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On the basis of quasilinear kinetic theory, the electron heating of rf discharges is treated for
characteristic scale lengths of the heating field much shorter than the electron mean free path. The
analysis considers plasmas bounded by walls providing specular reflection. The expressions for the
coefficients of electron diffusion in energy space are obtained and analyzed for inductively and
capacitively coupled plasmas. Accounting for the oscillatory spatial structure of the penetrating
electric field in the regime of anomalous skin effect leads to a decrease of the diffusion coefficient
for high, and an increase for low, energy electrons. It is shown that the presence of a second
boundary in the case of collisionless plasma slabs results in a similar effect. The formation of energy
distribution functions in various regimes of collisionless heating is discussed. The diffusion
coefficients are presented taking into account ambipolar electric field4997 American Institute

of Physics[S1070-664X97)02807-3

I. INTRODUCTION one, resulting in the excitation of small scale waves. In this
case the plasma exhibits high levels of turbulent noise and,
A modern trend in plasma technology aims at decreasings a consequence, the effective frequency of electron scatter-
the gas pressures down to the milliTorr range. For these loving becomes larger than the usual particle—particle collision
pressures it is easier to maintain uniform plasmas with wellfrequency.
controlled parameters. Due to the large value of the mean The quasilinear theory was initially developed for weak
free path(MFP) the main mechanism of electron heating wave turbulence. But it can also be applied to stable plasmas,
turns out to be a collisionless one rather than the convenahen small scale fields with a wide spectrum of wave num-
tional Joule heating dominant for higher pressures. bers are excited by an external source. This situation is real-
The problem of collisionless plasma heating appearedzed in the cases of Debye screening of longitudinal electric
about half a century ago in connection with research on therfields or cases of anomalous skin effects for transversal
monuclear fusion. In spite of the fact that the cross section ofields. A local spectrum of small scale Langmuir waves ap-
Coulomb scattering of charged particles decreases with inpears also in the region of plasma resonances for inhomoge-
creasing temperature, anomalously high plasma diffusiomeous plasmas interacting with electric fields capacitively
was observed in experiments with magnetic confinementcoupled with plasmagCCPs.
Plasma heating by direct current and external high frequency The problem of the plateau formation in the electron
electric fields was also unexpectedly intensive. Later this efenergy distribution functio®EEDPF in the quasilinear theory
fect was explained as originating from plasma instabilitieswas investigated first in Refs. 4 and 5. In Ref. 6 it is shown
resulting in the excitation of wave fields with small spacethat collisionless heating due to local plasma oscillations re-
scales. Interaction of charged particles with these fields leadgHlts in plateau formation in the region of high electron en-
to collisionless plasma heating. In order to explain theerdy. The effect of collisions on electron heating by local
mechanisms of anomalous transport phenomena’ the quaglasma oscillations are investigated in Ref. 7. Collisions
linear and nonlinear theory of plasma wave turbulence wa§mooth out the quasilinear plateau in the EED&sd result
created(see, e.g., Refs. 1 and.ZThe simplest examples for in an increased number of high energy electrons. A bi-
the influence of collective effects on the motion of chargedMaxwellian EEDF with the temperature of fast electrons de-
partic'es are Landau damp|ng Of Langmuir waves andined by the intensity Of a Strong rf eieCtriC fieid was Obtained
anomalous skin effects for transverse wavese, e.g., Ref. N Ref. 7. Problems of collisionless heating in gas discharges
3). The resonance particles moving with a velocity close toPlasmas are addressed in Refs. 8-14. The model of oscillat-
the wave phase velocity intensively interact with wave fields"d Plasma sheaths was proposed and explored to obtain the
and receive or lose energy. The result of partiskeave in-  collisionless power dissipation of CCPs in Ref. 8. In Ref. 9,
teraction depends on the shape of the particle distributioRY USing a kinetic equation for electrons of a plasma slab
function in velocity space. For Maxwellian distributions the With oscillating rigid walls, the electron diffusion coefficient
wave amplitude decreases, while the particle energy inl €Nergy space is derived under the assumption that the wall

creases. For particle beams the situation can be the inver¥§!City is much slower than the particle velocity. Particle
velocity kicks in longitudinalnormal to the wallsas well as

