = L = (r; 2m)J; (b) normalized diffusion

coefficient for an inductive exponential electric field g = D/ %wv% , as a function of the normalised

velocity ¥ = v/wd for different slab widths L. Solid curves correspond to the the analytical formulae
(54), symbols to Monte Carlo simulations?®: black squares: L — oo (1004); circles: L = 7d; squares:
L = 279.

one was found in?’ for a case, when the electron density drops exponentially with the
width a and a skin depth much smaller than a. The reduction of collisionless heating
due to the influence of the second boundary was observed in numerical simulations®.
For a homogeneous electric field (E,>; = 0) the collisionless heating vani-shes.
In the sum in (54) there is no wave-particle resonance at all for n = 0. This can
also be understood from the one—particle approach. Since the electric field is continued
symmetrically, the motion of the electron in the case of slab geometry can be substituted
by the motion in infinite space with a homogeneous electric field, where no condition for

collisionless heating occurs. This situation is different for a longitudinal electric field.

CAPACITIVELY COUPLED PLASMAS

CCPs have a more complicated structure than ICPs due to the presence of large
oscillating sheaths. For such a situation the approximation of the sheath potential as
a moving rigid wall has repeatedly been used (see e.g.??). In this model the sheath
velocity is vg, = vj cos(wt + ®). The electric field in the plasma bulk is neglected.

When MFP A\ < L we can apply Eq. (18) with velocity kick in the sheath Av = 2vp.
After averaging over velocity angle the diffusion coefficient reads

D(v) = 4 (v’ (62)

If the energy relaxation length is larger than discharge gap A* > L the kinetic
equation has a form (53). The physical meaning of expression ( 62) can be explained
as follows. After reflection from the wall an electron obtains a velocity kick 2vg,. If the
next kick can be considered as randomly with respect to the previous one, diffusion in
velocity space and electron heating appear. The randomization can originate from two
mechanisms: collisions, when the mean free path of the electrons A\ is smaller than the
slab width (A < L), and the nonlinear mechanisms of collisionless stochastization®’. In
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this case the averaged diffusion coefficient from two sheaths is!?

1w 9
17 (Cua(®)?) (63)

o~
DO | =

Therefore % is the product of a factor '/,, the bounce frequency, the squared velocity
kick averaged in time and a coefficient '/, resulting from averaging over the velocity
angle.

For A > L the correlation between two following kicks are important. In this case
Eq. (60) can be applied. After integration the diffusion coefficient reads:

wlL T
D ( ) 4
) =20k g (T2 (64)
with
Y on? (65)
n=1,3,5,...
n> Y

For small o (v < wL/7) the sum in (64) can be replaced by an integral and ¢(?) is
approximated by

o) =+ (66)
so that )
D(v) = %. (67)

Thus in the low energy region the expression for the diffusion coefficient (62) is identical
to the result obtained in'? with an one-particle approach.

In the high velocity region (v > wL/7) the main contribution in the sum of (65)
is due to the first resonance and one obtains

o) = = (68)

and correspondingly the diffusion coefficient decays ~ v=3:
2wt L% 1

4 o3

D(v) = (69)

From Fig. 6 the large deviation of the quasilinear diffusion coefficient (solid line)
from the one obtained without account correlation effect (dashed line) in the region
of high electron velocity is evident. It is also possible to transfer the problem into
a noninertial system moving with the sheath velocity vg,. In this system there is a
stationary specularly reflecting boundary and an alternating electric field connected to

the inertial force:
m duvgp,

E,(t) = —— —= = Eysin(wt + D), (70)
Now the quasilinear approach is easily applied and with the help of the continuation
method described above (32), (33) it yields the same expression for the diffusion coef-

ficient (54) in ICP.

1 me? A L ™m
D)= 5 7 3 / S1n19d19/ CRIB -5 (- o) (71)

n=—oo
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Figure 6. The normalized diffusion coefficient g = D/ %wv% as a function of the dimensionless
velocity © = v /wL for CCPs. The dashed curve represents g = ¢/2.

where

E, = %/OL E,(z)sin (?) dz. (72)

In the case considered here E,(x) = Ey = constant and Eq.(71) coincide with Eq.(64).

