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INTRODUCTION

Numerous applications of low
pressure gas discharges have recently prompted an
interest in mechanisms of electron heating and power deposition in the plasma main

tained by radio�frequency �rf� electric �elds� A modern trend in plasma technology
aims at decreasing the gas pressures down to the millitorr range� For these low pres

sures it is easier to maintain uniform plasmas with well controlled parameters� Due to
the large value of the mean free path �MFP� the main mechanism of electron heating
turns out to be a collisionless one rather than the conventional Joule heating dominant
for higher pressures�

Being initially studied for a capacitively coupled plasma�� this mechanism is now
widely discussed in application to inductively coupled plasmas �ICP�� ECR plasmas� etc�
�� Initially collisionless heating was studied in a �kick� model� electron obtains velocity
kick in the strong electric �eld at the discharge periphery� then the phase of velocity
kick is randomized either due to collisions in the bulk or due to non
linear mechanism
of randomization �Fermi acceleration�� As a result di�usion in velocity space arises�
and this corresponds to collisionless heating�

In general case the electric �eld is presented in the whole discharge volume and
the separation on periphery region where electron gains energy and a bulk without
electric �eld is not applicapable� The other subject of investigation is the heating of
trapped in the discharge center electrons in non
uniform plasma buy ambipolar electric
�eld� These electrons also can be heated by collisionless mechanism by weak electric
�eld in the plasma �eld� For this situation kick model is also not applicable� In this
particular situation the use of rigorous quasi
linear theory is necessary� It is based on
well known mechanism of collisionless power dissipation 
 Landau damping �see e�g�
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��� The resonance particles moving with a velocity close to the wave phase velocity
intensively interact with wave �elds and receive or lose energy� The result of particle �
wave interaction depends on the shape of the particle distribution function in velocity
space� For Maxwellian distributions the wave amplitude decreases� while the particle
energy increases� If many waves are excited the power dissipation should be summarized
over the spectrum of waves� Such a theory was developed for a weak turbulence in
order to explain the mechanisms of anomalous transport phenomena in hot plasma of
thermonuclear fusion �see e�g������

But it can also be applied to stable plasmas� when small scale �elds with a wide
spectrum of wave numbers are excited by an external source� This situation is realized
in the cases of Debye screening of longitudinal electric �elds or cases of anomalous skin
e�ects for transversal �elds� A local spectrum of small scale Langmuir waves appears
also in the region of plasma resonances for inhomogeneous plasmas interacting with
electric �elds capacitively coupled with plasmas �CCPs��

The only particles which are in resonance with a wave are heated by collisionless
mechanism� It means that in the regime of collisionless dissipation the form of the
electron energy distribution function �EEDF� is sensitive to wave spectrum� If the
wave phase velocities are con�ned in some interval the plateau in the EEDF can be
formed��

The problem of the plateau formation in the EEDF in the quasilinear theory was
investigated �rst in���� In	 it is shown that collisionless heating due to localized plasma
oscillations results in plateau formation in the region of high electron energy� Collisions
smooth out the plateau and lead to an increased number of high energy electrons�� The
e�ect of collisions on electron heating by local plasma oscillations were investigated in

� The numerous investigations of EEDF by using a kinetic equation for electrons of
a plasma slab with oscillating rigid walls have been performed in������ This treatment
yields a power law energy dependence in the EEDFs� The experimental study of EDF
for CCP have been carried out in������

A quasilinear approach to collisionless electron heating in the regions of plasma
resonance in low pressure discharges� sustained by electromagnetic surface waves� is
developed in������ In�� it is demonstrated that � in view of experimental situations �
self
consistent modeling has to account for nonlocal e�ects�	��
 as well as for collisionless
heating� The classi�cation of variuos regimes of collisionless heating were performed in
���

In view of the history of successful use of the quasilinear approach as a well es

tablished method� particular in hot plasma physics� this paper aims at systematically
applying this method also to study collisionless heating in various low temperature
plasmas and to summarize existing results using a common basis as well as to gain
extended new results� The paper intends to demonstrate that the quasilinear theory is
a powerful and easily applicable method for investigations of these type of problems�

This paper is organized as follows� In section II� the derivation of the di�usion
coe�cient in energy space for uniform boundless plasmas� heated by localized high
frequency �eld is presented� In section III the collisionless heating in inductively coupled
plasmas �ICPs� is analyzed for semi�in�nite and slab geometry� Both cases can be
reduced to the boundless problem with specular re�ecting walls� The pro�le of the
electric �eld under the condition of the anomalous skin e�ect is found in analytical
form and the electric �eld is shown to oscillate spatially with zero average value� As a
result the di�usion coe�cient of fast electrons is suppressed� but in the low energy region
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it is enhanced in comparison to the case of an exponential pro�le� For ICPs in slab
geometry �of width L� it is demonstrated that the second boundary plays a similar role�
In this case the corresponding Fourier spectrum of electric �eld is discret �kn � �n�L�
in contrast to a continuous one for semi�in�nite geometry� In section IV the quasilinear
theory is applied for capacitively coupled plasmas �CCPs�� It is shown that the di�usion
coe�cient has a clear resonant structure with a main peak at v � �L��� An analysis of
the solutions of the kinetic equation for the EEDF in di�erent regimes of plasma heating
is presented� In section V the in�uence of the ambipolar electric �eld on the e�ciency of
collisionless heating is discussed� The general expression for the di�usion coe�cient in
energy space is obtained for cases both of ICPs and CCPs� The presence of ambipolar
electric �elds can strongly modify the condition for particle � wave resonances� As
a consequence the form of di�usion coe�cient in energy space is changed� especially
for low energy electrons� In a parabolic potential � � ax��� the bounce frequency
of trapped electrons �

p
a�m� is the same for all energies� So the resonance condition

�� �
p
a�m� can be ful�lled for one value of a only� and there is no collisionless heating

for other values of a� In the general case of a non�parabolic potential the bounce
frequency is energy dependent� Section VI contains the conclusion and outlook�

KINETIC THEORY OF COLLISIONLESS ELECTRON HEATING

Separation of the Space and Times scales in the Kinetic Description

First we discuss case when collisionless heating occurs in a small region at the dis

charge periphery of width � � L� L being the discharge gap� In the ICP� � corresponds
to the thickness of the skin layer� In a capacitively coupled plasma� this model corre

sponds to the sheath width smaller then an electron mean free path� For surface wave
discharges it corresponds to colisionless dissipation in the narrow region of plasma res

onance� In such low pressure discharges the space scale of the electric heating becomes
small in comparison to the MFP �� Under these conditions it is possible to simplify the
kinetic description of the plasma by separation of the space scales�

The kinetic equation for the electron velocity distribution function F�r � v � t� is�
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�F
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� S�F� �	�

where e and m are the electron charge and mass� respectively� S�F � is the collisional
integral� E�r � t� is the electric and B�r � t� is the magnetic �eld�

The �elds can be separated into two parts according to di�erent space scales�

E � E � �E B � B � �B ���

where E and B have spatial scales large compared to �� while �E and �B have spatial
scales � small compared to � �i�e� � � ��� An analogous separation can be performed
for the distribution function�

F�r � v � t� � F �r � v � t� � �F �r � v � t� ���

where F is averaged over a scale in the order of � and �F describes the deviations of the
distribution function on scales smaller than �� Also the usual quasilinear approximation
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�F � F is used���� As a result the kinetic equation �	� can be separated into two parts�
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In ��� the collisionless term is omitted� since it is small compared to the second term on
the left�hand side� k�� 	� The bar in ��� denotes spatial averaging on scales smaller
than ��

The Form of Quasilinear Integral for Weakly Inhomogeneous Boundless

Plasmas

First the case of weakly inhomogeneous boundless plasmas� when E � B � � and
�E � �B are only RF �elds� is considered� It correspond to collisionless dissipation in
narrow region with a gap width larger than a energy relaxation length� so in�uence of
boundary can be neglected� The electric �eld is excited at �xed frequency�

�E�r � t� �
	

�
fE �r� exp��i�t� � E

��r� exp�i�t�g � ���

where � denotes the complex conjugation�
Under conditions� when the frequency of ineleastic collisions �� is small compared

to the RF � ��� � ��� the distribution function does not depend on time�
� i�e� F �
F �r � v�� and ���� ��� can be simpli�ed to
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The �rst term on the right hand side of ��� is well known in the theory of weak turbulent
plasmas as the quasilinear collision integral� describing interaction of electrons with
waves�
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where the h	 	 	i brackets indicate temporal averaging over the wave period �����
Equation ��� can be solved by the Fourier method giving�

�F �k� � � ie

m
� E �k� � �

c
v �B�k �

� � kv
� �F
�v

�	��

where �F �k�� E �k� and B�k� are the Fourier transformations of the functions �F �r��
E �r� and B�r�� respectively�

By inserting �	�� into �
� the quasilinear integral for the one�dimensional geometry
can be written in the form�

Sql � � �x� x��
�
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where the ��function appears as a result of space averaging and re�ects the fact of
localization of the heating electric �eld in the region x � x� with a characteristic scale
� much smaller than � and
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is the tensor of the di�usion coe�cient in velocity space� By excluding the magnetic
�eld from �	�� with help of the Maxwell equation

�B�k� �
c

�
k � �E �k� �	��

Thus in expression �	�� the contribution of the Lorentz force is of the same order of
magnitude as that of the electric �eld��� After substituting expression �	�� for the
magnetic �eld one gets�

Dij �
�����ne�

�m�

Z
dnk

kikj
��

jv �E �k�j���� � k 	v� �	��

From �	��	�� it can be seen that the role of the Lorentz force is changing the direction
of di�usion in velocity space� Without accounting for the Lorentz force the di�usion is
in the direction of the electric �eld� but with accounting for the Lorentz force it is in the
direction of wave propagation given by k � The same result in an one�particle approach
was discussed in��� The formula �	�� has a general form� it is valid for longitudinal
waves� too �E�k � ��� This stems from the fact that the electrons receive impulse from
the wave impulse directed along k independent of the type of heating �eld �transverse
or longitudinal��

The relation

Im

�
	

� � kvx � i


�
� ����� � kvx�� �	��

corresponding to the phase resonance between traveling wave and moving electron� was
used to obtain expression �	���

It should be stressed that Dij is a nonlocal function of the heating electric �eld
due to the integral representation

E�k� �

Z
dx

��
exp��ikx��E �x� 	 �	��

This type of nonlocality is also discussed in���
The simple physical meaning of expression �	�� shall be illustrated by the example

of plasma heating due to the localized �eld of a longitudinal wave �E �Ex� �� ��� In this
case one obtains from �	���
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Expression �	�� can be presented in the form

Dxx �
jvxj
�

��v�� �	��
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where �v is the amplitude of the velocity kick after interaction with the wave �eld�
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Kinetic Equations for the EEDF

In gas discharge plasmas the anisotropy of the distribution function in velocity
space is small due to the elastic collision frequency � being large compared to the
inelastic one ������
 i�e� � � �� �� In this case the conventional two�term approach is
applicable and for the spherically symmetric part of the EEDF F� one has the following
equation for one�dimensional geometry�
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is the averaged �over the velocity angles� quasilinear collision integral Sql �		� and
S��F�� is the inelastic collision integral�

Expression ���� like �	�� has a general form for all types of �elds� The Lorentz force
in ���� for an isotropic EEDF has vanished and the resulting di�usion coe�cient �	��
is the same with or without accounting for the Lorentz force� Thus the wave instability
discussed in����� which is equivalent to electron cooling� is essential only for anisotropic
or non monotonic EEDFs� where the role of the Lorentz force is essential�

Below we summarize the forms of the di�usion coe�cients in velocity space for
various types of discharges�

	� For the case of transverse em waves �k � E�k �� k � kex� E y � eyE�k�� �
corresponding to an inductive discharge � ���� yields
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After integration over �� and introduction of 
 � cos � � vx�v� one gets
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�It corresponds to the case� when a localized em �eld is excited with a broad spectrum of wavenumber
�k� So the corresponding time of di�usion through the region of wave�particle interaction ��v �
��k� �k��ti � ��v���D is large compared with the collision time �ti � 	� The steady state condition
is established on a time t � ����� The opposite case corresponds to large anisotropy of the EEDF
and can even lead to current drive���
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�� For the case of a longitudinal electric �eld �k k E � k � kex� E � Eex� �
corresponding to a capacitive discharge and plasma resonance heating in surface
wave plasmas � ���� reduces to
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�� For the case of a circularly polarized electric �eld �k � ky�ey � kxex� E �
Exex � Eyey� Ey � iEx � E�� � corresponding to SW sustained discharges
� ���� gives
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where ky� is the �xed wavenumber of the surface wave and E�k� corresponds to
the Fourier transformation of the electric �eld pro�le E��x��

To obtain the EEDF� ���� should be integrated over a small vicinity of the point
x � x�� One gets as result�
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In obtaining ���� symmetry of plasma heating and EEDF with respect to the space
position x � x� is assumed� Relation ���� should be considered as boundary condition
for the equation

v�

���v�

��F�

�x�
� S��F�� � � ����

describing the space evaluation of the EEDF outside the region of RF power input�
By representing the collisional integral S��F�� in the form

S��F�� � ����v�F��v� x� ��
�

one obtains from �����
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where �� � v�
p

���v����v� is the energy relaxation length� Substituting ���� into the
boundary condition ���� now results in the equation for the EEDF�
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Equation ��	� has previously been analyzed for the case of localized longitudinal RF
�elds in the ionosphere
 and SW produced plasmas��� The character of the solutions
of ��	� essentially depends on the di�usion coe�cient D�v�� For its determination the
space spectra of the heating EM �elds have to be known�

In contrast to boundless plasmas considered above gas discharge plasmas are always
bounded� Thus� in the next section a procedure of reducing the bounded problem to a
boundless one will be developed�

	



SPACE SPECTRA OF HEATING ELECTRIC FIELDS AND DIFFUSION

COEFFICIENTS FOR INDUCTIVELY COUPLED PLASMAS

The Semi
In�nite Plasma

In order to use the results of boundless plasmas� specular re�ection of the electrons
from the discharge wall �x � �� is assumed�

�F �vx� vy� vz� x � �� � �F ��vx� xy� vz� x � �� ����

To reduce the semi
in�nite problem to boundless one the continuation of Eq� ��� into
the complete x�range ��	 � x � 	� can be performed� Now the re�ected electron
is represented by one passing to the region x � ��� The kinetic equation is symmetric
with respect to electron re�ection if the �elds are continued by the following ansatz see
Fig�	�

�By�x � �� � � �By�x � ��
�Ey�x � �� � �Ey�x � ��

�Ex�x � �� � � �Ex�x � �� ����

and the problem reduces to the case of boundless plasmas ��
Now the possible regimes of shielding the transverse EM �eld by the semi�space

plasma are addressed� In the case of weak collisions �� � �� the �eld penetrates into
the overdense plasma �� � �p � ���e�n�m�

���� over the depth �� � c��p� For such a
regime the frequency of the electric �eld should be su�ciently high �� � vT���� with
vT being the thermal electron velocity�� A regime of collisionless plasma heating is
possible� if the skin length �� does not exceed the MFP �� i�e� if vT � � � ��� In this
case one should use the following form for the electric �eld� continued into the complete
x�range to calculate the di�usion coe�cient for semi�in�nite plasmas�

Ey�x� � E� exp

�
�jxj
��

�
� ����

with the Fourier spectrum given by

E�k� �
E���

��	 � k�����
	 ����

It should be noted that result ���� corresponds to the absence of power dissipation�
accounting for low power dissipation either due to small collisionality or colisionless
dissipation results in weak spatial �eld oscillations and a small EM power �ux into the
plasma� Substitution of ���� into ���� yields the expression for the di�usion coe�cient
D�v��

D�v� � ���v
�
Eg

�
v

���

�
����

�It should be mentioned that the approximation of specular boundary re
ection �vx � �vx� x � ��
may not be valid in real plasmas� where electrons re
ect from the sheath region and penetrate into
the sheath by a length ��vT � � rD �rD being the Debye radius�� If this length is small �i�e� ��vT � �
vT �� � ��� the sheath region is not important and formulae for specular re
ection are valid� For the
opposite case � � ��vT � � vT �� the velocity kick �and thus the energy dissipation� is smaller���
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Figure �� Scheme of electric �eld continuation
 �a� transverse electric �eld� �b� longitudinal electric
�eld�






where vE � eE��m� and

g��v� �
	

��v�
��� � �v�� ln�	 � �v��� ��v� ����

which should be used in the kinetic equation ��	� for obtaining the EEDF F��v��
In the region of low electron energy �v���� � 	 
 �v � 	� one has

g��v� � 	
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�v�	 ���a�

In the limit of high electron energy �v��� � 	 
 �v � 	� one obtains�

g��v� � ln��v�

��v
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For lower frequencies �� � � � vTe��� the case of anomalous skin e�ect� is realized
��� � ��c����

pvTe�� independent of the relation between � and �� In this situation the
depth of the electric �eld penetration becomes less than the MFP � and electrons are
heated in a collisionless manner�

If one uses a description of the electric �eld in the form

Ey�x� � E� exp
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where �sk � �cZ���i�� is chosen from the condition of a correct representation for the
power deposition into the plasma with the surface impedance Z � �����	 � ���

p
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where � � b
���� is e�ective skin depth see Eq����� the di�usion coe�cient D�v� is�
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The function g��v� has the following approximation in the region of high electron energy
��v � v��� � 	��
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and in that of low electron energy ��v � 	��
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The exact Fourier transformation of the electric �eld obtained from the kinetic
approach� yields�
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In the case of a Maxwellian EEDF one has�
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where n is the electron density and
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The space dependence of the electric �eld penetrating into the plasma over the
region � � x � vT�� has the form�
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The last term on the right�hand side of ���� represents the contribution of the
branch point k � � and the exponential terms are a result of the poles in the integration
when the inverse Fourier transformation of expression ���� is performed� A plot of Ey�x�
is presented in Fig� �� The electric �eld pro�le has a oscillatory structure which re�ects
the existence of power �ux into the plasma due to collisionless dissipation� It should
be noted that at large distances from the plasma surface �x � vTe��� the in�uence of
electron thermal motion is not important and the electric �eld penetration becomes
purely exponential with a scale length �� � c��p� But this e�ect of changing the regime
of �eld penetration can be neglected because at this distance Ey�x� has decreased to a
small fraction of its value at the surface if the frequency � is in the range � � �vT�c��p
where the anomalous skin e�ect is applicable�

By substituting expression ���� into ���� one obtains�
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In the region of large values of the argument �v � 	 the function g��v� decays and
can be approximated by�
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p
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For small values of �v � 	 ���� goes to zero by the law�
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Figure �� Plot of the electric �eld at anomalous skin e�ect as a function of normalized coordinates
x���� The solid curve corresponds to the exact pro�le of the electric �eld ����� the dashed one to the
exponential pro�le ���� and the small dashes represent the impedance approximation ����
 �a� Real�
�b� imaginary part of the electric �eld intensity�

��



� � �� �� ��
����

����

����

����

����

����

����

����


��

���� ����

���������
� �������

�
���
���


������

����

�
��

�
ω

δ
�

�� ωδ

Figure �� The normalized di�usion coe�cient g � D� ��
�
�v�

E
as a function of the dimensionless

velocity �v � v���� for various models of electric �eld pro�le� The solid curve corresponds to the
exact pro�le of the electric �eld ����� the dashed one to the exponential pro�le ���� and the small
dashes represent the impedance approximation �����

In Fig� � plot of g��v� for di�erent cases of electric �eld representation is shown�
The di�erence of the di�usion coe�cients ��
� to �����	� �see Fig� �� is essentially
due to the oscillating structure of the em �eld penetrating into the plasma� which is
very important for resonant interaction of particles with the �eld� The reason for this
structure of the electric �eld is the nonlocality of the conductivity ��k�� Due to the
plasma conductivity an electron current arises and produces magnetic and electric �elds
in a direction opposite to that of the external em �elds� In the local case �� does not
depend on k� this leads to a monotonic decrease of the sum of all em �elds� while in
the nonlocal case these em �elds are shifted towards the plasma and as a result the
oscillating structure of the em �elds appears�

Another feature of exact description is thatZ �

�

E�x� dx � � ����

Note that it follows from ���� that the Fourier component E�k � �� should be
equal to zero� which is in agreement with �����

The integral of the electric �eld
R�
�

E dx 
 �� since the electron current has to
vanish at large x� where the average electron velocity is determined by this integral�

Diminishing of the di�usion coe�cient ���� in regions of a high electron velocity
v � �� has a transparent physical meaning� To the electron with such a high velocity
the electric �eld appears as a stationary one� The increase of the electron energy by
interacting with the localized electric �eld is equal to zero� since the spatial integral
over electric �eld is zero�

In the region of high electron energy the di�usion coe�cients D�v� ����� ���� decays
much less than in the case� when the electric �eld is described exactly ����� This is a
consequence of the fact that in the former two cases the long wave part of the Fourier
spectrum of the electric �eld does not vanish and E�k � �� �� ��

��



The Slab Geometry

Now the case of a uniform plasma slab �of width L� bounded by two plane walls
with specular re�ection of electrons is considered� For the case L � � collisionless
heating of overdense plasmas occurs only in the nearest vicinity of the walls� while
between then the usual Joule heating takes place� By using the method of continuation
considered in the previous section the following solution for the EEDF is obtained

F��v� x� � F��v� �
cosh

�
x�L

�

��

	
cosh

�
L
���

	 ��	�

generalizing the result ���� for the case of plasma slabs with symmetrical heating on
both walls� The kinetic equation for the EEDF F��v� instead of ��	� now has the form�

v

r
��

��
F��v� �

coth
�

L
���

	
�v�

�

�v

�
v�D�v�

�F��v�

�v

�
����

The di�usion coe�cient D�v� in ���� is de�ned by ����� The limit L� �� corresponds
to the case of semi�in�nite plasmas and ���� changes to ����� In the opposite limit of
thin slabs �L� ����� on the right
hand side of ���� a large parameter ����L� 	 arises
corresponding to more e�ective heating� In this case ���� takes the form�

��F��v� �
	

v�
�

�v

�
v�D�v�

L

�F��v�

�v

�
����

Equation ���� expresses the fact that losses of electron energy by inelastic collisions in
the plasma volume balances the collisionless heating� It should be noted that in this
limit the EEDF is spatially uniform and is equal to F���� in spite of the localization of
energy input regions near the walls� This limit corresponds to the so called !nonlocal"
heating regime of plasmas with space dimensions less than the length of of electron
energy relaxation ��

�	��
�
If the slab width does not exceed the MFP �L � � � ���� the kinetic equation for

the EEDF has a form identical to ���� but with the di�usion coe�cient

D�v� �
�e�L

�v�m�

�X
n���

Z �

�

sin� d� �
Z ��

�

d��

��
� �vy��jEnj� � �

�
� � �n

L
vx
	

����

where

En �
	

L

Z L

�

Ey�x� cos
��
L
nx
	
dx ����

is the Fourier transformation of the periodically continued�in accordance with �����
electric �eld Ey�x� �with period L��

Expression ���� shows that only particles being in resonance �vx � �L��n� con

tribute to the collisionless heating in contrast to semi�in�nite geometry� where all par

ticles contribute to the heating� as can be seen from �	��� The reason for such a discrim

ination lies in the way of stochastization of the em �eld phase��� In the semi�in�nite
case all electrons undergo collisions in the periphery of the heating region� so subse

quent interactions with the em �eld region happen after several collisions and randomly�
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Figure �� �a� Scheme of velocity space� area of averaging and resonance points� Small velocity v�
corresponds to the region of many resonances� medium velocity v� lies in the region of the second
resonance� and large velocity v� lies in the region of the �rst resonance� �b� Scheme of energy space�
area of averaging and resonance points with accounting for the ambipolar electric �eld� no resonance
points occur at small energies�

Thus all electrons participate in the heating� In the slab geometry �L � �� electrons
return to the same place in a time much smaller than the time between collisions� So
these interactions are correlated and no di�usion in velocity space occurs� The collision
frequency does not enter in the expressions for the di�usion coe�cient ���� and �����
but the presence of collisions �or other stochastization mechanisms� is necessary for
collisionless heating� The situation is similar to the problem of Landau�damping� The
di�erent ways of stochastization in semi�in�nite and slab geometry result in di�erent
di�usion coe�cients ���� and ����� For a given velocity v the sum in ���� is over the res

onance velocities vx � �L��n � v �see Fig� ��� If v � �L��� only higher n contribute
to the integral� For small v the approximation of hard wall and specular re�ection
can be not valid and the real pro�le of the potential sheath should be considered �see
comment after Eq������ It can be shown that the spectrum En is always proportional
to 	�n�� independent of the form of dependence of Ey�x�� This behavior is connected to
the symmetric continuation of Ey�x� and originates from the jump of the magnetic �eld

component By � � ic
�

�Ey

�x
and is easy to check by twice partially integrating ����� For

such a spectrum the sum in ���� can be changed to an integral for low energy electrons
�v � �L��� and the di�usion coe�cient takes the form of ���� with the function E�k�
corresponding to the Fourier spectrum of the electric �eld

