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INTRODUCTION

A new trend in applications of low pressure discharges is to decrease the pressure
below 10 mTorr. For these low pressures the mean free path of electrons (1)) is large
(comparable with discharge slab) and collisionless heating dominates Ohmic one. Being
initially proposed for plasma heating in ' it was first explored in gas discharge plasma
for a capacitively coupled plasma (CCP) ?* | and is now widely discussed for applica-
tion to inductively coupled plasmas (ICP) ™. The classification of various scenaria of
collisionless heating has been done in ". The similar problem of cyclotron heating were
extensively analyzed for magnetic traps (see for example review®).

Here we concentrate on the effects of stochastization due to collisions and non-linear
effects and investigate the interaction between them. For a single wave the collisionless
heating corresponds to Landau damping. The role of collisions and non-linear effects
has been investigated in detail for a single finite-amplitude wave o Recently it has
been shown that collisions play a key role in Landau damping and have to be accounted
for''. In a gas discharge plasma the rf electric field is strongly inhomogeneous. The
corresponding Fourier spectrum contains many wave vectors. Our aim is to study the
electron heating resulting from the interaction with the whole spectrum of waves.

In common models the collisionless heating does not depend on the collision fre-
quency. We demonstrate in a number of examples that collisions play an important
role and that collisionless heating depends on collision frequency for some cases.

It is known that in low-pressure discharges electron heating may occur without
collisions . In absence of collisions the conditions for such a collisionless heating
arise if there exists some other phase randomization mechanism. This stochastic heating
can only occur if an electron “forgets” the field phase between subsequent interactions
during its dynamic motion. The sequence of non-correlated interactions with the field
results in diffusive electron motion along the energy axis toward high energies, i.e. in



the electron heating. In a bounded plasma the situation may be quite different. Due
to the presence of plasma boundaries (potential barriers) that specularly reflect the
electrons, the phases of subsequent electron interactions with the field may be strongly
correlated. Also, the picture essentially depends on the direction of the rf field with
respect to the boundaries.

The CCP is sustained by longitudinal — i.e. perpendicular to the boundary —
electric field. The ICP is sustained by the electric field along the plasma boundary. It
results in velocity kicks along the plasma boundary. If the influence of the rf magnetic
field is taken into the account, the kicks are transverse to the boundary . Thus, in
general, a variety of heating scenaria may arise.

We consider different mechanisms of the electron heating using a simple model. Let
L denote the gap length and § < L the layer thickness where electrons interact with
the localized rf fields. For a CCP such a model corresponds to a strongly asymmetric
discharge with a much larger current density at the powered electrode then at the
grounded electrode. 0 is the width of the sheath. In the ICP, § is the skin depth.
In addition to the rf fields, a static space-charge field is present, which confines the
majority of plasma electrons. We shall approximate its influence in the model by rigid
reflecting walls and neglect the ambipolar potential in the bulk. The influence of the
bulk potential on the electron collisionless heating was analyzed in " In the plasma
bulk electrons experience isotropic collisions, and there shall be no collisions in the 0
layer (§ < \).

The electron motion is governed by three frequencies: the frequency of the rf field
w, the collision frequency v and the bounce frequency Q(v,) = v, /2L.

The electron heating is adequately described in terms of the diffusion coefficients
in energy space D, or velocity space D,

D. = <(2A22> , D, = <(2AA”3§2> , D. = 2meD,. (1)

They determine the microscopic characteristics of the electron ensemble such as the
electron distribution function (EDF) f(g) and the power deposition rate into a unit
volume of plasma P, which can be expressed in terms of D, and f(¢) ". The principal
part of the EDF f(¢) satisfies the stationary kinetic equation:
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where St*f(¢) is the inelastic collision integral. The macroscopic quantities such as the
rate of energy input deposition into the unit volume of plasma, P, can be expressed in
terms of D, and f(e):
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Thus, the energy diffusion coefficient contains all information about the electron
heating. We have performed a Monte Carlo simulation at various w, d, L, ¥ and compare
its results (f(v), D, or D,) with the quasi-linear theory ' and analyse non-linear effects.
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THE COLLISIONLESS HEATING IN THE CASE A < L

If A < L, there are many collisions in the gap and subsequent interactions with
the electric field (d-layer) are random. The energy diffusion coefficient can be evaluated
as the product of the square of the step of random-walk in energy and the frequency
of such steps €2, which is the average frequency of electron-field interactions ", Since
the process of velocity isotropisation is faster then the energy loss mechanism in gas
discharges, the EDF is isotropic **. Thus, the energy diffusion coefficient should be
averaged over velocity directions:

D, = S {(9(ac))) ()

where ((...)) means averaging in time and in direction of velocity, Ae = mwv - Awv is the
change in absolute value of energy and Aw is the kick in velocity.

For example in a CCP Ae = muv,Av,(t) with Av, = Av,sinwt. Averaging in
time and velocity direction gives *":

D. = m?*(Avgg)*v®/32L. (5)

The expression for the energy diffusion coefficient does not explicitly depend on
v. The role of collisions is only stochastization of subsequent interactions with the
0-layer and isotropisation of the EDF. More precisely the disappearance of v from the
expression for D, is the result of averaging over all electrons in a volume. The main
contribution to D, corresponds to the particles at a distance of the order of one mean
free path A = v/v from the d-layer. They have the largest possible electron—field
interaction frequency which is of the order of v. The interaction frequency averaged
over all particles is of the order v\/L = © which does not depend on collision frequency.

THE COLLISIONLESS HEATING IN THE CASE A >> L

If A\ >> L, collisions in the gap are rare and subsequent interactions with the
electric field are not random (Fig. 1).

Most interactions with the electric field in the d-layer result in oscillations of the
velocity around a constant average value. Only due to collisions there is decorrelation
and alternation of the average value and as a result diffusion in velocity space. The main
contribution to this diffusion is due to resonances w/Q ~ 2mn: the electrons interact
with the rf field practically always at the same phase, so kicks are summed up. Due
to small divergence from resonance conditions the phase is changing. This results in
large oscillations in velocity (Fig. 1). The quasi-linear theory gives the energy diffusion
coefficient for this case '

m? ) ) mnlvs|\ de2
D, = Ve En /vx (v-Apv)” A (w A ) = (6)
£ _ v : o L O
A(w)—iy2+w*2, Iljlg(l)A(w ) =7é(w"), W =w 7 (7)

where 2 is the solid angle in velocity space and ¢ is the Dirac function, Ayv is the
amplitude of velocity kick.
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Figure 1. Time evolution of the the velocity v(t) and its z-projection v, (t) for a model of ICP,
velocity kicks are in y-direction: w = 3-107s7!, § = lem, v = 5-10%s~!, L = 3.14cm, Ey = 10V/m,
Vinitial = 1.5 - 10°m/s. Dashed lines correspond to first and second resonance.



When v < wL /7 there are many resonances enabling the sum to be changed into
an integral and the energy diffusion coefficient (6) coincides with (4) ™

It should be noted that this result is only valid with accounting for collisions. The
collisions play two important roles:

1. They stochastizate the phase of electron motion with respect to the phase of the
electric field and

2. they transfer electrons from non-resonance velocity to resonance and vice versa.

This complex process of electron motion can be considered as diffusion with a
diffusion coefficient (6). The identity of diffusion coefficient (6) with (4) is not general,
since accounting for nonlinear effects will change the results as shown below.

