
Quasilinear theory of collisionless electron heating in radio frequency
gas discharges

Yu. M. Aliev,a) I. D. Kaganovich,b) and H. Schlüter
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On the basis of quasilinear kinetic theory, the electron heating of rf discharges is treated for
characteristic scale lengths of the heating field much shorter than the electron mean free path. The
analysis considers plasmas bounded by walls providing specular reflection. The expressions for the
coefficients of electron diffusion in energy space are obtained and analyzed for inductively and
capacitively coupled plasmas. Accounting for the oscillatory spatial structure of the penetrating
electric field in the regime of anomalous skin effect leads to a decrease of the diffusion coefficient
for high, and an increase for low, energy electrons. It is shown that the presence of a second
boundary in the case of collisionless plasma slabs results in a similar effect. The formation of energy
distribution functions in various regimes of collisionless heating is discussed. The diffusion
coefficients are presented taking into account ambipolar electric fields. ©1997 American Institute
of Physics.@S1070-664X~97!02807-3#
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I. INTRODUCTION

A modern trend in plasma technology aims at decreas
the gas pressures down to the milliTorr range. For these
pressures it is easier to maintain uniform plasmas with w
controlled parameters. Due to the large value of the m
free path~MFP! the main mechanism of electron heatin
turns out to be a collisionless one rather than the conv
tional Joule heating dominant for higher pressures.

The problem of collisionless plasma heating appea
about half a century ago in connection with research on th
monuclear fusion. In spite of the fact that the cross sectio
Coulomb scattering of charged particles decreases with
creasing temperature, anomalously high plasma diffus
was observed in experiments with magnetic confinem
Plasma heating by direct current and external high freque
electric fields was also unexpectedly intensive. Later this
fect was explained as originating from plasma instabilit
resulting in the excitation of wave fields with small spa
scales. Interaction of charged particles with these fields le
to collisionless plasma heating. In order to explain t
mechanisms of anomalous transport phenomena, the q
linear and nonlinear theory of plasma wave turbulence w
created~see, e.g., Refs. 1 and 2!. The simplest examples fo
the influence of collective effects on the motion of charg
particles are Landau damping of Langmuir waves a
anomalous skin effects for transverse waves~see, e.g., Ref.
3!. The resonance particles moving with a velocity close
the wave phase velocity intensively interact with wave fie
and receive or lose energy. The result of particle⇔wave in-
teraction depends on the shape of the particle distribu
function in velocity space. For Maxwellian distributions th
wave amplitude decreases, while the particle energy
creases. For particle beams the situation can be the inv
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one, resulting in the excitation of small scale waves. In t
case the plasma exhibits high levels of turbulent noise a
as a consequence, the effective frequency of electron sca
ing becomes larger than the usual particle–particle collis
frequency.

The quasilinear theory was initially developed for we
wave turbulence. But it can also be applied to stable plasm
when small scale fields with a wide spectrum of wave nu
bers are excited by an external source. This situation is r
ized in the cases of Debye screening of longitudinal elec
fields or cases of anomalous skin effects for transve
fields. A local spectrum of small scale Langmuir waves a
pears also in the region of plasma resonances for inhom
neous plasmas interacting with electric fields capacitiv
coupled with plasmas~CCPs!.

The problem of the plateau formation in the electr
energy distribution function~EEDF! in the quasilinear theory
was investigated first in Refs. 4 and 5. In Ref. 6 it is sho
that collisionless heating due to local plasma oscillations
sults in plateau formation in the region of high electron e
ergy. The effect of collisions on electron heating by loc
plasma oscillations are investigated in Ref. 7. Collisio
smooth out the quasilinear plateau in the EEDFs2 and result
in an increased number of high energy electrons. A
Maxwellian EEDF with the temperature of fast electrons d
fined by the intensity of a strong rf electric field was obtain
in Ref. 7. Problems of collisionless heating in gas dischar
plasmas are addressed in Refs. 8–14. The model of osc
ing plasma sheaths was proposed and explored to obtain
collisionless power dissipation of CCPs in Ref. 8. In Ref.
by using a kinetic equation for electrons of a plasma s
with oscillating rigid walls, the electron diffusion coefficien
in energy space is derived under the assumption that the
velocity is much slower than the particle velocity. Partic
velocity kicks in longitudinal~normal to the walls! as well as
in transverse directions are taken into account and comp
sons with a one-particle approach are performed. In Ref
diffusion coefficients obtained from a kinetic treatment
plasma heating in regimes of anomalous skin effect~of the

