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Abstract. Macroscopic models for the equilibrium of a three-component
electronegative gas discharge are developed. Assuming the electrons and the
negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion
equation is derived. Such a discharge can consist of an electronegative core and
may have electropositive edge regions, but the electropositive regions become
small for the highly electronegative plasma considered here. In the parameter
range for which the negative ions are Boltzmann, the electron density in the core is
nearly uniform, allowing the nonlinear diffusion equation to be solved in terms of
elliptic integrals. If the loss of positive ions to the walls dominates the
recombination loss, a simpler parabolic solution can be obtained. If recombination
loss dominates the loss to the walls, the assumption that the negative ions are in
Boltzmann equilibrium is not justified, requiring coupled differential equations for
positive and negative ions. Three parameter ranges are distinguished
corresponding to a range in which a parabolic approximation is appropriate, a
range for which the recombination significantly modifies the ion profiles, but the
electron profile is essentially flat, and a range where the electron density variation
influences the solution. The more complete solution of the coupled ion equations
with the electrons in Boltzmann equilibrium, but not at constant density, is
numerically obtained and compared with the more approximate solutions. The
theoretical considerations are illustrated using a plane parallel discharge with
chlorine feedstock gas of p = 30, 300 and 2000 mTorr and ney = 10*° cm~3,
corresponding to the three parameter regimes. A heuristic model is constructed
which gives reasonably accurate values of the plasma parameters in regimes for
which the parabolic profile is not adequate.

1. Introduction developed by Tsendin [3] to treat a cylindrical dc discharge.
In that work it was recognized that the discharge would
We are concerned with the equilibrium plasma quanti- naturally stratify into two regions, an electronegative core in
ties, and their scaling with external parameters, of elec- which essentially all of the negative ions would concentrate
tronegative plasma discharges which are commonly usedand an electropositive edge. The physical mechanism
for plasma processing. In an early study of an electronega-of this stratification was investigated in [4]. However,
tive positive column the continuity and force equations for the resulting equations were still quite complicated such
a three species plasma, consisting of electrons, one positivehat further simplifications were required for analysis.
and one negative ion species, were solved numerically to|n particular, detachment rather than recombination was
obtain the equilibrium for a positive column [1]. However, considered as the main process for removing negative ions,
the numerical results gave little insight into the importance thys linearizing the coupled equations. The usually more
of various terms in the equations and to the scaling with important process of recombination was considered briefly
parameters. Recent work has attempted to analyse suchn [3], and in more detail in [6].
plasmas, using various simplifications to make the calcula- In another approach, Lichtenberet al [7] further
tions more tractable and to uncover the important scalings reduced the problem by using the approximation that the
[2-7]. negative ions, as well as the electrons, are in Boltzmann
A procedure for simplifying the analysis, which equilibrium. In this situation the electron profile is nearly
also uncovered the basic structure of the discharge wasgonstant, and a single ambipolar diffusion equation can
§ Work performed while on leave from the Lawrence Livermore National P€ constructed to describe the equilibrium. Approximate
Laboratory. solutions can be constructed if the core electronegative
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region and the edge electropositive region have constantproperties to obtain a complete discharge model [10]. We

(but different) ambipolar diffusion coefficients. The have used an approximate global model, justified in this

approximations are particularly suited to the parameter paper, to develop a complete discharge model at high

regime in which the loss of positive ions to the walls electronegativity [11].

dominates the recombination loss. The analysis was applied

to a large aspect ratio oxygen discharge at relatively low o Physical model

density and relatively high pressure, in which dissociation

of Oz is not important. As in previous work, we consider a plasma of three charged
In many electronegative plasmas more than one positive particle species: positive ions of density, negative ions

or negative ion species, as well as neutral species, may bef densityn_ and electrons of density,. For simplicity

important. The work in [2] was generalized to include e consider the spatial variation in a 1D (slab) geometry.

more species, but at the expense of obtaining a large setor each charged species we have a flux equation
of coupled differential equations that could only be solved

numerically [6]. In another approach to the multi-species I'i =—-D;Vn; £ n;u; E 1)
plasma, one form of global model in which the negative )
ions are assumed uniformly distributed over the plasma, Where D; = eT:/m;v;, ; = |g:l/m;v;, with v; the total

was developed [8]. We shall extend this definition of a momentum transfer collision frequency; the electric
global model more generally below. A global model is field, 7; the species temperature in voltage units,
particularly useful in determining the effects of various the electric charge, ane: corresponds to positive and
species, by setting the corresponding reaction rates tonegative carriers, respectively. In this approximation we
zero, which gives information required to obtain the most consider the pressure to be sufficiently high that a constant
relevant reduced set of species and reactions. mobility model is appropriate, but not so high that the
In this paper previous work on three_species Spat|a||y electron temperature becomes nonuniform. We form a
nonuniform plasma is extended to higher electronegativity, Set of coupled differential equations using the continuity
in which the positive—negative ion recombination may eduations for each species
dominate the diffusive flow and for which the basic
assumption of Boltzmann negative ions may not hold. The
electronegative plasma is also limited by the restriction that
the local positive ion diffusion velocity cannot exceed a
local i_on s_ound velpcity [9.]' T_he assumption of a parabqlic neutrality), and an assumption that tfieare known. The
negative ion density profile in the electronegative region absence of a stationary current gives
reduces the problem to a set of coupled algebraic equations

V.TI =6 2

where S; are the sources and sinks, together with a
relation for the electric field (Poisson’s equation or charge

from which rather straightforward numerical results can be N
obtained. We then introduce a global model, in which Zq,-r,» =0. 3)
the scale length of the parabola is equal to the plasma i=1

length, and show that this model approximates the more
complete solution, in a limited region of relatively high
electronegativities.