_ _ _ _ in transverse directions are taken into account and compari-
30n leave from Lebedev Physical Institute, Russian Academy of SC|ence%Ons with a one-particle approach are performed In Ref. 10
117924 Moscow, Russia. . . g : o ) )
Y0n leave from St. Petersburg Technical University, Physical TechnicaijlfoSIOn coefﬁugnts qbtamed from a kmet'? treatment of
Department, Polytechnicheskaya 29, 195251 St. Petersburg, Russia.  plasma heating in regimes of anomalous skin effettthe

Phys. Plasmas 4 (7), July 1997 1070-664X/97/4(7)/2413/9/$10.00 © 1997 American Institute of Physics 2413

Downloaded-01-Sep-2005-t0-198.35.5.248.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



same form as presented in Rej. &e used for calculating ergy dependent. Section VI contains the conclusion and out-
EEDFs, accounting for electron energy losses by elastic colook.

lisions. This treatment yields a power law energy depen-

dence in the EEDFs. Also on the basis of a oscillating sheath

approximationt! EEDFs with power law dependence are Il. KINETIC THEORY OF COLLISIONLESS ELECTRON
presented and used for self-consistent modeling of rf gablEATING

discharges. A quasilinear approach to collisionless electroR Separation of the space and times scales in the

heating in the regions of plasma resonance in low pressun@netic description

discharges, sustained by electromagnetic surface waves, is o _ _ L
developed in Refs. 12 and 13. In Ref. 14 it is demonstrated 1 ne Kinetic equation for the electron velocity distribu-
that—in view of experimental situations—self-consistent!ion function.z(r,v,t) is

modeling has to account for nonlocal efféct as well as 07 AT

for collisionless heating. Some recent developments on sto- WJFV WJF m

chastic electron heating in bounded rf plasmas in a model of
oscillating rigid walls are presented in Refs. 17 and 18.  Wheree andm are the electron charge and mass, respec-

In view of the history of the successful use of the qua-tive|y; S(F) is the coIIis_ion_aI integralz(r,t) is the electric
silinear approach as a well-established method, particularind-#(r.t) the magnetic field. _
in hot plasma physics, this paper aims at systematically ap- I_n low pressure d|scharges the_ space scale of the electric
plying this method also to the study of collisionless heating?€ating becomes small in comparison to the MERInder
in various low temperature plasmas and to summarize exist€Se conditions it is possible to simplify the kinetic descrip-
ing results using a common basis, as well as to gain extendd{Pn of the plasma by separation of the space scales. Thus the
new results. The paper intends to demonstrate that the qui¥© fields can be separated into two parts
_siIineqr th_eory is a powerful and easily applicable method for ~ «»—_ g E, B= B+§, )
investigations of these type of problems. ) )

This paper is organized as follows: In Sec. II, the deri-WhereE andB have large spatial scales compared tavhile
vation of the diffusion coefficient in energy space for uni- E @nd B have small spatial scaleskitompared to\ (i.e.,
form boundless plasmas, heated by localized high frequend§®>1)- An analogous separation can be performed for the
field is presented. In Sec. IIl the collisionless heating in in-distribution function
ductively coupled plasmasiCPg is analyzed for semi- Fr v, =F(rv,t)+F(r,v,t), 3
infinite and slab geometry. Both cases can be reduced to the . . ~
boundless problem with specular reflecting walls. The profilevhere F is averaged over a scale in the orderoand F
of the electric field under the condition of the anomalousdescribes the deviations of the distribution function on scales
skin effect is found in analytical form and the electric field is gmallgr than)\.z Also the usual guaglmear approximation
shown to oscillate spatially with zero average value. As & <F is US?dl-’ As a result the kinetic equatiofl) can be
result the diffusion coefficient of fast electrons is suppressecdseparated into two parts
but in the low energy region it is enhanced in comparison to,F pr=

P

=y =7 (1)
U

the case of an exponential profile. For ICPs in slab geometry— +y — + ° E+ E VXB| —

(of width L) it is demonstrated that the second boundary o ¢

plays a similar role. In this case the corresponding Fourier e~ 1 -\ 9F

spectrum of the electric field is discretle,& 7n/L) in con- =~ m|EfgvxB| o~ (4)
trast to a continuous one for semi-infinite geometry. In Sec.