Ey�x� �

��
� Ey�jxj� �L � x � L

� jxj � L
����

In the region of high electron energy v � �L��� the sum in ���� cannot be transformed
into an integral� To demonstrate this the simple case of an exponential pro�le of the
penetrating electric �eld with skin depth �� 
 L is considered� The spectrum En for

��



this case is
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�with n� � L����� and the di�usion coe�cient ����
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is obtained� where
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��h
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��i� � n 	 ��
�

For small �v ��v � n�� the main contribution to the sum in ��
� stems from large
n so that the sum can be represented by an integral and the result coincides with the
result ���� for the case of semi�in�nite plasmas�

For large �v ��v � n�� the sum in ���� yields a smaller di�usion coe�cient compared
with that in the case of semi�in�nite plasmas� This is connected to the e�ective cut�o�
at small k 
 ��L for the slab geometry�

From the point of view of the one particle approach formula ���� can be interpreted
as follows� Passing forward and backward through the slab� an electron obtains a
velocity kick� Subsequent kicks are correlated� and the sequence of this kicks leads to
no di�usion� The di�usion in the energy space is only due to resonance electrons which
randomize the phase of velocity kick due to rare collisions� And the di�usion coe�cient
reads�

D�v� � L
�X

n���

Z �

�

Z ��

�
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jvxj
�L

��vn � v��

�v�
�

�
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�vx
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d�d��� ����

�vn �

Z L
vx

� L
vx

e

m
�E�x � vxt� exp��i�t� dt �

�eL

mjvxjEn ��	�

It should be noted that ���� is only valid with accounting for collisions� Without
collisions the stochastization for � � �v�L usually does not exist� even due to nonlinear
e�ects��� The collisions play two important roles�

	� They stochastizate the phase of electron motion with respect to the phase of the
electric �eld and

�� they transfer electrons from non�resonance velocity to resonance and vice versa�

This complex process of electron motion can be considered as di�usion with di�usion
coe�cient ����� The identity of this di�usion coe�cient with the one from the one
particle approach is fortuitous� but accounting for nonlinear e�ects� the results are
di�erent��� The plot of the normalized di�usion coe�cient function g�v� is shown
in Fig� �� The reduction of the di�usion coe�cient due to the second boundary for
�v��L � 	� where correlation e�ects are important� are clearly seen�

The vanishing of correlation e�ects for v � �L was proposed �rst in��� but the
conclusion that it can occur without collisions is not correct������ The decrease of the
real part of the surface impedance in the slab geometry compared to the semi�in�nite

��



a) b)

Figure �� In
uence of the second boundary on collisionless heating� �a� pro�le of the inductive
electric �eld E � E� exp��x��� with second boundary at x � L � ��� ����� �b� normalized di�usion
coe�cient for an inductive exponential electric �eld g � D� �

�
�v�

E
� as a function of the normalised

velocity �v � v��� for di�erent slab widths L� Solid curves correspond to the the analytical formulae
����� symbols to Monte Carlo simulations��
 black squares
 L�� �	����� circles
 L � ��� squares

L � ����

one was found in�� for a case� when the electron density drops exponentially with the
width a and a skin depth much smaller than a� The reduction of collisionless heating
due to the in�uence of the second boundary was observed in numerical simulations�	�

For a homogeneous electric �eld �En�� � �� the collisionless heating vani
shes�
�
In the sum in ���� there is no wave�particle resonance at all for n � �� This can
also be understood from the one�particle approach� Since the electric �eld is continued
symmetrically� the motion of the electron in the case of slab geometry can be substituted
by the motion in in�nite space with a homogeneous electric �eld� where no condition for
collisionless heating occurs� This situation is di�erent for a longitudinal electric �eld�

CAPACITIVELY COUPLED PLASMAS

CCPs have a more complicated structure than ICPs due to the presence of large
oscillating sheaths� For such a situation the approximation of the sheath potential as
a moving rigid wall has repeatedly been used �see e�g����� In this model the sheath
velocity is vsh � vE cos��t � ���� The electric �eld in the plasma bulk is neglected�

When MFP � � L we can apply Eq� �	�� with velocity kick in the sheath �v � �vE�
After averaging over velocity angle the di�usion coe�cient reads

D�v� �
v

�
�vE�� ����

If the energy relaxation length is larger than discharge gap �� � L the kinetic
equation has a form ����� The physical meaning of expression � ��� can be explained
as follows� After re�ection from the wall an electron obtains a velocity kick �vsh� If the
next kick can be considered as randomly with respect to the previous one� di�usion in
velocity space and electron heating appear� The randomization can originate from two
mechanisms� collisions� when the mean free path of the electrons � is smaller than the
slab width �� 
 L�� and the nonlinear mechanisms of collisionless stochastization��� In

�	



this case the averaged di�usion coe�cient from two sheaths is���

D
L

�
	

�

	

�

v

L

�
��vsh�t���

�
����

Therefore D
L

is the product of a factor ���� the bounce frequency� the squared velocity
kick averaged in time and a coe�cient ��� resulting from averaging over the velocity
angle�

For � � L the correlation between two following kicks are important� In this case
Eq� ���� can be applied� After integration the di�usion coe�cient reads�

D�v� �
�L

��
v�E g

� �v
�L

	
����

with

g��v� �
�

�v�

X
n����������

n� ���v

n�� ����

For small �v �v � �L��� the sum in ���� can be replaced by an integral and g��v� is
approximated by

g��v� �
�v

�
����

so that

D�v� �
vv�E

�
	 ����

Thus in the low energy region the expression for the di�usion coe�cient ���� is identical
to the result obtained in�� with an one�particle approach�

In the high velocity region �v � �L��� the main contribution in the sum of ����
is due to the �rst resonance and one obtains

g��v� �
�

�v�
����

and correspondingly the di�usion coe�cient decays � v���

D�v� �
���L�v�E

��

	

v�
��
�

From Fig� � the large deviation of the quasilinear di�usion coe�cient �solid line�
from the one obtained without account correlation e�ect �dashed line� in the region
of high electron velocity is evident� It is also possible to transfer the problem into
a noninertial system moving with the sheath velocity vsh� In this system there is a
stationary specularly re�ecting boundary and an alternating electric �eld connected to
the inertial force�

Ex�t� � �m

e

dvsh
dt

� E� sin��t � ��� � ����

Now the quasilinear approach is easily applied and with the help of the continuation
method described above ����� ���� it yields the same expression for the di�usion coef