s,

al
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same form as presented in Ref. 9! are used for calculating
EEDFs, accounting for electron energy losses by elastic
lisions. This treatment yields a power law energy dep
dence in the EEDFs. Also on the basis of a oscillating she
approximation,11 EEDFs with power law dependence a
presented and used for self-consistent modeling of rf
discharges. A quasilinear approach to collisionless elec
heating in the regions of plasma resonance in low pres
discharges, sustained by electromagnetic surface wave
developed in Refs. 12 and 13. In Ref. 14 it is demonstra
that—in view of experimental situations—self-consiste
modeling has to account for nonlocal effects15,16 as well as
for collisionless heating. Some recent developments on
chastic electron heating in bounded rf plasmas in a mode
oscillating rigid walls are presented in Refs. 17 and 18.

In view of the history of the successful use of the qu
silinear approach as a well-established method, particul
in hot plasma physics, this paper aims at systematically
plying this method also to the study of collisionless heat
in various low temperature plasmas and to summarize e
ing results using a common basis, as well as to gain exten
new results. The paper intends to demonstrate that the
silinear theory is a powerful and easily applicable method
investigations of these type of problems.

This paper is organized as follows: In Sec. II, the de
vation of the diffusion coefficient in energy space for un
form boundless plasmas, heated by localized high freque
field is presented. In Sec. III the collisionless heating in
ductively coupled plasmas~ICPs! is analyzed for semi-
infinite and slab geometry. Both cases can be reduced to
boundless problem with specular reflecting walls. The pro
of the electric field under the condition of the anomalo
skin effect is found in analytical form and the electric field
shown to oscillate spatially with zero average value. A
result the diffusion coefficient of fast electrons is suppress
but in the low energy region it is enhanced in comparison
the case of an exponential profile. For ICPs in slab geom
~of width L! it is demonstrated that the second bound
plays a similar role. In this case the corresponding Fou
spectrum of the electric field is discrete (kn5pn/L) in con-
trast to a continuous one for semi-infinite geometry. In S
IV the quasilinear theory is applied for capacitively coupl
plasmas~CCPs!. It is shown that the diffusion coefficient ha
a clear resonant structure with a main peak atv5vL/p. An
analysis of the solutions of the kinetic equation for the EE
in different regimes of plasma heating is presented. In Se
the influence of the ambipolar electric field on the efficien
of collisionless heating is discussed. The general expres
for the diffusion coefficient in energy space is obtained
cases both of ICPs and CCPs. The presence of ambip
electric fields can strongly modify the condition fo
particle⇔wave resonances. As a consequence the form
diffusion coefficient in energy space is changed, especi
for low energy electrons. In a parabolic potentialF5ax2/2
the bounce frequency of trapped electrons (Aa/m) is the
same for all energies. So the resonance conditionv
5Aa/m) can be fulfilled for one value ofa only, and there is
no collisionless heating for other values ofa. In the general
case of a nonparabolic potential the bounce frequency is
2414 Phys. Plasmas, Vol. 4, No. 7, July 1997
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ergy dependent. Section VI contains the conclusion and
look.

II. KINETIC THEORY OF COLLISIONLESS ELECTRON
HEATING

A. Separation of the space and times scales in the
kinetic description

The kinetic equation for the electron velocity distrib
tion functionF (r ,v,t) is

]F

]t
1v

]F

]r
1

e

m SE1
1

c
v3B D ]F

]v
5S~F ! ~1!

where e andm are the electron charge and mass, resp
tively, S(F) is the collisional integral,E(r ,t) is the electric
andB(r ,t) the magnetic field.

In low pressure discharges the space scale of the ele
heating becomes small in comparison to the MFPl. Under
these conditions it is possible to simplify the kinetic descr
tion of the plasma by separation of the space scales. Thu
two fields can be separated into two parts

E5E1Ẽ, B5B1B̃, ~2!

whereE andB have large spatial scales compared tol, while
Ẽ and B̃ have small spatial scales 1/k compared tol ~i.e.,
kl@1!. An analogous separation can be performed for
distribution function

F ~r ,v,t !5F~r ,v,t !1F̃~r ,v,t !, ~3!

whereF is averaged over a scale in the order ofl and F̃
describes the deviations of the distribution function on sca
smaller thanl. Also the usual quasilinear approximatio
F̃!F is used.1,2 As a result the kinetic equation~1! can be
separated into two parts

]F̃

]t
1v

]F̃

]r
1

e

m SE1
1

c
v3BD ]F̃

]v

52
e

m S Ẽ1
1

c
v3B̃D ]F

]v
, ~4!