IV the quasilinear theory is applied for capacitively coupleddF JdF e 1 JF

plasmagCCPs3. It is shown that the diffusion coefficient has 5t tv or m E+ c vxB oV

a clear resonant structure with a main peak atwlL /7. An _

analysis of the solutions of the kinetic equation for the EEDF e~ 1 ~\0dF

in different regimes of plasma heating is presented. In Sec. V —m | ET c vxB 5+ S(F). ®

the influence of the ambipolar electric field on the efficiency . ) ) , L
of collisionless heating is discussed. The general expressidﬂ (4) the collisionless term is omitted, since it is small com-
for the diffusion coefficient in energy space is obtained forPared to the second term on the left-hand skde>1. The
cases both of ICPs and CCPs. The presence of ambipol@2" N (5) denotes spatial averaging on scales smaller than
electric fields can strongly modify the condition for

particle=>wave resonances. As a consequence the form of - )

diffusion coefficient in energy space is changed, especiallf' The form of quasilinear integral for weakly

for low energy electrons. In a parabolic potentiak ax?/2 nhomogeneous boundless plasmas

the bounce frequency of trapped electron&@/m) is the First the case of weakly inhomogeneous boundless plas-
sa\r?e_for all energies. So the resonance conditien ( mas, wherE,B=0 andE, B are only rf fields, is considered
=+/a/m) can be fulfilled for one value d only, and there is ~ 1 . .

no collisionless heating for other valuesanfIn the general E(r.0=z{E(Nexp—iot) +E* (expint)}, ©)
case of a nonparabolic potential the bounce frequency is ewhere* denotes the complex conjugation.
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Under conditions, when the frequency of ineleastic col-
lisions v* is small compared to the t(v* <w), the distri- M o0/ =~ e kvy), (19
bution function does not depend on time, i.Ex=F(r,v), X
and(4), (5) can be simplified to corresponding to the phase resonance between travelling
- _ wave and moving electron, was used to obtain expression
oF N JF e =N 1 5 JF 7 (14).
I - = — — VX —_— . .
ot Y ar ¢V v’ ™ It should be stressed tha,, is a nonlocal function of
9 the heating electric field due to the integral representation
VEZS(“(F)-FS(F). (8)

E(k):j g—:exq—ikx)E(x). (16
The first term on the right-hand side @) is well-known in

the theory of weak turbulent plasmas as the quasilinear colFhis type of nonlocality is also discussed in Ref. 19
lision integral, describing interaction of electrons with The simple physical meaning of expressidd) shall be

waves, illustrated by the example of plasma heating due to the lo-
- calized field of a longitudinal wavg (E,,0,0). In this case
e /[~ 1 ~\oF i
Sy(F) == <(E+EVXB E>' @ o obtains from(14)
m’e? 1 w\|?

where the(:--) brackets indicate temporal averaging over the DXX:W Jvy] E( k= U_x> : (17)
wave period Zr/ w. ) )

Equation(7) can be solved by the Fourier method giving EXPression(17) can be presented in the form

1 _ |UX| 2
N o E(+ovxBk) Dxx=—,~ (Av)%, (18
F(ky=——" - =, (10 . . L .
m w—Kkv ov whereAv is the amplitude of the velocity kick after interac-

~ tion with the wave field
whereF(k), E(k) andB(k) are the Fourier transformations

of the functionsF(r), E(r) andB(r), respectively.
By inserting(10) into (9) the quasilinear integral for the
one-dimensional geometry can be written in the form

oo
Av= f eE(k=v,t)exp—iwt)dt

—co0

B 2me

5 I == E(kz Uﬁ) (19
Sy = (X=Xo) — Djj(v) —, (1) X X
(9Ui (90]'

. . C. Kinetic equations for the EEDF
where theé function appears as a result of space averaging

and reflects the fact of localization of the heating electric In gas discharge plasmas the anisotropy of the distribu-
field in the regionx~x, with a characteristic scale much  tion function in velocity space is small due to the elastic

smaller thar\ and collision frequencyr being large compared to the inelastic
one (v*), i.e.,v>v*. In this case the conventional two-term
D (V)= e’m J dk| E(k)+ E vxB(K) approach is applicable and for the spherically symmetric part
] m? c i of the EEDFF, one has the following equation for one-
. 1 dimensional geometry:
X E(k)+Ev><B(k) Im(w_kv ) (12 v?  9°F, 0 .
i X T(U)W_Sql(':o)_s (Fo)=0, (20)
is the tensor of the diffusion coefficient in velocity space. By
excluding the magnetic field froifi2) with help of the Max-  Where
well equation . 1 9 , 9F
5 c - Sqi(Fo)= 2 |Y Av) — 8(X=Xo) (21)
B(k)=— kxE(K) (13 v v
w .
with