However, when recombination loss dominates the ion
flux to the walls, the Boltzmann assumption does not hold
for negative ions. In this regime a pair of differential D, Vi, + jon,E =0 (4)
equations can be obtained under the assumption of
Boltzmann electrons. We show that there is an intermediatewhich holds except for very high ratio of ion density to
electronegativity regime in which the negative ions are electron densitye > p.//—, Which is not considered in
not Boltzmann, but the electron density profile is quite this paper.
flat. We can then recover an elliptic integral solution to At high electronegativity the negative ions are not
a single differential equation, but with different coefficients generally in Boltzmann equilibrium with the potential.
to those in the lower electronegativity regime. A parabolic The combination of flux equations (1) and the continuity
profile becomes an increasingly poor approximation to the equations (2) results in a pair of differential equations which
elliptic profile as the electronegativity increases. A second in 1D (plane parallel geometry) is
transition occurs to a regime in which the spatial variation q g
of the electron density cannot be ignored, and the coupled oy Uiy _ _
differential equations must then be solved as an eigenvalue dx ( b +n+M+E> = Kicnone = Kreenn— (9)
problem. We will estimate these two transitions, and
compare the results of various approximations in the various and

regimes. d dn_
(_D,

We will not formulate a complete general description
here. Since the electrons are very mobile, in the bulk
plasma we eliminate the electric field by use of a Boltzmann
assumption for the electrons

In this study we are concerned only with the equilibrium e
discharge properties and do not consider either heating
mechanisms or sheaths. The equilibrium discharge whereng is the neutral gas density;, is the ionization
properties can be combined with the heating and sheathrate constant,X,.. is the recombination rate constant,

— n,pL,E) = Kynone — Kpeenyn_ (6)
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K. is the dissociative attachment rate constant, and where D, («) is given by (10). Becausg > 1 we see
we have only retained the dominant reactions. The from (12) thatn, ~ n, in the plasma so that we can
electric field and the density of one species may be generally Iet(a/ao)ﬁ =1in (13).

eliminated using the Boltzmann relation for electrons and Equation (13) has as a boundary condition at the sheath
the plasma approximation of charge neutrality. Making edgex = ¢, that the ion flow cannot exceed the local

these substitutions and takiny. = D, andu_ = . for ion sound velocny, which at the plasma edge is the Bohm
3|mpI|C|ty, we obtain velocity. Stating this condition as an equality, it becomes
d D, 1 dn, the Bohm flux condition
—D, — (n +ne) — py(n- +ne )**
dx dx He Ne dx dn+
= Kiznone — Kra.(n_ +n.)n_ (7) Du+ dx = n+(zp)uB(Tes T, O‘)- (14)
d dn_ D, 1 dn, ’ , o
& —-D, e + pqn_ . n, dx Herea = a(fy) = n_(ep)/n_e(ep)._ $|nce negative lons
B X 8 may be present when (14) is satisfied, the Bohm velocity
= Kaumnone = Kree(n—+nen—. (8) has the more general form [13]
Equations (7) and (8) can be solved simultaneously,
together with the appropriate boundary conditions, to obtain [ e+ o) 12 15
the density profiles. We will do this numerically after 5= M,(1+ ya) (15)

obtaining simpler equation sets for the various regimes.
If we make the restrictive assumption that the negative which reduces to the usual expressiofy = (eT,/M)Y/?

ion species is in Boltzmann equilibrium, then whena = 0. Fora > 1/y a negative ion density at the
Vn Vn sheath edge significantly reduces the Bohm velocity.
=yt 9) Equation (13) can be characterized by three parameters:
n_ ne

ap = n_o/neo (the ratio ofn_ to n, at the plasma centre),
wherey = T,/T; (T; is the common temperature of the n., and7,. We can determine these three constants by
ionic species), then using (1), (3), (4) and (9) together with solving (13) and two particle conservation equations, which
charge neutrality and the Einstein relations, and assumingare the integrated forms of (2), and an energy conservation
a single positive ion species, we obtain an approximate equation.

ambipolar diffusion coefficient for the positive ions [12] The conservation equations are: positive ion particle

1 2
Dy, ~ D+M. (10) balance

l1+ya ¢ ,

The structure oD, is easily seen from (10). Faer > 1, _Da+ / K non.dx — / Kreensn_(ny)dx
y cancels such thab,, ~ 2D,. Whena decreases below ) s
1, butya > 1, D, =~ D,/a such thatD,, increases (16)
inversely with decreasing. Forya < 1, D,y ~ yDy, negative ion particle balance
which is the usual ambipolar diffusion without negative
ions. For plasmas in which > 1 at the plasma centre, p £p
the entire transition region takes place over a small range of / K inon dx — / Kreenan_(ny)dx =0 (17)
1/y < a < 1, such that the simpler value @&i,, = 2D,
may hold over most of the electronegative plasma core.

Using (10), the steady-state positive ion continuity and energy balance
equationV - I'; = source is, in 1D,

0

%

_% < a+(a) d(;z:) = Kiznone - Kre(rn+n—- (ll) Pabs = zgc / KiznOnedx + ZgwnJr(ep)uB (18)
We can substitute for, and n_ using the Boltzmann ) B

relation relating electron and ion densitiés,/no) =  Where&(Te) is the coliisional energy lost per electron—
(n_/n_o)¥” and the plasma approximation of charge POSitive ion pair created, and, is the kinetic energy
neutralityn, = n_ + n,, to obtain lost to the wall per electron—ion pair lost to the wall.
Y Given the _neut_ral densityip and the power per _unit

ne =n_4n no 4 (12) area dep_osr[ed in the electrong,;,,, the three equations

+ - 0 n_o ’ can be simultaneously solved for the three unknodins

oo and n., provided ¢, is known. The plasma half
width ¢, differs from the half length of the device by a
sheath widths. In a complete model we must determine

d d @\ 7 s self-consistently with¢,, given the discharge heating
at (@) — | (@ + 1) @

Substituting (12) into (11), we obtain the ion diffusion
equation in terms of alone

T dx mechanism. A common assumption is thak £,. The set
. , of equations (13)—(18) can only be solved numerically such
o\t a \ 71 that the underlying scaling laws cannot be easily uncovered.
= Kizno (070> Krecneoor(e + 1) (7> (13) However, we shall see in the next section that various
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X

reasonable approximations allow analytic solutions to be
obtained. —Tn -/. Kattnonedx] = Kiznone - Krecni (24)

We now examine the condition for validity of the
Boltzmann equilibrium for negative ions. From (1), for

e wherer, = py/u_. We evaluate the LHS to obtain,
negative ions, we have

d
r_— —D,% —n_u_E (19)

with the condition for Boltzmann equilibrium, as in (4),

being that
r/ (%)
B T odx

everywhere. Using the integral relation between the source
and the flux, as in (17)_ can be written as d < oD dn_ dn,
+

& P

T_ d2n+
1+ . D+72 + (Ki; + ryKa)non,

~(1+r)Keen? = 0. (25)
Equation (25) has an elliptical integral solution, which we
obtain in subsection 3.3.