]F

]t
1v

]F

]r
1

e

m SE1
1

c
v3BD ]F

]v

52
e

m S Ẽ1
1

c
v3B̃D ]F̃

]v
1S~F !. ~5!

In ~4! the collisionless term is omitted, since it is small com
pared to the second term on the left-hand side:kl@1. The
bar in ~5! denotes spatial averaging on scales smaller thal.

B. The form of quasilinear integral for weakly
inhomogeneous boundless plasmas

First the case of weakly inhomogeneous boundless p
mas, whenE,B50 andẼ, B̃ are only rf fields, is considered

Ẽ~r ,t !5 1
2$E~r !exp~2 ivt !1E* ~r !exp~ ivt !%, ~6!

where* denotes the complex conjugation.
Aliev, Kaganovich, and Schlüter
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Under conditions, when the frequency of ineleastic c
lisionsn* is small compared to the rfv(n*!v), the distri-
bution function does not depend on time, i.e.,F5F(r ,v),
and ~4!, ~5! can be simplified to

]F̃

]t
1v

]F̃

]r
52

e

m S Ẽ1
1

c
v3B̃D ]F

]v
, ~7!

v
]F

]r
5Sql~F !1S~F !. ~8!

The first term on the right-hand side of~8! is well-known in
the theory of weak turbulent plasmas as the quasilinear
lision integral, describing interaction of electrons wi
waves,

Sql~F !52
e

m K S Ẽ1
1

c
v3B̃D ]F̃

]v L , ~9!

where thê •••& brackets indicate temporal averaging over t
wave period 2p/v.

Equation~7! can be solved by the Fourier method givin

F̃~k!52
ie

m
•

E~k!1
1

c
v3B~k!

v2kv
•

]F

]v
, ~10!

whereF̃(k), E~k! andB~k! are the Fourier transformation
of the functionsF̃(r ), E~r ! andB~r !, respectively.

By inserting~10! into ~9! the quasilinear integral for the
one-dimensional geometry can be written in the form

Sql5d~x2x0!
]

]v i
Di j ~v!

]F

]v j
, ~11!

where thed function appears as a result of space averag
and reflects the fact of localization of the heating elec
field in the regionx'x0 with a characteristic scalel̃ much
smaller thanl and

Di j ~v!52
e2p

m2 E dkFE~k!1
1

c
v3B~k!G

i

3FE~k!1
1

c
v3B~k!G

j

ImS 1

v2kvx
D ~12!

is the tensor of the diffusion coefficient in velocity space.
excluding the magnetic field from~12! with help of the Max-
well equation

B̃~k!5
c

v
k3Ẽ~k! ~13!

it can be shown that the tensor~12! has only one componen
Dxx . This stems from the fact that the electrons receive
pulse from the wave impulse directed alongk ~k, 0, 0! inde-
pendent of the type of heating field~transverse or longitudi-
nal!.

Dxx~v!5
pe2

m2vx
2 E dkuvE~k!u2d~v2kvx!. ~14!

The relation
Phys. Plasmas, Vol. 4, No. 7, July 1997
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v2kvx1 io D52pd~v2kvx!, ~15!

corresponding to the phase resonance between trave
wave and moving electron, was used to obtain express
~14!.

It should be stressed thatDxx is a nonlocal function of
the heating electric field due to the integral representatio

E~k!5E dx

2p
exp~2 ikx!Ẽ~x!. ~16!

This type of nonlocality is also discussed in Ref. 19
The simple physical meaning of expression~14! shall be

illustrated by the example of plasma heating due to the
calized field of a longitudinal waveẼ (Ex,0,0). In this case
one obtains from~14!

Dxx5
p2e2

m2

1

uvxu
UES k5

v

vx
D U2. ~17!

Expression~17! can be presented in the form

Dxx5
uvxu
4

~Dv !2, ~18!

whereDv is the amplitude of the velocity kick after interac
tion with the wave field

Dv5E
2`

1`

eẼx~k5vxt !exp~2 ivt !dt

5
2pe

vx
ES k5

v

vx
D . ~19!

C. Kinetic equations for the EEDF

In gas discharge plasmas the anisotropy of the distri
tion function in velocity space is small due to the elas
collision frequencyn being large compared to the inelast
one (n* ), i.e.,n@n* . In this case the conventional two-term
approach is applicable and for the spherically symmetric p
of the EEDFF0 one has the following equation for one
dimensional geometry:

v2

3n~v !