The interesting difference between capacitively and inductively coupled discharges
is the different influence of the boundary on collisionless heating. For inductively cou-
pled discharges the reflection from the boundary does not change the correlation be-
tween particle motion and electric field, since the influence of the electric field is the
same before and after reflection and vice versa. For capacitively coupled discharges
when the electric field diminishes the absolute value of velocity before reflection, but
increases it after reflection. Consequently there is no collisionless heating with uniform
electric fields for slab geometry in the case of inductively coupled discharges, but it does
occur in the case of capacitively coupled discharges.

The difference in the nature of the heating field for CCPs and ICPs rests also in
the structure of the diffusion coefficient near resonances. In the case of CCPs every
resonance gives a well defined peak near v,, = 7w/Ln (see Fig. 6). With increasing v an
additional resonance v, yields at first a considerable contribution, followed, however,
by a rapid decrease ~ v™3. As a consequence at v > mw/3L (i.e., n < 3) the diffusion
coefficient is practically determined by the lowest resonance (n = 1) and its curve
resembles a sequence of peaks (see Fig. 6). For ICPs the peak structure is smoothed
out, since every new resonance results only in a small contribution ~ (v — v, )? and the
decrease of the resonance contributions is also slower than for CCPs (~ v™!'). Therefore
only the peak of the first resonance is pronounced in the net diffusion coefficient compare
Fig.5 and Fig 6.
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THE DIFFUSION COEFFICIENTS FOR INHOMOGENEOUS PLASMAS
ACCOUNTING FOR STATIONARY AMBIPOLAR ELECTRIC FIELDS

In inhomogeneous plasmas the stationary ambipolar electric field appears which
tends to trap electrons in the plasma volume. As a consequence low energy electrons
cannot reach the periphery of the discharge, where the RF field is large. Therefore
taking into account the ambipolar potential leads to a decrease in the efficiency of
heating of low energy electrons. The diffusion coefficient for these electrons is small
and the effective temperature of the low energy part of the EEDF can be considerably
smaller than that of the higher energy part. For instance, in CCPs EEDFs resembling
bi—-Maxwellian ones have been observed, with a temperature of low energy electrons
(e < 2eV) ten times smaller than that of high energy electrons (¢ > 2eV)!?. Trapped
electrons are heated by the bulk rf electric field. If the mean free path is larger than the
plasma slab width (A > L), the heating of trapped electrons tends to be collisionless
and thus an appropriate quasilinear theory has to be developed.

The presence of the ambipolar electric field results not only in quantitative effects,
but in qualitative ones, as we will see it changes the distribution of resonance particles
over energy (see Fig. 4b).

First the case of a collisionless slab for CCPs (A > L) will be considered. The
kinetic equation (4) for the fast varying part of the distribution function F(z,v) with
the ambipolar potential ®(z) takes the form:

OF ¢ 0®0F cp OF -

—Z(.UF—FUCE% mgavx = —m xa—vx —vF (73)

Equation (73) can be simplified by introducing new variables: instead of v, and = now
g, and x, where €, = mv2/2 + e®(x) 1.
The corresponding boundary condition for the distribution function is

F(v,) = F(—=v,), =x1(c,) (74)
The solution of (73) is given by (see e.g.!)
[ sin(Q* — Q(a")) Eo(a') dao’

sin ()*

F(z,e,) = eagf)

exp(i€2)

+ [ (-0 B | (75)

Tr—

where . ,
w + i dx

2] = sl v /m_(m V2 — ed() "

2
m

QO = Q(x4,e,) and the turning points x4 (g,) are defined by the relation (see Fig.7)
eP(xy) =, (77)

Due to isotropization in collisions the main part of the distribution function F' =
F(g) is the function of the total energy € = e® + '/ymuv?. After averaging over both x
and velocity angle the kinetic equation reads:

d — dF

— D, — *(F) =
—D. "+ 5 (F) =0 (78)
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The bars indicate averaging over the slab width L. The diffusion coefficient averaged
over the angles in velocity space is:

— 2L [* de,
-1 [ 5 > BRledl () = (79)
with
1 +(ez)
E,(e:) = E/ E,(z)sin Q(z, ;) dx (80)
z_(ez)

Thus (78) with the energy diffusion coefficient (79) appears to be a generalized
form of the kinetic equation accounting for collisionless heating. The coefficients FE,,
are generalized Fourier coefficients (80)*.