it can be shown that the tens@r2) has only one component 1 722 [in ~
Dy This stems from the fact that the electrons receive im-  g(,)= = 7 5 f dkf sin g do
pulse from the wave impulse directed aldagk, 0, 0) inde- ve m 0

pendent of the type of heating fie{ttansverse or longitudi-

—0o0

2m d(,D 5
nal. X 4—|vE(k)| S(w—kvy) (22
me? °
DyulV)=—5— f dK|VE(K)|?8(w—kvy). (14 s the averagedover the velocity anglésquasilinear colli-
mv; R . : : e
sion integralSy (11) and S*(F,) is the inelastic collision
The relation integral.
Phys. Plasmas, Vol. 4, No. 7, July 1997 Aliev, Kaganovich, and Schluter 2415

Downloaded-01-Sep-2005-t0-198.35.5.248.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



To obtain the EEDR20) should be integrated over a Now the possible regimes of shielding the transverse EM

small vicinity of the pointx=x,. One gets as a result field by the semispace plasma are addressed. In the case of
2 weak collisions > v) the field penetrates into the over-
ve JF, 11 9 dFy 2 1
- 9 == ——|v?%v) — dense plasmdw<w,=(4me“n/m) 2] over the depthd,
3v(v) ox x=xq+0 2v° v IV |mxy+0 =c/w,. For such a regime the frequency of the electric field

(23) should be sufficiently highw>v+/8,, with vy being the

- . thermal electron velocily A regime of collisionless plasma

\I/\r/]i tr? ?gmeng gtz)i)hesimg:ztryogiiiggimii :Se:t}':]g darll?delgtlizoalz heating is possible, if the mean electron energy is not too low
P P P 0 : so that the skin lengthd, does not exceed the MER i.e., if

(23) should be considered as boundary condition for theUT>V.50_ In this case one should use the following form

equation for the electric field, continued into the completeange to
v?  9°F, calculate the diffusion coefficient for semi-infinite plasmas:
2 ez S (Fg)=0 (29)
3v(v) ox x|
describing the space evaluation of the EEDF outside the re- Ey(x)=Eo ex;{ a ?0) (30

gion of rf power input.

By representing the collisional integr&* (F,) in the with the Fourier spectrum given by

form E(K) Eodo 31)
= 2
S* (Fo) == v* (0)Fo(v,X), (25 (14K &)
one obtains fron{24) It should be noted that accounting for low collisionality re-
sults in weak spatial field oscillations and a small EM power
_ _ flux into the plasma. Substitution ¢81) into (22) yields the
Fo(v,x)=F ex —, 26 , e B
o(v:X)=Fo(v) F{ )\E) (26) expression for the diffusion coefficietit(v)
where\ .=v/+3v(v)v* (v) is the energy relaxation length. i , [ v
Substituting(26) into the boundary conditioi23) now re- Iv)=wdvgg wdy)’ (32
sults in the equation for the EEDF:
wherevg=eE,/mw and
O Fw=3m [0 5) e 1
v\ a7 Fov)=5 =3 —|v%v) —|. - _ _ —
3v(v) *7T 20 v 9(0)= =3 [(2+7 2)In(1+7 3~ 25 2] (33

Equation(27) has previously been analyzed for the case of ) o ] )
localized longitudinal rf fields in the ionosphérand Sw  Which should be used in the kinetic equati@?) for obtain-

produced plasma2. The character of the solutions ¢27)  Ing the EEDFFo(v).

essentially depends on the diffusion coefficier(ty). For its In the region of low electron energyv(w&y<1—v
determination the space spectra of the heating EM fields<1) one has
have to be known. 1

In contrast to the boundless plasmas considered above, g(v)~ ﬂg 3, (343

gas discharge plasmas are always bounded. Thus in the next _
section, a procedure of reducing the bounded problem to b the limit of high electron energyv(wé>1—v>1) one

boundless one will be developed. obtains

~. In(v)
Ill. SPACE SPECTRA OF HEATING ELECTRIC FIELDS 9(v)~—=—. (34b)
AND DIFFUSION COEFFICIENTS FOR INDUCTIVELY
COUPLED PLASMAS For lower frequencieSm*<w<uTe/50 the case of
A. The semi-infinite plasma anomalous skin effetis realized * = »*c* wjvr ), inde-

endent of the relation betweanand v. In this situation the
repth of the electric field penetration becomes less than the
MFP \ and electrons are heated in a collisionless manner.

In order to use the results of boundless plasmas, specul%
reflection of the electrons from the discharge wal=Q) is

assumed If one uses a description of the electric field in the form
F(vx,vy,07,X<0)=F(—vy,Xy,v,,X>0). (28 IX|
Thus Eq.(7) can be continued into the completerange Ey(X)=Eo ex;{ - x_sk) (39

—oo X< i
( OCN x<) by the followingansatz where A= (cZ)/(iw) is chosen from the condition of a

By(x<0)= —gy(x> 0), correct representation for the power deposition into the
- - plasma with the surface impedance=2/35(1+ 1/3v3i),
Ey(x<0)=Ey(x>0), (29 the diffusion coefficient/(v) is
E,(Xx<0)=—E(x>0), v
i " Av)=wdwig| —|. (36)
and the problem reduces to the case of boundless plasmas. wdp
2416 Phys. Plasmas, Vol. 4, No. 7, July 1997 Aliev, Kaganovich, and Schluter
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The functiong(v) has the following approximation in the a)
region of high electron energy Ev/wdy>1):

4 In@) 1.0 ——
~ v anomalous skin
g(v)=~ 7 5 (373 0.8 exponential profile
v . . . .
. ---z-- impedance approximation
and in that of low electron energy &1) 0.6
9 o ]
=N _" T3 w 0.4 .
ag(v) 287 - (37b >
The exact Fourier transformation of the electric field ob- '{f 0.2 |
tained from the kinetic approatlields T 00
Eo ]
WLSk( kz_ | m) 0.4 1 Iy 1
0 7 8 9 10
where
b A7 we? f oF 5 q 39 b
=—Zm | Yy v, (vy)dv. (39 )
In the case of a Maxwellian EEDF one has: 0.3} anomalous skin

------ impedance approximation

b_282nw 2 40
-\ (40

wheren is the electron density and g ]
2(V3+i) =
Lse=—3amym3 - (41) =

The space dependence of the electric field penetrating
into the plasma over the region<X<v{/w has the form

EO n . ) ‘/3 1 13
Ey(x)zm 3 (V3i+1)ex 5= xb

+exp( —Xbm)} - ZIJ‘ 1§ FIG. 1. Plot of the electric field at anomalous skin effect as a function of
0 normalized coordinates/ &,. The solid curve corresponds to the exact pro-
(42) file of the electric field(42), the dashed one to the exponential prof86)
and the small dashes represent the impedance approxintafpr(a) Real,

The last term on the right-hand side @) represents (b) imaginary part of the electric field intensity.
the contribution of the branch poikt=0 and the exponential
2v2-1\ =«
arctan ——| + =
V3 6

£ exp—xb"%) g’_

terms are a result of the poles in the integration when the

inverse Fourier transformation of expressi(®8) is per-

formed. A plot of Ey(x) is presented in Fig. 1. The electric )= i [‘@
field profile has a oscillatory structure which reflects the ex- 64
istence of power flux into the plasma due to collisionless

dissipation. It should be noted that at large distances from the ~6 +7 2

plasma surfacex>vr_/ ) the influence of electron thermal —=2In(1+v?)~In Neogasd iR (44)
motion is not important and the electric field penetration be-

comes purely exponential with a scale lengyf+ c/w,, . But In the region of large values of the argumert 1 the

this effect of changing the regime of field penetration can bgynction g() decays and can be approximated by
neglected because at this distaritgx) has decreased to a
small fraction of its value at the surface if the frequencis 97 1
in the rangew<(v+t/c)w, where the anomalous skin effect gv)~ ——=~. (453
is applicable. 3273 v

By substituting expressio(88) into (22) one obtains
For small values ob'<1 (44) goes to zero by the law

_ v
[%(v)=w5()vég(—), (43
w50 ~ 9 ~3
where 9(v)= 128" - (450
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0.14 . generalizing the resu(®6) for the case of plasma slabs with

anomalous skin symmetrical heating on both walls. The kinetic equation for
0.12¢ [\ | ---eee- exponential profile the EEDFFy(v) instead of(27) now has the form
] impedance %
0.10 - approximation Vi E (v)= cothlL/2n) d 20/(v) IFo(v)
Y N3, "ol 202 g |V v )’
/“é\o 00811 N\ (48
S O008F | TN e The diffusion coefficientZ(v) in (48) is defined by(22).
IS ] The limit L>\_ corresponds to the case of semi-infinite
0.04 ““““““““ plasmas and48) changes td27). In the opposite limit of
0.02 thin slabs [ <2\ ), on the right-hand side di8) a large
parameter 2 /L>1 arises corresponding to more effective
0.00 L heating. In this casé48) takes the form
0 5 10 15 20
1 9 dFo(v
v/ 0)80 y*FO(U)Zv—Zg (Uzﬁ/(v) (;)lf )) (49)

FIG. 2. The normalized diffusion coefficiegt= Z1( 5y/2)wv as a function .
of the dimensionless velocity=uv/w 8, for various models of electric field Equatlon(49) expresses the fact that losses of electron en-

profile. The solid curve corresponds to the exact profile of the electric field€rdy by inelastic collisions in the plasma volume balances
(42), the dashed one to the exponential prof@®) and the small dashes the collisionless heating. It should be noted that in this limit
represent the impedance approximatigs). the EEDF is spatially uniform and is equalfg(e) in spite
of the localization of energy input regions near the walls.
This limit corresponds to the so-called “nonlocal” heating

g(v) has a maximum in the regian~1 (see Fig. 2 regime of plasmas with space dimensions less than the length
Diminishing of the diffusion coefficient43) in regions  of electron energy relaxation, .
of a high electron velocity > w 6, has a transparent physical If the slab width does not exceed the MFR<(A

meaning. To the electron with such a high velocity the elec<<\.), the kinetic equation for the EEDF has a form identical
tric field appears as a stationary one. So the increase of tHe (49) but with the diffusion coefficient
electron energy by interacting with the localized electric field

1 2me? ™ 27 d
should be equal to zero and Ny = — — i . f te 2
m J(U) 1)2 m2 W o sin 9 dd 0 yp. l)y|En|
f E(x)dx=0. (46) -
0 ~5(w—Tvx), (50)
Note that it follows from(46) that the Fourier component
E(k=0) should be equal to zero, which is in agreement withwhere
(35).
In the region of high electron energy the diffusion coef- E =— fLE (X)Cos(z nx)dx (51)
ficients Z(v) (32), (45) decays much less than in the case Lo L

when the electric field is described exactB8). This is a the Fourier transformation of the periodically
consequence of the fact that in the former two cases the Iongontinued—in accordance witte9—electric field E. (x)
wave part of the Fourier spectrum of the electric field does( y

: = . = . with periodL).
not vanish anoE(k—O.)i.O. In Fig. 2 plot. ofg(v) for dif- It can be shown that the spectrugp is always propor-
ferent cases of electric field representation is shown. . 5.
tional to 1h“, independent of the form of dependence of

Ey(x). This behavior is connected to the symmetric continu-
ation of Ey(x) and originates from the jump of the magnetic
field componenB, = —ic/wdE,/dx and is easy to check by
Now the case of a uniform plasma slébf width L)  twice partially integrating51). For such a spectrum the sum
bounded by two plane walls with specular reflection of elecin (50) can be changed to an integral for low energy elec-
trons is considered. For the case-\ collisionless heating trons (p <wl/#) and the diffusion coefficient takes the form
of overdense plasmas occurs only in the nearest vicinity 0bf (22) with the functionE(k) corresponding to the Fourier
the walls, while between then the usual Joule heating takespectrum of the electric field
place. By using the method of continuation considered in the

B. The slab geometry

previous section the following solution for the EEDF is ob- _[EyIxD, —L<x<L,
. Ey(x) (52)
tained: 0 [x[>L.
x—(L/2) In the region of high electron energy=wlL/7) the sum in
"(}\—) (50) cannot be transformed into an integral. To demonstrate
Fo(v,X)=Fy(v)- —LE (47)  this the simple case of an exponential profile of the penetrat-
cosl{ ) ing electric field with skin depth$,<L is considered. The
2\, spectrumE,, for this case is
2418 Phys. Plasmas, Vol. 4, No. 7, July 1997 Aliev, Kaganovich, and Schluter
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E @ I total g(nv/wlL)
oL 11 |- nv/2ol
En=—"77712 (53
w] | |
(with n* =L/ 8,), and the diffusion coefficient50) g
8 v 3 21 7
ﬁ;) = —_— 2 —_— 5
Dv)=w oL vEg(w50> (54 >
is obtained, where 19 1
n* 2
+ 1— 1
~ 1 ( nv) 0
9=~ > v (55 0 8
2v T« n nviol
n>’={)— 1+ n—* ‘n

_ ] ] ] ~ FIG. 3. The normalized diffusion coefficiegt= 1//(80/2)wvé as a function
For smallv’ (v<n*) the main contribution to the sum in of the dimensionless velocify=7v/wL for CCPs. The dashed curve rep-

(55) stems from largen so that the sum can be representedresentsy="/2.
by an integral and the result coincides with the re&d) for
the case of semi-infinite plasmas.

For largev (v>n*) the sum in(55) yields a smaller

diffusion coefficient compared with that in the case of semi-  Zj(v)= 21 vég(”—i) (59
infinite plasmas. This is connected to the effective cut-off at ™ @
smallk= /L for the slab geometry. with
* (77 4 -5
IV. CAPACITIVELY COUPLED PLASMAS 9*(v)==3 n:;ss n—>. (60
n>1%

CCPs have a more complicated structure than ICPs due
to the presence of large oscillating sheaths. The space scdfer smallv (v<wL/ar) the sum in(60) can be replaced by
length of the heating field and of the ambipolar field can bean integral andy(v) is approximated by
comparable in CCP&n contrast to ICPs For such a situa-

tion the approximation of the sheath potential as a moving g(’J):% (61
rigid wall has repeatedly been usestte, e.g. Ref. 19In this

model the sheath velocity isg,=vg coSt+¢), wherevg  so that

=eE,/mw and E, is the amplitude of the sheath electric 2

field strength. The electric field in the plasma bulk is ne- @(U):%_ (62)
glected. 4L

It is possible to transfer the problem into a noninertial Thys in the low energy region the expression for the diffu-

system moving with the sheath velocity,. In this system  gjon coefficient(62) is identical to the result obtained in Ref.
there is a stationary specularly reflecting boundary and aRq wiih an one-particle approach.

alternating electric field connected to the inertial force In the high velocity regiony{>wL/) the main contri-
m dug, bution in the sum of60) is due to the first resonance and one
Ex()=— 5 5y ~Eosin(wt+e). (56)  obtains

Now the quasilinear approach is easily applied and with the g(?):,ig
v

help of the continuation method described ab®®), (29) it
yields the following expression for the diffusion coefficient: 5nq correspondingly the diffusion coefficient decays 3

(63)

, 1 7€ & (7. 27 de 20L%E 1
@(v)=v—2ﬁ2n;x . Slni}dﬁfo EU§|En|2 @(U):TEF' (64)
n From Fig. 3 the large deviation of the quasilinear diffu-
'5(‘”_ T Ux)! (57) sion coefficient(solid line) from the one obtained from the
moving rigid wall approximationidashed lingin the region
where of high electron velocity is evident. The difference in the
1 (L mnXx nature of the heating field for CCPs and ICPs rests in the
En=i f Ex(X)Sin< T)dx' (58 structure of the diffusion coefficient near resonances. In the

case of CCPs every resonance gives a well-defined peak near
In the case considered hekg(x)=Ey=constant and the v,=ww/Ln (see Fig. 3 With increasingv, an additional
diffusion coefficient is resonance ,, yields at first a considerable contribution, fol-
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lowed, however, by a rapid decreasey . As a conse- d —dF —

quence ab>ww/3L (i.e., n=3) the diffusion coefficient is de Ze —6+S*(F):0- (69)
practically determined by the lowest resonanoe=() and

its curve resembles a sequence of pe@ee Fig. 3 For  The bars indicate averaging over the slab witthThe dif-
ICPs the peak structure is smoothed out, since every nefsion coefficient averaged over the angles in velocity space
resonance results only in a small contributior(v—v,)?> IS

and the decrease of the resonance contributions is also 2|
slower than for CCPs~v ~1). Therefore, only the peak of D= > f
the first resonance is pronounced in the net diffusion coeffi-
cient. with

e de,

§Eﬁ<ex>5m*<ex>—wn] (70)

o Mm

1 X (Ex)
En(ex)ztf B ()sin Q(x, €,)dx. (72)
V. THE DIFFUSION COEFFICIENTS FOR X_(€y)

INHOMOGENEOUS PLASMAS ACCOUNTING FOR

STATIONARY AMBIPOLAR ELECTRIC FIELDS Resonances occur, if the time of particle motion from one

turning point to anothexbounce time is equal tonT/2,

In inhomogeneous plasmas the stationary ambipo|ayvhereT=27-r/w. This is in accordance with the resonance
electric field appears which tends to trap electrons in th&€onditionQ* (&)= mn, as follows from(70). If the value of
plasma volume. As a consequence, low energy electrons caf” (€,) does not exceed, there are no resonances at all and
not reach the periphery of the discharge where the rf field i§10 collisionless heating occurs. It should be noted that, if the
large. Therefore, taking into account the ambipolar potentiaRmbipolar potential is approximated by rigid wal3} (e,)
leads to a decrease in the efficiency of heating of low energis proportional tor/\/e, and the resonance conditions can
electrons. The diffusion coefficient for these electrons isalways be fulfilled. In the case of a parabolic potential,
small and the effective temperature of the low energy part otvhich is realized for low energy electrons trapped near the
the EEDF can be considerably smaller than that of the higheflischarge center and is defined by the potential profile
energy part. For instance, in CCPs EEDFs resembling bi®(X)=ax?/2, the dimensionless bounce frequen€y*
Maxwellian ones have been observed, with a temperature of va/m and does not depend on the electron enesgthe
low energy electrons€<2 eV) ten times smaller than that resonance conditions can be fuffilled in this case for one
of high energy electronset2 eV).2° value ofa only. All plasma electrons are in or out of wave-

In this section the case of a collisionless slab for CCPgarticle resonance. Thus the “degeneracy” could be re-
(A>L) will be considered. The kinetic equatigd) for the ~ moved by taking into account the deviation of the ambipolar

fast varying part of the distribution functidi(x,v) with the  Potential from the parabolic one.
ambipolar potentiafb (x) takes the form For ICPs the expression for the diffusion coefficient has

the form

- gF e od oF ~ oF
B R e e (65)

e
2
— . me’L [ede, e—€
m dX dvy m * duy X X

=% |, ™ 2 }n‘, E25(Q* — an), (72)

The solution of(65) is given by(see, e.g. Ref. 21

where
_ JF(e) .
F(x,e)=¢€ e exp(iQ) X (€y) €y
En(ex):f Ey(x)cos Q(X) \/ ———— dx.
N , o x_(e) ex—eD(X)
Iy sin(Q* —Q(x"))Eg(x")dX (73)
ol sin Q*
VI. CONCLUSIONS AND OUTLOOK
4 fx exp( — Q% (X)) Eq(x')dx' |, (66) The quasilinea_lr approgch to.the description of (_:oIIision—
X less electron heating by given high frequency EM fields has
where been developed. This approach has been shown to be an

effective method of providing a common basis for a variety
X w dx’ of conditions in gas discharges and obtaining generalized
Q(X, €)= sign Uxf > . (67 expressions. It was possible not only to summarize the ef-
Xl \/— (e,—ed(x")) fects obtained and to compare with results previously ob-
m tained by a different approach, but also to obtain new and
O*=0(x,,6), e=ed(x)+1/2mp2 and the turning extended results: The comparison to results from the one-
pointsx. (e,) are defined by the relation particle approach yields agreement in the diffusion coeffi-
ed(x.)= e 68) cient characterizing heating only for the case of low energy
= X electrons. The expressions derived here are valid also for
The kinetic equation for the main part of the distribution higher energies. For this region of electron energy a cutoff
function F=F(e)—with e=ed+1/2mv? being the total for the long wave part of the spectrum of heating electric
energy—reads field is required. Accounting for the second boundary of
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bounded plasma automatically provides such a cutoff. Théessor A. Shivarova and cooperation within the
generalized expressions for bounded plasmas given includéolkswagenstiftung Contract No. 1/70375 are gratefully ac-
the effect of ambipolar electric fields, which can be essentiaknowledged.

for the effectivity of collisionless heating.

It should be noted, if the EM in the plasma has also large
space scale partE#0, B+0), the complete equatiofb) IA. A. Galeev and R. Z. SagdeeMonlinear Plasma TheoryReviews of
has to be used instead @). The influence of static ambi- Plasma PhysicéConsultants Bureau, New York, 197&/ol. 7.

i : ] 2A. A. Vedenov,Theory of a Weakly Turbulent PlasgriReviews of Plasma
polar fields has been considered in Sec. V. The large spacerhysics(Consultants Bureau, New York, 196%ol. 3.
scale and time varying part of the EM give rise to local *A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhad@einciples of
diffusion coefficients which should be added to nonlocal Plasma Electrodynami¢sSpringer Series in ElectrophysidSpringer,

. . . . . Berlin, 1984, Vol. 9.
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