]2F0

]x2
2Sql

0 ~F0!2S* ~F0!50, ~20!

where

Sql
0 ~F0!5

1

v2
]

]v
S v2D~v !

]F0

]v
D d~x2x0! ~21!

with

D~v !5
1

v2
p2e2

m2 E
2`

1`

dkE
0

p

sin q dq

3E
0

2p dw

4p
uvE~k!u2d~v2kvx! ~22!

is the averaged~over the velocity angles! quasilinear colli-
sion integralSql ~11! and S* (F0) is the inelastic collision
integral.
2415Aliev, Kaganovich, and Schlüter
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To obtain the EEDF~20! should be integrated over
small vicinity of the pointx5x0 . One gets as a result

2
v2

3n~v !

]F0

]x U
x5x010

5
1

2

1

v2
]

]v S v2D~v !
]F0

]v U
x5x010

D .
(23)

In obtaining ~23! symmetry of plasma heating and EED
with respect to the space positionx5x0 is assumed. Relation
~23! should be considered as boundary condition for
equation

v2

3n~v !

]2F0

]x2
2S* ~F0!50 ~24!

describing the space evaluation of the EEDF outside the
gion of rf power input.

By representing the collisional integralS* (F0) in the
form

S* ~F0!52n* ~v !F0~v,x!, ~25!

one obtains from~24!

F0~v,x!5F0~v !expS 2
x

le
D , ~26!

wherele5v/A3n(v)n* (v) is the energy relaxation length
Substituting~26! into the boundary condition~23! now re-
sults in the equation for the EEDF:

vAn* ~v !

3n~v !
F0~v !5

1

2

1

v2
]

]v S v2D~v !
]F0

]v D . ~27!

Equation~27! has previously been analyzed for the case
localized longitudinal rf fields in the ionosphere7 and SW
produced plasmas.12 The character of the solutions of~27!
essentially depends on the diffusion coefficientD(v). For its
determination the space spectra of the heating EM fie
have to be known.

In contrast to the boundless plasmas considered ab
gas discharge plasmas are always bounded. Thus in the
section, a procedure of reducing the bounded problem
boundless one will be developed.

III. SPACE SPECTRA OF HEATING ELECTRIC FIELDS
AND DIFFUSION COEFFICIENTS FOR INDUCTIVELY
COUPLED PLASMAS

A. The semi-infinite plasma

In order to use the results of boundless plasmas, spec
reflection of the electrons from the discharge wall (x50) is
assumed

F̃~vx ,vy ,vz ,x,0!5F̃~2vx ,xy ,vz ,x.0!. ~28!

Thus Eq.~7! can be continued into the completex range
(2`,x,`) by the followingansatz:

B̃y~x,0!52B̃y~x.0!,

Ẽy~x,0!5Ẽy~x.0!, ~29!

Ẽx~x,0!52Ẽx~x.0!,

and the problem reduces to the case of boundless plasm
2416 Phys. Plasmas, Vol. 4, No. 7, July 1997
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Now the possible regimes of shielding the transverse
field by the semispace plasma are addressed. In the ca
weak collisions (v.n) the field penetrates into the ove
dense plasma@v!vp5(4pe2n/m)1/2# over the depthd0
5c/vp . For such a regime the frequency of the electric fie
should be sufficiently high~v.vT /d0 , with vT being the
thermal electron velocity!. A regime of collisionless plasma
heating is possible, if the mean electron energy is not too
so that the skin lengthd0 does not exceed the MFPl, i.e., if
vT.n•d0 . In this case one should use the following for
for the electric field, continued into the completex range to
calculate the diffusion coefficient for semi-infinite plasma

Ey~x!5E0 expS 2
uxu
d0

D , ~30!

with the Fourier spectrum given by

E~k!5
E0d0

p~11k2d0
2!
. ~31!

It should be noted that accounting for low collisionality r
sults in weak spatial field oscillations and a small EM pow
flux into the plasma. Substitution of~31! into ~22! yields the
expression for the diffusion coefficientD(v)

D~v !5vd0vE
2gS v

vd0
D , ~32!

wherevE5eE0 /mv and

g~ ṽ !5
1

4ṽ 3 @~21 ṽ 2!ln~11 ṽ 2!22ṽ 2# ~33!

which should be used in the kinetic equation~27! for obtain-
ing the EEDFF0(v).

In the region of low electron energy (v/vd0!1→ ṽ
!1) one has

g~ ṽ !'
1

24
ṽ 3. ~34a!