�cient ���� in ICP�
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Figure �� The normalized di�usion coe�cient g � D� L

��
�v�

E
as a function of the dimensionless

velocity �v � �v��L for CCPs� The dashed curve represents g � �v���
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Ex�x� sin
��nx
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dx	 ����

In the case considered here Ex�x� � E� � constant and Eq���	� coincide with Eq������

The interesting di�erence between capacitively and inductively coupled discharges
is the di�erent in�uence of the boundary on collisionless heating� For inductively cou

pled discharges the re�ection from the boundary does not change the correlation be

tween particle motion and electric �eld� since the in�uence of the electric �eld is the
same before and after re�ection and vice versa� For capacitively coupled discharges
when the electric �eld diminishes the absolute value of velocity before re�ection� but
increases it after re�ection� Consequently there is no collisionless heating with uniform
electric �elds for slab geometry in the case of inductively coupled discharges� but it does
occur in the case of capacitively coupled discharges�

The di�erence in the nature of the heating �eld for CCPs and ICPs rests also in
the structure of the di�usion coe�cient near resonances� In the case of CCPs every
resonance gives a well de�ned peak near vn � ���Ln �see Fig� ��� With increasing v an
additional resonance vn yields at �rst a considerable contribution� followed� however�
by a rapid decrease � v��� As a consequence at v � ����L �i�e�� n 
 �� the di�usion
coe�cient is practically determined by the lowest resonance �n � 	� and its curve
resembles a sequence of peaks �see Fig� ��� For ICPs the peak structure is smoothed
out� since every new resonance results only in a small contribution � �v� vn�� and the
decrease of the resonance contributions is also slower than for CCPs �� v���� Therefore
only the peak of the �rst resonance is pronounced in the net di�usion coe�cient compare
Fig�� and Fig ��

�




THE DIFFUSION COEFFICIENTS FOR INHOMOGENEOUS PLASMAS

ACCOUNTING FOR STATIONARY AMBIPOLAR ELECTRIC FIELDS

In inhomogeneous plasmas the stationary ambipolar electric �eld appears which
tends to trap electrons in the plasma volume� As a consequence low energy electrons
cannot reach the periphery of the discharge� where the RF �eld is large� Therefore
taking into account the ambipolar potential leads to a decrease in the e�ciency of
heating of low energy electrons� The di�usion coe�cient for these electrons is small
and the e�ective temperature of the low energy part of the EEDF can be considerably
smaller than that of the higher energy part� For instance� in CCPs EEDFs resembling
bi�Maxwellian ones have been observed� with a temperature of low energy electrons
�� � �eV� ten times smaller than that of high energy electrons �� � �eV���� Trapped
electrons are heated by the bulk rf electric �eld� If the mean free path is larger than the
plasma slab width �� � L�� the heating of trapped electrons tends to be collisionless
and thus an appropriate quasilinear theory has to be developed�

The presence of the ambipolar electric �eld results not only in quantitative e�ects�
but in qualitative ones� as we will see it changes the distribution of resonance particles
over energy �see Fig� �b��

First the case of a collisionless slab for CCPs �� � L� will be considered� The
kinetic equation ��� for the fast varying part of the distribution function �F �x� v� with
the ambipolar potential ��x� takes the form�

�i� �F � vx
� �F

�x
� e

m

��

�x

� �F

�vx
� � e

m
�Ex

�F

�vx
� � �F ����

Equation ���� can be simpli�ed by introducing new variables� instead of vx and x now
�x and x� where �x � mv�x�� � e��x��	��
�

The corresponding boundary condition for the distribution function is

�F �vx� � �F ��vx�� x � x���x� ����

The solution of ���� is given by �see e�g����

�F �x� �x� � e
�F ���

��
exp�i#�

�
�
R x�
x�

sin�#� � #�x���E��x
�� dx�

sin #�

�

Z x

x�

exp��#�x���E��x
�� dx�

�
����

where

#�x� �x� � sign vx

Z x

x���x�

� � i� dx�q
�
m

��x � e��x���
����

#� � #�x
� �x� and the turning points x���x� are de�ned by the relation �see Fig���

e��x�� � �x ����

Due to isotropization in collisions the main part of the distribution function F �
F ��� is the function of the total energy � � e� � ���mv�� After averaging over both x
and velocity angle the kinetic equation reads�

d

d�
D�

dF

d�
� S��F � � � ����

��



The bars indicate averaging over the slab width L� The di�usion coe�cient averaged
over the angles in velocity space is�

D� �
�e�L

�

Z �

�

d�x
m

X
n

E�
n��x���#���x�� �n ��
�

with

En��x� �
	

L

Z x���x�

x���x�

Ex�x� sin #�x� �x� dx ����

Thus ���� with the energy di�usion coe�cient ��
� appears to be a generalized
form of the kinetic equation accounting for collisionless heating� The coe�cients En

are generalized Fourier coe�cients ������
Resonances occur� if the time of particle motion from one turning point to another

�bounce time� is equal to nT��� where T � ����� This is in accordance with the
resonance condition #���x� � �n� as follows from ��
�� If the value of #���x� does
not exceed �� there are no resonances at all and no collisionless heating occurs� It
should be noted that� if the ambipolar potential is approximated by rigid walls� #���x�
is proportional to ��

p
�x and the resonance conditions can always be ful�lled� In the

case of a parabolic potential� which is realized for low energy electrons trapped near
the discharge center and is de�ned by the potential pro�le ��x� � ���x�l�

���� the
dimensionless period #� �

p
���ml����� does not depend on the electron energy �x

and the resonance conditions can be ful�lled in this case for one value of ���l
� only�

All plasma electrons are in or out of wave�particle resonance� Thus the !degeneracy"
could be removed by taking into account the deviation of the ambipolar potential from
the parabolic one�

To demonstrate the in�uence of the ambipolar potential on the energy di�usion
coe�cient an example for its calculation is given� Usually at the discharge center both
the density and the potential pro�le are parabolic� At the periphery a more rapid
decrease of density results in a more rapid increase of ambipolar potential� Therefore
the latter is modeled in the form

��x� � ���cosh�x�l�� 	�� ��	�

which is parabolic at the center jx�lj � 	 and higher than parabolic at the periphery
�see Fig� �a�� The plot of the dimensionless period