«1 (20) To determine the condition for (25) to be valid we add
(7) and (8). Dropping small terms, we obtain

dx ) = (Kiz+Katt)nOne_2Krecni
(26)

where we have used the Einstein relation to write
uwiD./u. = yD,. Equation (26) is still a function of

If we have profiles for,, n_ andn., (21) can be explicitly ~ two variablesn, andn_ so that a simplified form of (7)
evaluated, as we shall do in the next section. Since the©r (8) would be required to be solved simultaneously with
recombination increases with the square of the density, at(26) to obtain a general solution. Comparing (26) with (25)
high density (20) is no longer satisfied. We can estimate the We see that (25) is just the approximation that the electron
left hand side (LHS) of (20), using (21) and the solution gradient term in (26) can be dropped for the simplified case
which holds when (20) is satisfied. We have done this With r, =1 and7_/T, = 1. From (26) we would expect
in section 3, finding a parabolic solution. Using (21) we that with increasingo the ionization and attachment are

X

r_ =/ Ka,,nonedx—/l(,el,n+n,dx. (22)
0 0

find that (20) has its maximum value at = 0, giving increasingly balanced locally by the recombination. In this
the condition for which negative ions are in Boltzmann regime the LHS is a perturbation to the RHS, the RHS on
equilibrium its own gives the proportionality

7 2 n, o« n? (¢ > 1, and high pressuje
o= 20 K,ecneootoﬂp/D, <1 (22) = ( ghp y
Since the LHS in (22) is the largest value that the LHS in Which is quite different from the parameters for which

(20) attains, we have used a simple, rather than a strong’e = "o, @ constant, withn_ varying with position.
inequality in (22). However, bothn, andrn_ may only vary slightly over the

If (22) is not satisfied, the negative ions are not in bulk _discharg_e (see our examples in sec_tion 4). A complete
Boltzmann equilibrium and equation (13) is not valid, but solutlo.n requires the simultaneous solution of (7) and (8):
the electron profile may still be quite flat, which also allows Using the same procedure that we employed to obtain
the reduction to a single differential equation for the profile. (22) for the validity of a parabolic solution, we now obtain

Using (19) and (21), beyond this transition, we have the condition for validity of the elliptic solution. This is
more difficult since we need to expand the elliptic solution

X

at the origin and, unlike the parabolic solution the gradient
n-p-E(x) = _</ Kaunoneod for the elliptic solution, is much flatter and varies greatly
with changing parameters. We present the calculation in
p dn_ an appendix, using the elliptic solution found in subsection
—/ Krecnqyn_dx + D_E) (23) 3.3. The result, from equation (A19), is
1/2
The electric field is now determined implicitly in terms « = ! ( D, )
of integrals over the source terms plus a usually small 115500 \ Krecneoaol]
gradient correction. Becausg > T;, there is a large 2K o000l 1/2
parameter range in which (22) is not satisfied buts still X exp( reee p) <1 (27)
essentially flat, as determined by the Boltzmann relation. D.

To determine this condition explicitly, we first assume that e exponential dependence with increasing recombination

all terms involving variation of, are negligible. Then we s the result of the flattening of the elliptic solution with
can substitute (23) into equation (5) for positive ions and, increasing recombination.

using the approximation that_ =~ n, (2, < n.), and We shall compare the results obtained from the

dropping small terms, we obtain parabolic and elliptic solutions, using conditions (22) and

d T dns y (27), with numerical solutions of the coupled equations in

a[ — (1+ T—) D*E +ry / K,.ecnidx section 4. First we develop the approximate parabolic and
+ 5 elliptic solutions.
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3. Approximate solutions For the highewx cases the second term in the curly braces

can be neglected. The negative ion particle balance is
3.1. The parabolic approximation

Consider first that a central region of the discharge exists in Kanoneol, = KreenZ { : } (32)
which « is large, and the negative ions are in approximate
Boltzmann equilibrium, i.e. (22) is satisfied, then= n.o, with the { - } repeated from (30). The third equation to
a constant, and, ;. = constant except near the edge of the complete the set is matching the positive ion edge diffusion
region. The differential equation (5) becomes flux to the Bohm flux
d2n+ 2
— =K, — K, ¢ &
D,y a2 Ki:noneo — Kyeenyn_. (283) 2Da+010ne0?2 = 1,0 |:010 <l _ g12> + l:| ug(@). (33)
Noting thatn - = an.o andn, = (1+a)n.o, we can rewrite
(28a) in terms of the single variabe For reasonably higk, from (10) we can set
d? —
_DCH—EOZ[ = KiznO - Kre(rneo(l+ O{)O[. (28b) Da+ - (1 v T_/T+)D+.