In the limit of high electron energy (v/vd@1→ ṽ@1) one
obtains

g~ ṽ !'
ln~ ṽ !

ṽ
. ~34b!

For lower frequenciesv*,v,vTe /d0 the case of

anomalous skin effect3 is realized (v*5n3c2/vp
2vTe), inde-

pendent of the relation betweenv andn. In this situation the
depth of the electric field penetration becomes less than
MFP l and electrons are heated in a collisionless manne

If one uses a description of the electric field in the for

Ey~x!5E0 expS 2
uxu
lsk

D , ~35!

where lsk5(cZ)/( iv) is chosen from the condition of a
correct representation for the power deposition into
plasma with the surface impedanceZ52/3d(111/3) i ),
the diffusion coefficientD(v) is

D~v !5vd0vE
2gS v

vd0
D . ~36!
Aliev, Kaganovich, and Schlüter
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The functiong( ṽ) has the following approximation in th
region of high electron energy (ṽ5v/vd0@1):

g~ ṽ !'
4

27

ln~ ṽ !

ṽ
~37a!

and in that of low electron energy (ṽ!1)

g~ ṽ !5
9

128
ṽ 3. ~37b!

The exact Fourier transformation of the electric field o
tained from the kinetic approach3 yields

E~k!5
E0

pLskS k22 i
b

uku D
, ~38!

where

b5
4pve2

c2m E vy
]F

]vy
d~vx!dv. ~39!

In the case of a Maxwellian EEDF one has:

b5
2e2nv

c2
A2p

mT
, ~40!

wheren is the electron density and

Lsk5
2~)1 i !

33/2b1/3
. ~41!

The space dependence of the electric field penetra
into the plasma over the region 0,x,vT /v has the form

Ey~x!5
E0

pLskb
1/3 H p

3 F ~) i11!expS i )2 2
1

2D xb1/3
1exp~2xb1/3!G22i E

0

`

—
j exp~2xb1/3j!

12j6
djJ .

~42!

The last term on the right-hand side of~42! represents
the contribution of the branch pointk50 and the exponentia
terms are a result of the poles in the integration when
inverse Fourier transformation of expression~38! is per-
formed. A plot ofEy(x) is presented in Fig. 1. The electr
field profile has a oscillatory structure which reflects the
istence of power flux into the plasma due to collisionle
dissipation. It should be noted that at large distances from
plasma surface (x.vTe /v) the influence of electron therma
motion is not important and the electric field penetration
comes purely exponential with a scale lengthd05c/vp . But
this effect of changing the regime of field penetration can
neglected because at this distanceEy(x) has decreased to
small fraction of its value at the surface if the frequencyv is
in the rangev,(vT /c)vp where the anomalous skin effe
is applicable.

By substituting expression~38! into ~22! one obtains

D~v !5vd0vE
2gS v

vd0
D , ~43!

where
Phys. Plasmas, Vol. 4, No. 7, July 1997
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e

g~ ṽ !5
9

64ṽ H)FarctanS 2ṽ 221

)

D 1
p

6 G
2

1

ṽ 2 ln~11 ṽ6!2 lnS 11 ṽ 2

A12 ṽ 21 ṽ4
D J . ~44!

In the region of large values of the argumentṽ@1 the
functiong( ṽ) decays and can be approximated by

g~ ṽ !'
9p

32)

1

ṽ
. ~45a!

For small values ofṽ!1 ~44! goes to zero by the law

g~ ṽ !'
9

128
ṽ 3. ~45b!

FIG. 1. Plot of the electric field at anomalous skin effect as a function
normalized coordinatesx/d0 . The solid curve corresponds to the exact pr
file of the electric field~42!, the dashed one to the exponential profile~30!
and the small dashes represent the impedance approximation~35!: ~a! Real,
~b! imaginary part of the electric field intensity.
2417Aliev, Kaganovich, and Schlüter
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g( ṽ) has a maximum in the regionṽ'1 ~see Fig. 2!.
Diminishing of the diffusion coefficient~43! in regions

of a high electron velocityv.vd0 has a transparent physic
meaning. To the electron with such a high velocity the el
tric field appears as a stationary one. So the increase o
electron energy by interacting with the localized electric fie
should be equal to zero and

E
0

`

E~x!dx50. ~46!

Note that it follows from~46! that the Fourier componen
E(k50) should be equal to zero, which is in agreement w
~35!.