We also note importance of three dimensional effects. In the one dimensional case
(e.g. in magnetic traps®), the situation is quit different: A single collision is not able
to move the electrons from a non-resonant velocity to a resonant one and vice versa,
since a considerable change of kinetic energy is required. In the three dimensional case,
only the projection of the velocity perpendicular to the wall has to be changed. As
a result the diffusion coefficient is much smaller in one dimensional case compared to
the three dimensional one. More precisely, in one dimensional case the averaging over
region of many resonances is to be performed not over D,, but over 1/D.. This is due to
modification of EDF near the resonances, where plateaus are formed dfd—(gg) ~ 0. Indeed
if we define the averaged diffusion coefficient as

r
(fi = f2)/(e2 — &1)

where [ is flux in energy space, and the region €5 — £1 includes many resonances. With
the use of relation [' = ng—i we find that®:

<D, >=

(8)

1

e1 D¢

As a result the regions of resonances, where D, is large do not contribute to average
diffusion coefficient (9) and main contribution is due to non-resonant regions with small
D.. So < D, > is small and proportional to collision frequency. Physically this means
that electrons diffuse very fast across the resonance and get stuck in the region between
them. In three dimensional case the scattering of electrons allows them to escape from
this non-resonant region and participate in farther diffusion.

If v > wL/m the sum in (6) cannot be transformed into an integral. The main
contribution is due to first resonance (n = 1) and the diffusion coefficient according
to (6) is small compared to that from (4) for v > 3v;, where v; = Lw/7 corresponds
to the velocity of first resonance. This is due to the fact that most electron field
interactions result in no heating and compensate each other (Fig. 1). The numerical
example is shown in Fig. 2 for an ICP-type field E, = Ejexp (—z/J) (without account
for the influence of the rf magnetic field). In the Monte Carlo simulation the diffusion
coefficients were calculated according to their definition (1) as the ratio of the square
of averaged change of energy or absolute value of velocity over some time interval
At >> 1/v, 1/

From Fig. 2 one can see the remakable influence of a finite gap on the diffusion
coefficient. The diffusion coefficients are characterized by a sharp rise at the velocity of
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Figure 2. Influence of the second boundary on collisionless heating. Dimensionless diffusion
2 2
coefficient for this field ¢ = D,/ % as a function of the normalized velocity for different slab

widths L. Solid curves correspond to the analytical formulae (6), symbols to Monte Carlo simulations.

first resonance (v;/wd = 1). A strong suppression of diffusion compared to the “infinite”
gap situation occurs for v > 3v;. The vanishing of correlation effects for v < wL (all
curves coincide) was proposed first in 1, but the conclusion that it can occur without
collisions is not correct. The reduction of collisionless heating due to the influence of
the second boundary was observed in numerical simulations ’

The resonance effect also considerably influences the EDF. Since the flux in energy
space D.df /de does not change as rapidly as the diffusion coefficient at the first reso-
nance, the derivative df /de decreases above the resonance. This leads to the formation
of a sort of plateau on the EDF for ¢ > %mv% Fig. 3 depicts the EDF resulting from
the simulation of a CCP with electron generation (injection) at 0.5eV and loss at 20eV.
The flux is constant between these energies. For a collision frequency of v = 5-107s7!
the mean free path is (MFP) A ~ 4¢m < L and electrons return with random phase.
This corresponds to the diffusion coefficient (5), which gives a smooth growth of D..
For v =5-10%~!, A\ ~ 40cm >> L = 5¢m and electrons return with correlated phase.

The use of (6) gives
(mAvgv?)?

D, = Sol (10)
for v > vy, vy = wL/m. Comparing (5) and (10) shows that, the diffusion coefficient of
(5) four times smaller than that of (10). The deviation of simulation results from the
analytical formula (10) is due to a large value of the velocity kick Aw,g/v ~ 0.5 so that
the sharp rise of D, is smoothed out. The first resonance appears at ¢ ~ 5eV/, above

this energy the sort of plateau is formed.
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Figure 3. The EDFs (upper part) and energy diffusion coefficients (lower part) obtained in a
Monte—Carlo simulation of a CCP with two different collision frequencies. f = 13.56MHz, sheath
length 0.6cm and slab width L = 5¢m. The first resonance is marked by a vertical line.



It should be mentioned that this mechanism can be responsible for the formation of
a bi-Maxwellian distribution in capacitively coupled discharges as found in experiments
. The resonance effects and hence the plateau vanish if A < 2L (Fig. 3).

INFLUENCE OF NONLINEAR EFFECTS ON COLLISIONLESS HEAT-
ING.

Nonlinear effects are introduced in the case Awv || & by the fact that the bounce
frequency itself depends on v,. The kicks change the bounce frequency in contrast
to the case Avlax. Thus, electrons move out of the resonance. The amplitude of
the velocity oscillation (see Fig. 1) in the resonances are limited by a resonance width
Apyv = AvQ /0 " where 6 is characteristic frequency of non-linear oscillations:

wd) / dQ)
0= AerQ—d'U = Avw% (11)

If the resonance width A, v is larger then the distance between resonances dv =
2 . . . . . . . 3,4
mv? JwL, diffusion in velocity space can occur even without collisions ™.

Otherwise, collisions are necessary for diffusion. The non-linear effects should be
accounted for by limiting the amplitude of velocity oscillation in resonances. This can
be done by using a modified resonant function A(w*), approximated as:

v TV
—0

A ImAW) = 0w (12)

A(w*) =
A more detailed calculation is performed in®. As a result D, is proportional to v (at
v < #) and tends to zero with v — 0. This is in contrast to the case of transversal
kicks, where the non-linear effect is absent, and D, remains a constant when v — 0.

The non-linear effect is important for the capacitive discharge and inductive dis-
charge with account of magnetic field, where the kicks are along x. Fig. 4 is a plot
of power dissipation (3) as function of the collision frequency for Maxwell distribution
function with electron temperature 3 eV.

If the gap is small (L = 7¢), the diffusion decreases when A\ > 2L (v < Q =~
5-107s71). There is no decrease in the case of the large gap, because the corresponding
velocity of first resonance v; = wL /7 is larger than thermal velocity and decrease of
diffusion coefficient is not pronounced. Accounting for B, leads to a decrease of the
diffusion coefficient at v < 6 from (11) due to the introduction of the non-linear effect
as described above. As a result the curves for power dissipation with and without
account for induced magnetic field diverge below v = . Increasing L or diminishing E
decreases ) and hence the critical collision frequency for divergence (see Fig. 4). The
typical numbers for § are : §# = 2.3-107 in case of L = w0, Ey = 5V/m, and § = 3.2-10°
in case of By = 0.1V/m, 0 = 2.1-10° in case of L = 256, Fy = 5V/m.

The results presented in Fig. 4 correspond to two values of electric fields. For small
Ejy kicks are small (Av << wvy) and D is proportional to v. For larger value of kicks
(Av comparable with v1) the dependence of D on v is even more complex. For example
D can have a minimum at some v and then increase with decreasing . The reason for
this effect is that many subsequent interactions with the J-layer can result in a change
of v. We discuss these effects elsewhere.
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Figure 4. Dimensionless power dissipation, normalized on ——=2= for the same conditions as in
Fig. 2 as function of the collision frequency for two slab widths L with and without account for B,
w=6-10"s"1, § = lem, Ey = 5V/m except (*): Ey = 0.1V/m.

CONCLUSIONS

1. It is shown that when A > L, only resonance particles (wL/mv, = n) contribute
to the heating and as result for large velocities, where the fraction of resonance particles
is small, collisionless heating is suppressed.

2. A plateau in the distribution function in the region of first resonance can be
observed.

3. At smaller collision frequency the nonlinear effects should be accounted for. If
kicks are perpendicular to the discharge boundaries a considerable suppression of col-
lisionless heating appears due to nonlinear effects. In this case collisionless heating is
proportional to collision frequency ( D ~ v ).
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