Resonances occur, if the time of particle motion from one turning point to another
(bounce time) is equal to n7T/2, where T = 27 /w. This is in accordance with the
resonance condition Q*(e,) = mn, as follows from (79). If the value of Q2*(¢,) does
not exceed m, there are no resonances at all and no collisionless heating occurs. It
should be noted that, if the ambipolar potential is approximated by rigid walls, Q*(e,)
is proportional to m/,/g; and the resonance conditions can always be fulfilled. In the
case of a parabolic potential, which is realized for low energy electrons trapped near
the discharge center and is defined by the potential profile ®(z) = ®(z/1)?/2, the
dimensionless period Q* = /(w?ml?)/®y does not depend on the electron energy &,
and the resonance conditions can be fulfilled in this case for one value of ®,/I? only.
All plasma electrons are in or out of wave—particle resonance. Thus the “degeneracy”
could be removed by taking into account the deviation of the ambipolar potential from
the parabolic one.

To demonstrate the influence of the ambipolar potential on the energy diffusion
coefficient an example for its calculation is given. Usually at the discharge center both
the density and the potential profile are parabolic. At the periphery a more rapid
decrease of density results in a more rapid increase of ambipolar potential. Therefore
the latter is modeled in the form

®(z) = o(cosh(z/l) — 1), (81)

which is parabolic at the center |x/I| < 1 and higher than parabolic at the periphery
(see Fig. 7a). The plot of the dimensionless period

o - | s (2)

Vg

is shown in Fig. 7b for electrons moving in ambipolar potential (81). In contrast to
the case of no ambipolar potential the function Q*(¢) is finite at small e. For a given
potential (81) e.g. this situation occurs, if ®;/mw?* > 1. For smaller ®; the bounce
time is larger and a first resonance Q* = 7 appears. For example for &, = 0.82
resonance corresponds to a energy £ = 0.82mw?(?. With a given resonance energy the
energy diffusion coefficient (76) can be calculated, its plot is shown in Fig. 8.

*Expression (79) for the diffusion coefficient in energy space can also be derived by introducing a new
variable—phase Q0 = [ g—”” instead of coordinates®>—and then performing a Fourier transformation
on this variable.
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Figure 7. (a) Plot of the ambipolar potential ®(z) = ®g(cosh(z/l) — 1) with ®; = 0.82mw?I>.

x4 (&) = £1.3] are the coordinates of the turning points. Model with no ambipolar field corresponds
to the slab width L, so that the discharge area available for resonance particles is the same as before:
L =2z, (£,). Resonance occurs at the energy e = 0.82mw?(?. with and &, = 2mw?(z4(¢))* /7>
without accounting for the ambipolar potential. (b) Plot of the phase Q* /7 as function of the
normalised energy & = £/(mw?1?). For normalized potentials ® = &/(mw?I?) 1. ®(z) = 1.65(x/1)> 2.
®(z) = 3.3(cosh(z/l) — 1), 3. ®(x) = 0.41(x/1)> 4. ®(z) = 0.82(cosh(z/l) — 1)
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Figure 8. ¢) Plot of the dimensionless diffusion coefficient g(¢) = D.(¢)/e? EZw?[® as a function of
the dimensionless energy € (see Fig. 7b). Solid curve: with ambipolar normalised potential

®(z) = 0.2(coshz — 1), &y > 1 corresponds to the absence of resonance particles and g = 0. Small
dashes: no ambipolar field, but smaller slab width L, so that the discharge area available for
resonance particles is the same as before: L = 2z, (£,).
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In Fig. 8 also the energy diffusion coefficient is presented without accounting for
the ambipolar potential for a slab width the same as distance between turning points
for resonance particles remains the same (i.e. L = 2z, (s,)) (see Fig. 8) T

The corresponding energy diffusion coefficient is considerably smaller than that
with account of ambipolar field.