In the region of high electron energy the diffusion coe
ficientsD(v) ~32!, ~45! decays much less than in the ca
when the electric field is described exactly~38!. This is a
consequence of the fact that in the former two cases the
wave part of the Fourier spectrum of the electric field do
not vanish andE(k50)Þ0. In Fig. 2 plot ofg( ṽ) for dif-
ferent cases of electric field representation is shown.

B. The slab geometry

Now the case of a uniform plasma slab~of width L!
bounded by two plane walls with specular reflection of el
trons is considered. For the caseL@l collisionless heating
of overdense plasmas occurs only in the nearest vicinity
the walls, while between then the usual Joule heating ta
place. By using the method of continuation considered in
previous section the following solution for the EEDF is o
tained:

F0~v,x!5F0~v !•

coshS x2~L/2!

le
D

coshS L

2le
D , ~47!

FIG. 2. The normalized diffusion coefficientg5D /(d0/2)vvE
2 as a function

of the dimensionless velocityṽ5v/vd0 for various models of electric field
profile. The solid curve corresponds to the exact profile of the electric fi
~42!, the dashed one to the exponential profile~30! and the small dashes
represent the impedance approximation~35!.
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generalizing the result~26! for the case of plasma slabs wit
symmetrical heating on both walls. The kinetic equation
the EEDFF0(v) instead of~27! now has the form

vAn*

3n
F0~v !5

coth~L/2le!

2v2
]

]v S v2D~v !
]F0~v !

]v D .
~48!

The diffusion coefficientD(v) in ~48! is defined by~22!.
The limit L@le corresponds to the case of semi-infini
plasmas and~48! changes to~27!. In the opposite limit of
thin slabs (L!2le), on the right-hand side of~48! a large
parameter 2le /L@1 arises corresponding to more effectiv
heating. In this case~48! takes the form

n*F0~v !5
1

v2
]

]v S v2D~v !
]F0~v !

]v D . ~49!

Equation~49! expresses the fact that losses of electron
ergy by inelastic collisions in the plasma volume balanc
the collisionless heating. It should be noted that in this lim
the EEDF is spatially uniform and is equal toF0(e) in spite
of the localization of energy input regions near the wa
This limit corresponds to the so-called ‘‘nonlocal’’ heatin
regime of plasmas with space dimensions less than the le
of electron energy relaxationle .

15,16

If the slab width does not exceed the MFP (L,l
,le), the kinetic equation for the EEDF has a form identic
to ~49! but with the diffusion coefficient

D~v !5
1

v2
2pe2

m2 (
n52`

` E
0

p

sin q dq•E
0

2p dw

4p
•vyuEnu2

•dS v2
pn

L
vxD , ~50!

where

En5
1

L E
0

L

Ey~x!cosS p

L
nxDdx ~51!

is the Fourier transformation of the periodical
continued—in accordance with~29!—electric field Ey(x)
~with periodL!.

It can be shown that the spectrumEn is always propor-
tional to 1/n2, independent of the form of dependence
Ey(x). This behavior is connected to the symmetric contin
ation ofEy(x) and originates from the jump of the magnet
field componentBy52 ic/v]Ey /]x and is easy to check by
twice partially integrating~51!. For such a spectrum the sum
in ~50! can be changed to an integral for low energy ele
trons (v,vL/p) and the diffusion coefficient takes the form
of ~22! with the functionE(k) corresponding to the Fourie
spectrum of the electric field

Ey~x!5 HEy~ uxu!, 2L,x,L,
0 uxu.L. ~52!

In the region of high electron energyv>vL/p) the sum in
~50! cannot be transformed into an integral. To demonstr
this the simple case of an exponential profile of the penet
ing electric field with skin depthd0<L is considered. The
spectrumEn for this case is

d
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En5

E0

d0
L

11S n

n* D
2 ~53!

~with n*5L/pd0!, and the diffusion coefficient~50!

D~v !5v
d0
2L

vE
2gS v

vd0
D ~54!

is obtained, where

g~ ṽ !5
1

2ṽ (
n.

n*
ṽ

1` 12S n*nṽ D
2

F11S n

n* D
2G2•n . ~55!

For smallṽ ( ṽ,n* ) the main contribution to the sum i
~55! stems from largen so that the sum can be represent
by an integral and the result coincides with the result~34! for
the case of semi-infinite plasmas.

For large ṽ ( ṽ.n* ) the sum in~55! yields a smaller
diffusion coefficient compared with that in the case of sem
infinite plasmas. This is connected to the effective cut-of
small k<p/L for the slab geometry.