We have not used the approximation that = n. in the ~ Then, givem, and¢,, the three equations (30), (32) and
source term, as it is unnecessary, and the present form(33) can be solved simultaneously fap, 7., and ¢. If
connects our expressions to previous lowersolutions ~ the power is given, rather tham,, then (18) gives the

[7, 9]. If the flow dominates the recombination, then @additional equation fon.o.

the effect of positive—negative ion recombination can be ~ Examining the above equations we see that the terms
neglected in determining the spatial profile (but not the in the curly braces arise from integrations over a profile
plasma parameters). The diffusion equation (28) then takesand are therefore less sensitive to the profile. The third

the simple form term on the RHS of (30), the Bohm flux, is sensitive to
€2/¢2, but for largea tends to be small compared to the

_D % — Konen volume terms, so the sensitivity is not as critical. In (33)

“dx2 i270%e0- the LHS does not depend critically on the edge region,

in which D,, may vary significantly, because it is an

Assuming D, is constant, them(x) has a parabolic . 4 ; .
solution 9 Dt +®) P integrated flux which remains relatively constant. Some
) care must be taken, however, in treating the RHS of (33)
ny _ - tl=a(1- x° i1 (29) as we see beloyv. The truncation of the parabolic profile at
N0 Med 02 x =1{, (£ > {,) is not exact, but does follow the expected

steepening of the edge profile in a more complete solution.
The insensitivity of the integrals to profile variations also
justifies the extended use of (29) to a region in which (22)
may be marginally not satisfied. Comparing (28) to (25),
with D, = (1+ T_/T;)D,, we see that the two become
equal if we setk ;;non, = Km.ni. Although this is never
strictly true, it is true in an average sense, over the plasma,
as required by negative ion particle balance, from (17).
Thus once the profile is specified the integrated equations

where the pointx = ¢ corresponds to a zero of_,

¢ # £, which must be found. In previous work [7], at
relatively smalla, with p < 1, £ < £, and the central
electronegative solution is matched to an electropositive
edge solution. However, at relatively high(but p < 1)

the electropositive edge becomes small and, according to
our previous results, the electronegative region may join
onto a non-neutral sheath with a Bohm velocity as given
by (15). In this cas¢ > ¢, andn_ > O at the plasma- L .
sheath boundary. Anticipating that we are considering this give identical _results. . S
case, we make the assumption in (29) that the scale Iengthf I The equation set, given above, Ean be Sl'mF;:'f'Ed in the
¢ > ¢,, and that the electronegative region extends to the ollowing ways. Forap > 1, we keep only the terms
plasma edge. This corresponds to a profile truncated at thequadratlc inatg in (32),

plasma-sheath edge (see below for further discussion of 12 ) 4\ 172

this assumption). The particle balance equation for positive ( Kauno ) ( 2¢, 15;:) . (34)

. . 1--S+-—=
ions is then K receo 3¢2 54

205 14
Kiznoneol, = Krecnfo{agﬁp <1 - 5?‘27 + EZZ> Since we generally find thdt/¢, ~ 1, an estimate oo is
16 & 15 K,no \ Y2

P R P o we(Epm)" e
o . (30) which gives the important square root scaling o

whereu () is given by (15) with (non.0)’2. The temperature dependence in (34) is weak,

’ with T, essentially clamped by the strofig dependence of
a=ap|1- ﬂ; ' (31) Ki, in .(30). Given an ap_proximate value @ fr(.)m.(34),
14 the ratiof,, /¢ can be obtained from the Bohm criterion (33).
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42
Forag(1— 4

452> > 1, we have the edge flux condition,
from (33),

4D aon.ol e

% = n,000 (1 — Eg) up(a) (35)

where we have use@d = T, = T;. A simple estimate
of ¢ is possible for this case. Substituting feg(«) and

dropping small terms, (35) becomes

a4
12 )
(§) EP
where we have substituted the ion mean free patior
D, /(8eT;/m M, )Y2. For the higher pressure plasmas at
which «q is large (see the scaling in (34))/¢, < 1,
justifying an approximation of, /¢ ~ 1.

Since (36) indicates that,/¢ ~ 1, we can use a

simplified model for which¢,/¢ = 1, which we call a
global model In the global model (30) and (32) reduce to

e/ =1- (36)

8
Kiznozp = EKrecneOa(Z)Kp'i'z(l""T*/T+)D+a0/zp (37&)

8
KartnO = TSKrecneOag (37b)
where we have, for simplicity, dropped the term linear in

ap and have used (33) to substitute the known edge flux for

the Bohm condition within the global approximation. As a
first estimate, we can reduce €7by recognizing that if

the recombination loss dominates the flux to the wall, then

the last term in (3&) can be dropped, and substituting from

(37b) we have the very simple result for obtainifig,
Ki; >~ Kau (37c)

which is independent of the parabolic approximation.

with a solution of the form

] 1/2
po=acos) (St Ke0) i) o
+

wheren, >~ n, in this region. The constants A and B
are determined from the conditions that¢_) = n.,o and
flux continuity I' (¢-) = —y D, %<| _, . The parabolic
approximation for the central region is generalized to the
form

EZ
?;) + n.o. (40)

The electropositive edge continuity equation foris

ny = Qghe0 <1 —

I

F+(ef) + KiznO / ne(x)dx = ”B(Te)ne(ep)

0

(41)

where n.(x) is obtained from (39),
[eT,/M]Y2.

Since we are interested in high where(¢, — ¢_)/¢,
is usually small, we estimate the size of the electropositive
region from a perturbation analysis. Takidg ~ ¢, then
the parabolic solution gives the edgesuch that

andug(T,) =

L (€2) = up(a)onco. (42)

Solving for the constant®\ and B in (39), using (42),
substituting the result into (41), withg(a) ~ ugo/yY?,

from (15), and keeping only terms linear i = ¢, — £_,

we obtain

14 1— a/yl/Z
0T Ta umt, | Kunoly (43)
Py yDy T Tume

The single region parabolic approximation for the range g, high K. and K, (high ), §¢/¢, < 1 and goes to

of parameters in which (22) is satisfied is then to solve (30),

(32) and (33), fory, 7, and?. Forag(1—¢3/€%) > 1 we
can use the simpler set (36), (7and a simplified form of

(30). The equation set is further reduced to two equations

in the approximation of a global model with= ¢,. In
this model (3B) is solved together with (&j for ag and
T..

3.2. The electropositive edge

zero forI'y (€_) = upon.o Which occurs, as seen in (43),
when

a(to) =y (44)

At this point the electropositive edge region disappears.

3.3. The elliptic approximation

If (22) is not satisfied the central region flattens and the

As mentioned above, there is most generally an edgeedge steepens, so that a parabolic approximation is not

electropositive region which becomes smallaabecomes
large. This region can be included directly into the
theory by introducing another parameterspecifying the

adequate. If (27) is satisfied equation (25) holds. We
transform (25) to a form which can be solved in terms
of elliptic integrals. Reintroducing the produetr_ into

electropositive edge region, and an additional equation for he recombination term and writing,n_ = n2a(a + 1)
the edge region. We can then formulate the criterion for \ya transform (25) to ‘

which the electropositive region disappears. First we find
a simple equation for the edge region by noting that in

1 d ,

the higher electric fields of the edge the negative ions are  2(1+ T_/T;)Dno dor

swept rapidly into the bulk, such that the recomination

can be ignored. From (26), dropping the small terms, the

electropositive edge is governed by the equation [3]

d?n,
—]/D+W = (Kzz + Katt)none (38)

442

= (Kiz + ruKart)nOneO - (1 + ru)Krecngoa(a + 1) (45)

where we have used the chain rule, and

d
Bl@) = —(1+ T_/T+>D+neo£. (46)



We can integrate (45) once, owerand using the boundary
condition thatg(«xg) = 0 we obtain

_ N L+ r)Krecneo
ﬁ((x)—ﬁo[(“o D7 e + 1 Karo

3 3 2 2\ 11/2
Olo — O[O —
><< 3 + 5 >j| 47
with

Bo=[2(1+ T/ T{) Dy (Kiz + ruKa)nonZ, ]2 (48)

Rearranging (46) and integrating, we obtain

oo
1+7T_/T.)D,n.d
x(oz):/(+ /Ty)Dyn.oda (49)
B(a)

o(x)
where B(«) is given by (47). Equation (49) is an elliptic
integral, from which, after some algebra, and dropping the
small ~ (1/ap) terms, we obtain

= A+ T /T)Dineo oo
Bo (n/3)Y/2
[¢1s}
do
X 50
/ [(bag — @) (ap — ) (acg + )] V/? (50)
o(x)
where )
A+ r)Krecheo
n= AT ) Breclte0o (51)
(Kiz + ruKatt)no
n <1, and
1 1/12 12 1 1/12 2
a = — — 7_3 b:_f‘f’* f—3 .
2 2\ n 2 2\ n
(52)

The integral on the right of (50) is a standard elliptic
integral. Using an appropriate boundary condition¢at
gives a relation for one of the unknown constamgor 7,

in terms of the other, with the second constant determinedto be roughly parabolic.

from negative ion balance. In section 4 we compare the
profile from (50) to the solution of the coupled equations,
for an appropriate pressure where (27) is satisfied.

4. Numerical results

Modelling plasma discharges at high electronegativity

in units of m? s with 7, and 7; in volts. The rates

correspond to the reactions

Cl, + e — CIj + 2e (ionization

Cl, + e— CI™ + CI (dissociative attachment
ClJ + ClI~ — Cl, + Cl (recombination
ClJ + Cl, — Cl, + CIlJ (charge exchange

The latter is the dominant process for the positive ion
diffusion, resulting in a mean free path
Acm) = 2 x 10%/ng (cm™3). (57)
We now use the above quantities to compute the plasma
parameters for a particular set of cases which might be
typical of certain plasma processing discharges, but span
the regimes which we wish to investigate. For a benchmark
plasma we takeZ, = 0.45 cm, n,o = 10 cm= and
p = 300 mTorr. This corresponds to parameters of a
capacitive discharge plasma processing device operating
at reasonably high power but at a pressure at whids
relatively high. We have subtracted off the nominal sheath
widths from the device width. As we shall see, this case
corresponds to the intermediateegime satisfying (27) but
not satisfying (22). To investigate the other regimes we also
examine cases for which = 30 mTorr andp = 2 Torr.

We solve (5) and (6) subject to the boundary conditions
that the density gradients are zero at the centre, the negative
ion current is zero at the plasma edge and the positive
ion current is limited to the Bohm flux (using (15)) at the
plasma edge. We také_. = T, = 300 K. In figure 1
we give the solution at the lowest pressupe= 30 mT.

The density profiles are given in figure 1(a), the current
profiles in figure 1(b), and,, /D, in figure 1(c), where
D,y = —1"#%. From the density we observe the profiles
From the current we observe
that the recombination flux (negative ion flux) is small
compared to the diffusion flux~{ positive ion flux), and
from D, /D, we observe thaD,, ~ 2D_, characteristic

of the regime in which the negatives ions are in Boltzmann
equilibrium. This is in agreement with our prediction from
(22) asp = 0.17. For this case the eigenvalues are

To make a calculation of a particular electronegative plasma 7, = 2.86 eV andog = 24.73.

equilibrium the reaction rate constants must be known.

In figure 2 we give the same quantities for the

Furthermore, these rate constants must be consistent witintermediate regime op = 300 mTorr. We note, in figure

the approximation of a three-component plasma if that
approximation is to be used. For this study we take ClI

2(a), the flattened central profiles of positive and negative
ions, and the essentially constant electron profile. This is

as the feedstock gas because it is more electronegative thagharacteristic of the intermediate regime. We fimd= 5,

the previously studied Oin [7]. The rate constants for
this gas have been compiled for use in a global model [11].

which does not satisfy (22). From (27) we obtair= 0.31
such that the elliptic solution is valid. The current profiles

The size of the rate constants and the results of the modeland values ofD,. /D, are also consistent with the elliptic

indicate that it is a good approximation to consider that
the equilibrium dynamics are controlled by three plasma

solution. We find thatD,, ~ 2D, at the plasma edge,
indicating that the generalized Bohm criterion for the flux

species and the neutral gas. The important reaction-ratelimitation is appropriate. The eigenvalues dge= 2.27 eV

constants for the charged particles are

K. =92 x 10 ¥exp—129/7,) (53)

Kui = 3.69 x 10 exp[-1.68/T, + 1.457/T?
—0.44/T7) (54)

Kyee =5.10x 1074 (55)

Ko = 1.3 x 1071972 (56)

andag = 71.9.