Indeed, for a purely parabolic profile, the function Q* does not depend on ¢ and
d)* /de = 0, so for a resonance in this situation D, — co. As a consequence the smaller
the nonlinearity of the ambipolar potential (the difference to the parabolic profile) the
larger is the diffusion coefficient and, correspondingly, heating.

From kinetic equation (73) the distribution of current in the discharge can be found.
The current in the system is determined by the difference AF = F(|v,|) — F(—|vz]).
Substituting the solution (75) gives

Ty
AF—2ze— [/ G(z, 2 e.)E(z") d$'+/ G2, x,e,)E(2") dx'| (83a)

with the kernel
sin Q(z') - sin(Q* — Q(z))

sin * ’

Integrating (83a) over the velocity we get an equation for the current in the discharge:

Gz, 2, e,) = — (83h)

() = / M, o) B(2') da’ + / N, ) B do! (83¢)

with

2
II(z m / / G(x, ', 2,) dey de (83d)

For small collision frequency the current is shifted by 7/, in phase compared to the
electric field, since it is determined by electron inertia.
For ICPs the diffusion coefficient averaged in velocity space is not influenced by

the magnetic field, so it can be omitted for @ calculation. For the inductive electric
field the current is determined by the sum AF = F(|v,|) + F(—|v;|). The function AF
obeys to the integral equation (83a) with a kernel?”

cos(2(z")) - cos(Q* — Q(z)) v,

G " =— —= 84
(z,7) sin(2*) |V | (84)

the expression for the diffusion coefficient has the form:

—— 7we’L [fdege
D, = Tt E25(Q0* — 85
S e ™) (%)
where

+(e2) .

En(gcv) = /‘x(gz) Ey(.ﬁb') COS Q(a?) m dx (86)

fMany resonances exist for small energies, as a result the function D.(e) has the form of a ladder
function. The value of steps at higher resonances is small oc 1/n° and, thus, this cannot be recognized
in Fig. 8. The main contribution is due to the first resonance, which corresponds to a energy ¢ =
m/2(wL/m)2.
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CONCLUSIONS AND OUTLOOK

The quasilinear approach to the description of collisionless electron heating by
given high frequency EM fields has been developed. This approach has been shown to
be an effective method of providing a common basis for a variety of conditions in gas
discharges and obtaining generalized expressions. It was possible not only to summarize
the effects obtained and to compare with results previously obtained by a different
approach, but also to obtain new and extended results: The comparison to results from
the one-particle approach yields agreement in the diffusion coefficient characterizing
heating only for the case of low energy electrons. The expressions derived here are valid
also for higher energies. For this region of electron energy a cut—off for the long wave
part of the spectrum of heating electric field is required. Accounting for the second
boundary of bounded plasma automatically provides such a cut—off. The generalized
expressions for bounded plasmas given include the effect of ambipolar electric fields,
which can be essential for the effectivity of collisionless heating.

It should be noted, if the EM in the plasma has also large space scale parts (E # 0,
B #0), the complete equation (5) has to be used instead of (8). The influence of static
ambipolar fields has been considered. The large space scale and time varying part
of the EM give rise to local diffusion coefficients which should be added to nonlocal
ones. Modeling of microwave discharges with heating due to two space scales and time
varying electric fields has been undertaken in'”. In general it can be underlined that
knowledge of the energy diffusion coefficient gives a good basis for further developments,
in particular for calculations of EEDF's needed for specific applications.

Finally it should be noted that the theory used in the present article is not a self
consistent quasilinear theory due to neglecting backward influences of the modification
of the EEDF on the electric field profile. For the case of surface wave produced plasmas

this problem has briefly been discussed in'® and included in numerical modeling in'”.
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