IV. CAPACITIVELY COUPLED PLASMAS

CCPs have a more complicated structure than ICPs
to the presence of large oscillating sheaths. The space
length of the heating field and of the ambipolar field can
comparable in CCPs~in contrast to ICPs!. For such a situa-
tion the approximation of the sheath potential as a mov
rigid wall has repeatedly been used~see, e.g. Ref. 19!. In this
model the sheath velocity isvsh5vE cos(vt1w), wherevE
5eE0 /mv and E0 is the amplitude of the sheath electr
field strength. The electric field in the plasma bulk is n
glected.

It is possible to transfer the problem into a noninert
system moving with the sheath velocityvsh. In this system
there is a stationary specularly reflecting boundary and
alternating electric field connected to the inertial force

Ex~ t !52
m

e

dush
dt

5E0 sin~vt1w!. ~56!

Now the quasilinear approach is easily applied and with
help of the continuation method described above~28!, ~29! it
yields the following expression for the diffusion coefficien

D~v !5
1

v2
pe2

2m2 (
n52`

` E
0

p

sin q dqE
0

2p dw

4p
vx
2uEnu2

•dS v2
pn

L
vxD , ~57!

where

En5
1

L E
0

L

Ex~x!sinS pnx

L Ddx. ~58!

In the case considered hereEx(x)5E05constant and the
diffusion coefficient is
Phys. Plasmas, Vol. 4, No. 7, July 1997
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D~v !5
v

2p
vE
2gS pv

vL D ~59!

with

g* ~ ṽ !5
4

ṽ 3 (
n51,3,5,...
n.1/ṽ

n25. ~60!

For smallṽ (v,vL/p) the sum in~60! can be replaced by
an integral andg( ṽ) is approximated by

g~ ṽ !5
ṽ
2

~61!

so that

D~v !5
vvE

2

4L
. ~62!

Thus in the low energy region the expression for the dif
sion coefficient~62! is identical to the result obtained in Re
11 with an one-particle approach.

In the high velocity region (v.vL/p) the main contri-
bution in the sum of~60! is due to the first resonance and o
obtains

g~ ṽ !5
4

ṽ 3 ~63!

and correspondingly the diffusion coefficient decays;v23

D~v !5
2v4L3vE

2

p4

1

v3
. ~64!

From Fig. 3 the large deviation of the quasilinear diff
sion coefficient~solid line! from the one obtained from the
moving rigid wall approximation~dashed line! in the region
of high electron velocity is evident. The difference in th
nature of the heating field for CCPs and ICPs rests in
structure of the diffusion coefficient near resonances. In
case of CCPs every resonance gives a well-defined peak
vn5pv/Ln ~see Fig. 3!. With increasingv, an additional
resonancevn yields at first a considerable contribution, fo

FIG. 3. The normalized diffusion coefficientg5D /(d0/2)vvE
2 as a function

of the dimensionless velocityṽ5pv/vL for CCPs. The dashed curve rep
resentsg5 ỹ/2.
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lowed, however, by a rapid decrease;v23. As a conse-
quence atv.pv/3L ~i.e., n>3! the diffusion coefficient is
practically determined by the lowest resonance (n51) and
its curve resembles a sequence of peaks~see Fig. 3!. For
ICPs the peak structure is smoothed out, since every
resonance results only in a small contribution;(v2vn)

2

and the decrease of the resonance contributions is
slower than for CCPs (;v21). Therefore, only the peak o
the first resonance is pronounced in the net diffusion coe
cient.

V. THE DIFFUSION COEFFICIENTS FOR
INHOMOGENEOUS PLASMAS ACCOUNTING FOR
STATIONARY AMBIPOLAR ELECTRIC FIELDS

In inhomogeneous plasmas the stationary ambip
electric field appears which tends to trap electrons in
plasma volume. As a consequence, low energy electrons
not reach the periphery of the discharge where the rf fiel
large. Therefore, taking into account the ambipolar poten
leads to a decrease in the efficiency of heating of low ene
electrons. The diffusion coefficient for these electrons
small and the effective temperature of the low energy par
the EEDF can be considerably smaller than that of the hig
energy part. For instance, in CCPs EEDFs resembling
Maxwellian ones have been observed, with a temperatur
low energy electrons (e,2 eV) ten times smaller than tha
of high energy electrons (e.2 eV).20

In this section the case of a collisionless slab for CC
(l@L) will be considered. The kinetic equation~4! for the
fast varying part of the distribution functionF̃(x,v) with the
ambipolar potentialF(x) takes the form

2 ivF̃1vx
]F̃

]x
2

e

m

]F

]x

]F̃

]vx
52

e

m
Ẽx

]F

]vx
. ~65!

The solution of~65! is given by~see, e.g. Ref. 21!

F̃~x,ex!5e
]F~e!

]e
exp~ iV!

3F2
*x2

x1 sin~V*2V~x8!!E0~x8!dx8

sin V*

1E
x2

x

exp~2V* ~x8!!E0~x8!dx8G , ~66!

where

V~x,ex!5sign vxE
x2~ex!

x v dx8

A2

m
~ex2eF~x8!!

, ~67!

V*5V(x1 ,ex), ex5eF(x)11/2mvx
2 and the turning

pointsx6(ex) are defined by the relation

eF~x6!5ex . ~68!

The kinetic equation for the main part of the distributio
function F5F(e)—with e5eF11/2mv2 being the total
energy—reads
2420 Phys. Plasmas, Vol. 4, No. 7, July 1997
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de
De

dF

de
1S* ~F !50. ~69!

The bars indicate averaging over the slab widthL. The dif-
fusion coefficient averaged over the angles in velocity sp
is

De5
pe2L

2 E
0

e dex
m (

n
En
2~ex!d@V* ~ex!2pn# ~70!

with

En~ex!5
1

L E
x2~ex!

x1~ex!

Ex~x!sin V~x,ex!dx. ~71!

Resonances occur, if the time of particle motion from o
turning point to another~bounce time! is equal tonT/2,
whereT52p/v. This is in accordance with the resonan
conditionV* (ex)5pn, as follows from~70!. If the value of
V* (ex) does not exceedp, there are no resonances at all a
no collisionless heating occurs. It should be noted that, if
ambipolar potential is approximated by rigid walls,V* (ex)
is proportional top/Aex and the resonance conditions ca
always be fulfilled. In the case of a parabolic potenti
which is realized for low energy electrons trapped near
discharge center and is defined by the potential pro
F(x)5ax2/2, the dimensionless bounce frequencyV*
5Aa/m and does not depend on the electron energyex the
resonance conditions can be fulfilled in this case for o
value ofa only. All plasma electrons are in or out of wave
particle resonance. Thus the ‘‘degeneracy’’ could be
moved by taking into account the deviation of the ambipo
potential from the parabolic one.

For ICPs the expression for the diffusion coefficient h
the form

De5
pe2L

2 E
0

e dex
m

e2ex
2ex

(
n

En
2d~V*2pn!, ~72!

where

En~ex!5E
x2~ex!

x1~ex!

Ey~x!cosV~x!A ex
ex2eF~x!

dx.

~73!

VI. CONCLUSIONS AND OUTLOOK

The quasilinear approach to the description of collisio
less electron heating by given high frequency EM fields h
been developed. This approach has been shown to b
effective method of providing a common basis for a varie
of conditions in gas discharges and obtaining generali
expressions. It was possible not only to summarize the
fects obtained and to compare with results previously
tained by a different approach, but also to obtain new a
extended results: The comparison to results from the o
particle approach yields agreement in the diffusion coe
cient characterizing heating only for the case of low ene
electrons. The expressions derived here are valid also
higher energies. For this region of electron energy a cu
for the long wave part of the spectrum of heating elect
field is required. Accounting for the second boundary
Aliev, Kaganovich, and Schlüter
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TP
bounded plasma automatically provides such a cutoff. T
generalized expressions for bounded plasmas given inc
the effect of ambipolar electric fields, which can be essen
for the effectivity of collisionless heating.

It should be noted, if the EM in the plasma has also la
space scale parts~EÞ0, BÞ0!, the complete equation~5!
has to be used instead of~8!. The influence of static ambi
polar fields has been considered in Sec. V. The large sp
scale and time varying part of the EM give rise to loc
diffusion coefficients which should be added to nonlo
ones. Modeling of microwave discharges with heating due
two space scales and time varying electric fields has b
undertaken in Ref. 14. In general it can be underlined t
knowledge of the energy diffusion coefficient gives a go
basis for further developments, in particular for calculatio
of EEDFs needed for specific applications.

Finally it should be noted that the theory used in t
present article isnot a self-consistent quasilinear theory d
to neglecting backward influences of the modification of
EEDF on the electric field profile. For the case of surfa
wave produced plasmas this problem has briefly been
cussed in Ref. 13 and is included in numerical kinetic mo
eling of Ref. 14.
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