In figure 3 we increase the pressure
2 Torr. We note parenthetically that some underlying
assumptions of our analysis, such as uniform electron
temperature, are probably not satisfied. However, the
example is pedagogically useful in illustrating the highest
electronegativity regime. From figure 3(a) we observe that
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Figure 1. Profiles for a chlorine discharge in one
dimension of half length ¢, = 0.45 cm, electron density

Neo = 10° cm~2 and pressure p = 30 mTorr. Top, profiles of
the densities n., n_ and n,; middle, profiles of the fluxes I'.
and I'_; bottom, profile of the diffusion constant ratio
Da./D, where D,, = —T./%%.

n. is no longer constant. This is consistent with the value
of x > 1. The near equality (with opposite signs) of the
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Figure 2. The same as figure 1 for p = 300 mTorr.

in the complete solution and are compared in table 1.
For the intermediate pressure casepoE 300 mTorr the
elliptic integral solution gives, = 2.26 andag = 715.
Again, these values are quite close to the values obtained
from the complete solution, as seen in table 1. In figure
4(a) the parabolic profile for the positive ions is compared

positive and negative current, in the plasma bulk, as seento the profile obtained from the coupled equations, for

in figure 3(b), indicates that the diffusion terms are small.
In figure 3(c), the value ob,, /D, ~ 2y can be shown to
be consistent with the proportionaliy, o n?. However,

at the plasma edge we still obtain, . ~ 2D, indicating
that the generalized Bohm condition is satisfied.

We now compare the profiles from the first two cases
with the simpler approximate solutions. Fpr= 30 mTorr
we use (30), (32) and (33), together with (15) fof ()
and (31) fora to obtain 7, = 2.84, o9 = 258 and

p = 30 mTorr. Good profile agreement is found. In figure
4(b) the elliptic profile is compared to the coupled equation
profile for p = 300 mTorr, again finding that the profiles
are reasonably close, as they are predicted to be since (27)
is satisfied.

We also note that the parabolic model predicts average
quantities quite well at higher pressure, despite the lack of
agreement of the profiles. This is illustrated in table 1 by
comparing the results from a parabolic model with the better

¢/, = 1.32. The values are quite close to those obtained approximations. Althougly, is too high, as expected, we
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Table 1.
Parabolic profile Elliptic profile Coupled equations
. () = ug (n() =0) (n() =0)
p(mTorr)  Te(eV) o o 2/¢, Te (V) o o Te(eV) o o
30 2.84 258 209 1.32 2.86 24.7 20.5
300 2.2 87.5 60.2 1.03 2.26 715 636 2.27 71.9 63.0
2000 2.14 228.5 152.8 1.003 2.17 170.4 161.8
Heuristic model
p(mTorr)  T.(eV) o a d/ep
300 2.25 72.1 63.2 043
2000 217 171.6 1659 0.11
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160 - i Figure 4. Comparison of n, profiles of approximate
solutions (dashed curves) to the numerical solutions of the
140 1 . coupled positive and negative ion differential equations
120 4 (solid curves). Top, parabolic approximate solution at
100 k 1 ] p =30 mTorr; bottom, elliptic approximate solution at
,§ S w0 E Tt p =300 mTorr. The other input parameters as in figure 1.
60 -
w b using the parabolic model, we expect that the simpler global
L model, with¢/¢, = 1 will also give approximate values of
T, and @. A global model is readily solved by a hand
o] 1 1 1 1 L 1
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Figure 3. The same as figure 1 for p = 2 Torr.

see that the space averaged values afe reasonably close
as are the values df,. Since¢/¢, = 1.03 atp = 300,

calculation, iteratively solving (3¥b). These results are
understandable since for the recombination flux dominating
the diffusion flux the shape is relatively unimportant.

The important«-scaling with pressure (or electron
density) is obtainable, approximately, from (34). Using the
square root relation, with the benchmark valuexof 63
at p = 300 mTorr we obtairx = 20 for p = 30 mTorr
anda = 163 for p = 2 Torr. These values are reasonably
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close to the values obtained from the coupled equations, as Be+ll e — 11—
seen in table 1.

Te+ll [

6e+ll

5. A heuristic high- « model

Se+ll

+ (em™3)

The numerical results of section 4 indicate that the ion  ~ 4et11f
density is relatively flat in the central region and drops S et b
rather sharply in an increasingly narrow edge region with

increasingao. A heuristic model that captures this profile deir

is le+1l f ]
My = M- = QoMo O<x< tp —d 0o 0.05 0.1 0.15 0.2 0.25 0.3 o.las 0f4 0.45
d—10,)?
Ny ™ N_ = 0N <]_ _ M) (58) x (cm)
d 1.8e+12 T T T T T T T r
£, —d <x <, 1.6e+12
The integrations fronx = 0 tox = ¢, from (16) and (17) todeniz
then yield o~ le2etizr
IE le+l2
7 S
(Kiznoneo - Krecagnfo)gp + TSK”,COtgnEOd = F+(Wa||) g 8e+ll
(59) 6e+ll
and de+ll
7 2e+1l |
K, 0 — Kyee n? p —Kreo Sncyd = . L L L 1 L 1 1 1
(Kasrnoneo %m0 bp + 15 Meod =0 (60) Oo 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
We need to determing, (wall) and obtain a third equation X (em)

for the parameter/. To obtainT,(wall) we note from  rigyre 5. Comparison of n. profiles of the heuristic
the numerical results that even at the highest pressuressolution (dashed curves) to the numerical solutions of the

D,y = A+ T-/T,)D, at the wall, thus coupled differential equations (solid curves). Top,
p =300 mTorr. Bottom, p =2 Torr.

r,wall) = 21+ T_/T,) D aon.o/d (61)

. . 6. Conclusions and discussion
To obtain a relation forl we return to our fundamental flux

equation (1) fol'_. Noting that the flux due to the electric
field is given approximately by the first term in (60), then
this must be balanced by the diffusion flux in the strong
gradient region to bring _(¢,,) to zero. Thus the second
term in (60) must equal the diffusion flux which gives

We have obtained equations that describe an electronegative
plasma at higha when the edge region in which the
plasma is electropositive becomes small. The electrons
can always be taken to be in Boltzmann equilibrium. A
pair of coupled differential equations are required to fully
7 describe the equilibrium. These equations are valid over
2D_agneo/d = EKrecnfoan. (62) all parameters ranges, provided that the drift velocity of
the positive ions does not reach the ion sound velocity
Equations (59), (60) and (62) can then be solved within the plasma. The negative ions may or may not
simultaneously forT,, o andd. We have done this and be described by the Boltzmann approximation, depending
the results are included in table 1. In figure 5 we compare on the parameters. A single positive ion diffusion
the profiles obtained, using this model, with the profiles equation has been derived in the parameter range for which
obtained by solution of the coupled equations (5) and (6) the Boltzmann approximation is valid for negative ions.
for the two higher pressure cases. We see that our heuristioe obtained a simple criterion to determine when the
model works quite well in the range af, for which (22) is Boltzmann approximation is valid for negative ions. If the
not satisfied so that the simple parabolic model is not a good negative ions are not Boltzmann, an intermediategime
approximation. The equations of the heuristic model join exists for which the electron distribution is essentially flat
smoothly onto the parabolic model whén= ¢, such that such that the coupled differential equations can still be
(59) and (60) reduce to (8yand (3b). For lower values of  reduced to a single differential equation that can be solved
oo a choice must be made between the approximate globalin terms of elliptic integrals. An estimate of the breakdown
model and the more accurate three parameter parabolicof this solution has also been made.
model using (30), (32) and (33). If the latter choice is made Approximate equations were derived by assuming
there is a small discontinuity between the two solutions, a parabolic solution for the negative ions. This
sincel # ¢, for the parabolic solution. This discontinuity  solution is a good approximation for lower values of the
disappears if a Bohm flux boundary condition is used in the electronegativity ratiaxo = n_g/n.0, where the diffusion
high« region. We have investigated this model and found flux dominates the recombination flux, but is not generally
results close to the model presented here. valid in the higher electronegativity parameter ranges that
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are the main subject of this paper. Nevertheless, theinternally within the plasma leads to an abrupt transition
ansatz of a parabolic profile provides a simple method of to a lower density electropositive plasma [9]. In this paper
estimating average plasma parameters of the electronegativave have taken this edge region to be sufficiently small that
equilibria, without solving differential equations. We the boundary condition of a local Bohm velocity was taken
compared the approximate solutions, using a parabolicto occur atx = [,, rather than att = [_ < [,. Itis
profile, and using an elliptic profile, with the solution of possible to match the solution of the coupled equations to
the coupled differential equations. Within the range of an edge electropositive solution, similar to that used for
validity of the two approximate solutions the results are the parabolic approximation in section 3. As discussed in
quite similar to those obtained from the coupled differential the introduction,/, is not totally defined unless we know
equations. Moreover, even if the more exact solution is the method of plasma production. Thus in the example of
considerably flattened from a parabola, the average plasmasection 4, the plasma dimension of 0.9 cm assumed nominal
parameters, using the parabolic approximation, are notion sheath widths in a symmetric rf capacitive discharge
very different from the average parameters obtained from Of approximatelys =~ 0.5 cm. The reduction of the
the coupled equations. The comparisons of the various €lectronegative core to accommodate a small electropositive
approximate solutions also show that the average plasma€dge would not be justified if the uncertainty in the sheath
parameters and the scaling with control parameters can behickness is of the same order as the thickness of the
reasonably approximated from a global model in which electropositive layer.

a parabolic profile withe = ¢, is assumed. We have Finally, we must recognize that particular plasmas may
utilized this approximation in a companion study [11] to have special characteristics that are not covered within a

generic analysis. For example, in [7] we compared our
equilibrium results to a particle-in-cell (PIC) simulation
of an rf capacitive discharge at relatively low pressure in
oxygen. Some discrepancies in the equilibrium parameters
were explained by the generation of a high temperature tail
on the cooler bulk Maxwellian plasma, due to stochastic
sheath heating. Our higher pressure example should not be
severely subject to this phenomenon. Another limitation of
the analysis occurs at high pressure, at which the electron
temperature is not uniform over the discharge. This leads
to peaking of the ionization and possibly peaking of the
ion density near the plasma edge [14, 15]. We mentioned
that this phenomenon might occur at the highest pressure
of 2 Torr, in the example. Under certain circumstances
it is also possible that our basic assumption of Boltzmann
electrons breaks down. An example of this is a pulsed
plasma in the afterglow, when essentially all of the electrons
have escaped, and the negative ions are free to flow to the
walls [16, 17]. New analysis is needed in this dramatically
different regime.

explore the variation of average plasma parameters with
control parameters, for a particular discharge configuration
corresponding to a commercial reactor.

From the comparison of the numerical results to the
various approximations, we determined that a heuristic
model consisting of a flat central region and parabolic edges
could well approximate the high-region, both where the
elliptic approximation is valid and at higher values ®f
where two coupled differential equations are required to
obtain the solution. We compared the results obtained
from the heuristic model with the solution of the coupled
equations, finding good agreement. In the heuristic model,
there is a smooth transition to a parabolic profile with
decreasing electronegativity.

This paper has only been concerned with the high-
parameter range in which the electropositive edge plasma is
sufficiently small that it can be neglected in the calculation.
At lower « we have previously treated cases in which the
electropositive halo was an essential part of the problem
[8, 7, 9]. If we wish to connect the high and low
«a parameter regimes this can be done by including the
electropositive edge, as described in section 3.3, in the
model. Solution of the coupled differential equations, with
a Bohm flux boundary condition, automatically includes an
electropositive edge region, if it exists. ie

In finding the transitions between the various regimes, =
with increasing«, for our highe solutions, we have
essentially varied a single parameter (8gyr n.g). In fact,
the full problem is a function of both of these parameters,
corresponding to the external parameters of pressure an
power, mediated by the coefficients of a particular gas. If
we span the two-dimensional parameter space, including
low o solutions, the transitions are more complicated. In
previous work [3,7,9] we have explored other parts of the
parameter space. The complete exposition, covering the . o )
entire two-dimensional parameter space, is yet to be done.A-1- Expansion of the elliptic solution

Although we have generally considered that the solution gypstitutingg, from (48) andy from (51) into (50) yields
of the coupled equations (5) and (6) give a fairly complete
picture of the solutions for the purposes of this paper, this . 3D; vz rt dy
is not entirely correct. Particularly at lower pressures, but = < ) /vm [(b—y)1— y)(a+ y)]¥?
at reasonably highx, reaching the local Bohm velocity (A2)

Appendix A

The elliptic approximation is valid if the second LHS term
in (26) is much smaller than the first left hand side term,

yd?n, /dx?
2Pn /dx?
The second derivative of the ion density will be found
Jelow using the elliptic solution. The minimum value of
d?n, /dx? is located in the discharge centre. As will be
shown, the second derivative of the electron density does
not depend onx over most of the discharge. Therefore,
condition (A1) is first violated at the discharge centre.

<1 (A1)

2Krecneoa0
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wherey(x) = a(x)/ag, and we have seb_ = D, = D;
andT_ = T,. When recombination flux dominates flux to
the wallsy is very close to unity, but stily < 1. It follows
from (52) that in this casé = 1+ ¢ anda = 2 + € with

€ <« 1. It is assumed here thdt andn depend weakly
on a particular realization of the boundary conditions. This
allows one to use a zero boundary condition at the wall,
y(l,) = 0, instead of the Bohm condition. Substituting this
into (A2) yields

(7))

2Krecn60a0612,
3D;

1 dy _
= | @repa- paserype = O 83
The change of variable= 1 — y gives
! dr
)= /0 [1(t +)(B+e—n]12 (A9

It is seen that this integral diverges logarithmically at the
lower limit ase — 0. In order to find the dominant term,
J(¢) is written as

1 dr
7€) =f0 NeiED)
1 1

1 1
+fo NGRS {\/3+6—t _\TS}dt‘

The first integral on the RHS can be calculated by
substitutingr = w?. This results in

1+4/1+4¢€ ~i
Ve oo V3

(A5)

2
J1=—In

7 (A6)

4
In—.
€

we obtain

G 1
i£ _ 2Kre(‘n30a(2) (5 — 1) ~ 11.16Krecn30a(2)

1/2
< exp _( )

where (A9) and (A10) have been used to eliminaia the
second equality.

—2D

ZKrecneanglz;

D (A11)

A.2. Electron density variation

Subtracting (8) from (7) gives
d (n,dn,

—2yD;— [ —=
VP e <n dx
wheren,/n, > 1 has been used. &, andn, vary
little over most of the discharge we can substitute =

nio+ dny, n, = n. + én, and keeping only first order
terms indn, anddn, we obtain

> = (Kiz - Ka[t)none (A12)

d?(8n,)
_ZJ/DiaOv = (Ki; — Ka)noneo. (A13)
The second term on the LHS in (26) can then be written as
dzne (Kiz - Katt)noneo
—yD—= = 4 Al4
yDig 200 (A14)

It follows from this expression that 2d,/dx? is
approximately constant, which we use to find the maximum
value ofk in the discharge.

The reaction rat&;, depends strongly on the electron
temperature, so we cannot use (Al4) directly in (Al). We
can eliminate this strong temperature dependence using the
approximations of section 5. If recombination loss is much
larger than loss to the walls the ion density is essentially
flat in the central region of the discharge and varies mostly

Since the second integral on the RHS remains finite asnear the wall inside a region of a small width We can

e — 0, small terms of the order ef can be omitted which
yields
dr

1
Jo >~ =
2 /0 31— 1/3(1+ J1I—1/3)
Adding J; and J; leads to

2
2In 11 V23
(AT)

5.58

J(e):ilniu—zm 2 1 In=——. (A8)
€ €

V3 1+2/3 /3
Substituting (A8) into (A3) yields
>1/2

Indeed,e becomes very small when the recombination flux

2
2Krecneoa0£[;

D, (A9)

€ = 558expy — (

becomes much larger than the diffusion flux. The parameter

n can be found by substituting= 1 + € into (52), giving

1
— (A10)
n

It is now easy to obtain the second derivative of the ion
density in the discharge centre. Substituting (51) into (25)
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then use the profile in (58) to obtain (60). As argued there,

the first term on the LHS of (60) can be attributed to the

negative ion flux due to the electric field, and the second

term to the negative ion diffusion flux at the wall. This

interpretation yields (62) which can be solved fbgiving
30D;

1/2
- <7Kre(:n60a05127 ) ’

It can now be seen that the central region whereis flat
expandsd decreases) as the ratio of the recombination loss
to the diffusion loss increases. Subtracting (59) and (60)
with ', (wall) = 4D, aon.o/d from (61) gives

d

7 (A15)

4Dia0n60/d = (Kiz - Katt)noneogp- (AlG)
Substitutingd from (A15) into (A16) yields
7K D v
recleQ i
(Kiz - att)nOneO = 4O‘O”eo % . (A17)
30¢7
Substituting (A17) into (A14) then gives
o? 28K AN
ne recle0o Vi
—yDi—— =no| ——5— . Al18
yDi 5 =neo ( 3002 ) (A18)

This equation’s RHS contains only quantities which depend
weakly onT,.



A.3. Criterion
Dividing (A18) by (A11) the criterion (Al) at the discharge  [3]
centre can be written as [4]

1/2
. — 1 ( D; ) [5]
115500 \ Kecheootol? g ]
2K och 000l 2

x eXp(DOO"> <1 (Al9) 7]
[8]

where a simple, rather than a strong inequality is used, since
the LHS is the largest value that the inequality, defined in

Al), attains.
(A1) ]
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