#���� �

Z x�

x�

�dx

vx
����

is shown in Fig� �b for electrons moving in ambipolar potential ��	�� In contrast to
the case of no ambipolar potential the function #���� is �nite at small �� For a given
potential ��	� e�g� this situation occurs� if ���m��l� � 	� For smaller �� the bounce
time is larger and a �rst resonance #� � � appears� For example for �� � �	��
resonance corresponds to a energy �� � �	��m��l�� With a given resonance energy the
energy di�usion coe�cient ���� can be calculated� its plot is shown in Fig� ��

�Expression ���� for the di�usion coe�cient in energy space can also be derived by introducing a new
variable�phase � �

R
dx

vx
instead of coordinates���and then performing a Fourier transformation

on this variable�
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Figure �� �a� Plot of the ambipolar potential ��x� � ���cosh�x�l�� 	� with �� � ����m��l��
x���	r� � 		��l are the coordinates of the turning points� Model with no ambipolar �eld corresponds
to the slab width L� so that the discharge area available for resonance particles is the same as before

L � �x���	r�� Resonance occurs at the energy 	 � ����m��l�� with and 	r � �m���x��	��

����

without accounting for the ambipolar potential� �b� Plot of the phase ���� as function of the
normalised energy �	 � 	��m��l��� For normalized potentials �� � ���m��l�� 	� ���x� � 	����x�l�� ��
���x� � ����cosh�x�l�� 	�� �� ���x� � ���	�x�l�� �� ���x� � �����cosh�x�l�� 	�
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Figure 	� c� Plot of the dimensionless di�usion coe�cient g��	� � D���	��e
�E�

��
�l� as a function of

the dimensionless energy �	 �see Fig� �b�� Solid curve
 with ambipolar normalised potential
���x� � ����coshx� 	�� ��� � 	 corresponds to the absence of resonance particles and g � �� Small
dashes
 no ambipolar �eld� but smaller slab width L� so that the discharge area available for
resonance particles is the same as before
 L � �x���	r��

��



In Fig� � also the energy di�usion coe�cient is presented without accounting for
the ambipolar potential for a slab width the same as distance between turning points
for resonance particles remains the same �i�e� L � �x
��r�� �see Fig� �� y�

The corresponding energy di�usion coe�cient is considerably smaller than that
with account of ambipolar �eld�

Indeed� for a purely parabolic pro�le� the function #� does not depend on � and
d#��d� � �� so for a resonance in this situation D� 
	� As a consequence the smaller
the nonlinearity of the ambipolar potential �the di�erence to the parabolic pro�le� the
larger is the di�usion coe�cient and� correspondingly� heating�

From kinetic equation ���� the distribution of current in the discharge can be found�
The current in the system is determined by the di�erence � �F � �F �jvxj� � �F ��jvxj��
Substituting the solution ���� gives

� �F � �ie
�F

��
�
�Z x

x�

G�x� x�� �x�E�x�� dx� �

Z x�

x

G�x�� x� �x�E�x�� dx�
�
� ���a�

with the kernel

G�x� x�� �x� � �sin #�x�� � sin�#� � #�x��

sin #�
� ���b�

Integrating ���a� over the velocity we get an equation for the current in the discharge�

J�x� �

Z x

x�

$�x� x��E�x�� dx� �

Z x�

x

$�x�� x�E�x�� dx� ���c�

with

$�x� x�� �
��i

m

Z �

�

�F

��

Z �

�

G�x� x�� �x� d�x d� ���d�

For small collision frequency the current is shifted by ��� in phase compared to the
electric �eld� since it is determined by electron inertia�

For ICPs the di�usion coe�cient averaged in velocity space is not in�uenced by

the magnetic �eld� so it can be omitted for D� calculation� For the inductive electric
�eld the current is determined by the sum � �F � �F �jvxj� � �F ��jvxj�� The function � �F
obeys to the integral equation ���a� with a kernel��

G�x� x�� � �cos�#�x��� � cos�#� � #�x��

sin�#��

vy
jvxj ����

the expression for the di�usion coe�cient has the form�

D� �
�e�L

�

Z �

�

d�x
m

�� �x
��x

X
n

E�
n��#

� � �n� ����

where

En��x� �

Z x���x�

x���x�

Ey�x� cos #�x�

r
�x

�x � e��x�
dx ����

yMany resonances exist for small energies� as a result the function D��	� has the form of a ladder
function� The value of steps at higher resonances is small 
 	�n� and� thus� this cannot be recognized
in Fig� �� The main contribution is due to the �rst resonance� which corresponds to a energy 	 �
m����L�����

��



CONCLUSIONS AND OUTLOOK

The quasilinear approach to the description of collisionless electron heating by
given high frequency EM �elds has been developed� This approach has been shown to
be an e�ective method of providing a common basis for a variety of conditions in gas
discharges and obtaining generalized expressions� It was possible not only to summarize
the e�ects obtained and to compare with results previously obtained by a di�erent
approach� but also to obtain new and extended results� The comparison to results from
the one�particle approach yields agreement in the di�usion coe�cient characterizing
heating only for the case of low energy electrons� The expressions derived here are valid
also for higher energies� For this region of electron energy a cut�o� for the long wave
part of the spectrum of heating electric �eld is required� Accounting for the second
boundary of bounded plasma automatically provides such a cut�o�� The generalized
expressions for bounded plasmas given include the e�ect of ambipolar electric �elds�
which can be essential for the e�ectivity of collisionless heating�

It should be noted� if the EM in the plasma has also large space scale parts �E �� ��
B �� ��� the complete equation ��� has to be used instead of ���� The in�uence of static
ambipolar �elds has been considered� The large space scale and time varying part
of the EM give rise to local di�usion coe�cients which should be added to nonlocal
ones� Modeling of microwave discharges with heating due to two space scales and time
varying electric �elds has been undertaken in��� In general it can be underlined that
knowledge of the energy di�usion coe�cient gives a good basis for further developments�
in particular for calculations of EEDFs needed for speci�c applications�

Finally it should be noted that the theory used in the present article is not a self
consistent quasilinear theory due to neglecting backward in�uences of the modi�cation
of the EEDF on the electric �eld pro�le� For the case of surface wave produced plasmas
this problem has brie�y been discussed in�� and included in numerical modeling in���

Acknowledgments The authors would like to thank Prof� L�D� Tsendin for inter

est in the work and T� Kaganovich and B� Lehnho� for the help in numerical calculations
and article preparing� The work was supported by Deutsche Forschungsgemeinschaft
�SFB 	
	 and exchange program ��� 		�%	���� I�K� acknowledges a research fellowship
of the Alexander von Humboldt Foundation� Also discussions with Prof� A� Shivarova
and cooperation within the Volkswagenstiftung contract I%����� are gratefully acknowl

edged�

REFERENCES

	� V�A� Godyak� Statistical heating of electrons at an oscillating plasma boundary� Sov� Phys� Tech�
Phys� 	�
 	��� �	�����

�� M�A� Lieberman and A�J� Lichtenberg� �Principles of Plasma Discharges and Materials Process�
ing�� John Wiley � Sons Inc� � New York �	����

�� A�F� Alexandrov� L�S� Bogdankevich and A�A� Rukhadze� �Principles of Plasma Electrodynam�
ics�� Springer Series in Electrophysics vol� �� Berlin�Heidelberg�New York
 Springer �	�����

�� A�A� Galeev and R�Z� Sagdeev� �Nonlinear Plasma Theory�� in
 M�A� Leontovich �ed��� Reviews
of Plasma Physics vol� � �New York�London
 Consultants Bureau� �	�����

�� A�A� Vedenov� �Theory of a Weakly Turbulent Plasma�� in
 M�A� Leontovich �ed��� Reviews of
Plasma Physics vol� �� New York�London
 Consultants Bureau� �	�����

�� A�H� Vedenov� E�P� Velikhov and R� Sagdeev� Nonlinear oscillations of rare plasma� Nucl� Fusion
	
 �� �	��	��

��



�� W�E� Drummond and D� Pines� Nucl� Fusion Suppl� �
 	��� �	�����
�� L�M� Kovrizhnykh and A� Sakharov� Electron acceleration in the �eld of plasma resonance� Sov�

J� Plasma Phys� �
 ��� �	�����
�� V�V� Vas�kov� A�B� Gurevich� Ja�S� Dimant� Multiply acceleration of electrons in plasma reso�

nance� Sov� Phys� JETP ��
 �	� �	�����
	�� Yu�R� Alanakyan� Fermi acceleration and rf particle heating� Sov� Phys� Tech� Phys� ��
 �		

�	�����
		� Yu�R� Alanakyan� Electron energy distribution in a free�streaming rf plasma column� Sov� J�

Plasma Phys� �
 ��� �	�����
	�� C�G� Goedde� A�J� Lichtenberg and M�A� Lieberman� Self�consistent stochastic electron heating

in radio frequency discharges� J� Appl� Phys� ��
 ���� �	�����
	�� V�A� Godyak and R�B� Piejak� Abnormally low electron energy and heating�mode transition in

a low�pressure Argon rf discharge at 	���� MHz� Phys� Rev� Lett� ��
 ��� �	�����
	�� U� Buddemeier� U� Kortshagen and I� Pukropski� On the e�ciency of the electron sheath heating

in a capacitively coupled radio frequency discharges in the weakly collisional regime� J� Appl�
Phys� Lett� ��
 	�	 �	�����

	�� Yu�M� Aliev� V�Yu� Bychenkov� A�V� Maximov and H� Schl uter� High energy electron generation
in surface�wave produced plasmas� Plasma Sources Sci� Technol� 	
 	�� �	�����

	�� Yu�M� Aliev� Some aspects of nonlinear theory of ionizing surface plasma waves� in
 C�M� Ferreira
and M� Moisan �eds��� �Microwave Discharges
 Fundamentals and Applications�� NATO ASI
Ser� B
 Phys� vol� ��� �Plenum� 	����� 	���		��

	�� Yu�M� Aliev� A�V� Maximov� U� Kortshagen� H� Schl uter and A� Shivarova� Modeling of mi�
crowave discharges in the presence of plasma resonances� Phys� Rev� E �	
 ���	 �	�����

	�� I�B� Bernstein and T� Holstein� Electron energy distribution in stationary discharges� Phys� Rev�
��
 	��� �	�����

	�� L�D� Tsendin� Electron kinetics in non�uniform glow discharge plasma� Plasma Sources Sci� Tech�

nol� �
 ��� �	�����
��� I�D� Kaganovich� V�I� Kolobov� L�D� Tsendin� Stochastic electron heating in bounded radio�

frequency plasmas� J� Appl� Phys� Lett� ��
 ��	� �	�����
�	� R�H� Cohen and T�D� Rognlien� Electron kinetics in radio�frequency magnetic �elds of inductive

plasma sources� Plasma Sources Sci� Techn� �
 ��� �	�����
��� V� Vahedi� M�A� Lieberman� G� Di Peso� T�D� Rognlien and D� Hewett� Analytic model of power

deposition in inductively coupled plasma sources� J� Appl� Phys� ��
 	��� �	�����
��� M�J� Fish� Con�ning a tokamak plasma with rf�driven currents� Phys� Rev� Lett� �	
 ��� �	�����
��� I�D� Kaganovich and L�D� Tsendin� The space�time�averaging procedure and modeling of the rf

discharge� part II
 model of collisional low�pressure rf discharge� IEEE Trans� Plasma Sci� ��
 ��
�	�����

��� U� Buddemeier� I� Kaganovich� Collisionless electron heating in RF gas discharges� II� Role of
collisions and non�linear e�ects� in this book�

��� A�I� Akhiezer and A�S� Bakai� Theory of stochastic particle acceleration� Sov� Phys� Dokl� 	�

	��� �	�����

��� S�M� Dikman and B�E� Meierovich� Theory of the anomalous skin e�ect in a plasma with a di�use
boundary� Sov� Phys��JEPT� vol� ��� ��� �	�����

��� M�M� Turner� Collisionless electron heating in a inductively coupled discharge� Phys� Rev� Lett�
�	
 	��� �	�����

��� V�A� Godyak� R�B� Piejak and B�M� Alexandrovich� Electrical characteristics and electron heating
mechanism of an inductively coupled argon discharge� Plasma Sources Sci� Technol� �
 	�� �	�����

��� R�Z� Sagdeev� D�A� Usikov and G�M� Zaslavsky� �Nonlinear Physics from the Pendulum to Tur�
bulence and Chaos� Chur
 Harwood Academic Publishers �	�����

�	� M�A� Lieberman� B�E� Meierovich and L�P� Pitaevski� Anomalous skin e�ect in a plasma with a
di�use boundary� Sov� Phys� JEPT ��
 ��� �	�����

��� I�D� Kaganovich and L�D� Tsendin� Low pressure rf discharge in the free 
ight regime� IEEE
Trans� Plasma Sci� ��
 �� �	�����

��


