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Abstract. The principles of fast modelling (FM) of a low-pressure radio-frequency
capacitively coupled discharge are presented. They are based on averaging over
fast electron and ion motions and on eliminating a small spatial scale, the Debye
radius. As a result, the solution of a self-consistent system of the electron kinetic
equation, Poisson and ion continuity equations takes approximately 10 min on a
486 PC. The calculation of discharge parameters has been performed for a wide
range of current and pressure. The comparison with full-scale Monte Carlo
calculations and experimental data has been performed. The performed
comparisons demonstrate that the developed method of fast modelling has a good
accuracy for calculating the global parameters such as central plasma density,
applied voltage, sheath thickness, ionization rate, etc, and the profiles of plasma
density and the electric fields. The accuracy of the electron distribution function
(EDF) calculation is high when the EDF form is not enriched by slow electrons, and
seems satisfactory in the case of a strongly peaked EDF. The results are in
qualitatively good agreement with the experiment. The quantitative agreement is
mainly within a factor of two. This discrepancy can be attributed to the fact that the
EDF form is very sensitive to the details of plasma description, e.g. small variation
of cross-sections results in considerable changes in the EDF. The mechanism of
non-Maxwellian EDF formation due to non-locality effects has been analysed. The
evolution of the low-pressure radio-frequency collisional capacitively coupled
discharge with current and pressure variation has been investigated.

1. Introduction

Radio-frequency (RF) capacitively coupled plasma (CCP)
is widely used in the plasma aided materials processing
industry: in deposition, etching, etc. The interest in study
of the CCP has been also invoked by the interesting physical
phenomenon of formation of the strongly non-Maxwellian
electron distribution function (EDF) which is inherent to
this type of discharge.

These facts make it absolutely necessary to use rigorous
kinetic description of electrons even for a qualitative
description of low-pressure CCP. The form of EDF is
influenced by many processes and strongly depends on
discharge conditions. It means that the global models

[1] accounting for only simple forms of EDF, which are
similar over the whole discharge gap, are of restricted and
uncontrollable accuracy.

The concave shaped EDF with a strongly pronounced
group of low-energy electrons was observed in the CCP
[2]. The mechanisms of formation of the non-Maxwellian
EDF have been discussed in [3]. It is difficult to analyse
the complex self-consistent structure of the CCP without
a corresponding numerical simulation. Thus, there has
been a substantial effort in recent years to model these
systems self-consistently. However, the existing types
of simulation are computationally very expensive. This
does not allow us to perform calculations in a wide range
of parameters, to obtain scaling laws, and to predict
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the dependence of the internal plasma parameters on the
externally controllable factors such as pressure, current,
frequency, etc. The possibility of a serious reduction of the
computational work in the discharge modelling implies an
optimal combination of numerical and analytic approaches.
In application to the CCP the analytic approaches have
been developed and reported earlier [3]. They consist
in averaging over the fast plasma motions, in eliminating
the small spatial scales and in the division of the whole
discharge volume into the quasineutral plasma region and
space-charge sheaths [3]. The numerical integration of
the resulting reduced system is considerably simpler than
the straightforward modelling and also more physically
transparent. Another serious advantage of such a semi-
analytic or fast modelling procedure, with respect to the
standard one, which comprises numerical investigation of
the Boltzmann and Maxwell equations, is the possibility
to trace explicitly the influence of different physical
mechanisms and to achieve understanding of the underlying
physics. Since the accuracy of the analytic procedure
is easy to estimate, with such a strategy we can avoid
unnecessary computational work and in every case single
out only the dominant physical mechanisms.

Such a program was implemented for the inductive
coupled low-pressure RF plasma (ICP) in [4], and for the dc
positive column in [5]. User-friendly PC-oriented compact
programs were developed which enabled us to perform fast
self-consistent kinetic analysis, to obtain scaling laws, to
understand basic physical mechanisms, etc. For the case
of CCP, the problem turned out to be considerably more
complicated than in ICP or a positive column. One of the
central problems is related to the structure of an electric
field. In the dc positive column a strict distinction exists
between a uniform field along the tube axis which induces
the current and heats electrons, and a radial ambipolar field
which restricts electrons trapped in the plasma bulk and
does not perform work over electron gas. In case of the
ICP [4], an ambipolar field is directed normally to the
plasma boundary, and the RF inductive field is tangential
to it. Both these factors, combined with the evidence that
the boundary of the quasineutral plasma is fixed, greatly
simplified analysis in [4]. In the CCP, even for the simplest
1D geometry, this boundary moves in a rather complicated
way; the quasineutrality of the plasma, and its heating (both
Joule and stochastic [6]) are provided by the 1D electric
field.

This paper is organized as follows. Section 2 describes
in detail the system of equations for the fast modelling
(FM). In order to demonstrate explicitly the advantages of
the FM method, we restricted ourselves in this paper to the
simplest collisional non-local situation, when the particle
mean free path is small with respect to both the discharge
gap and the sheath thickness, and the collisionless electron
heating is small. In the developed framework this effect
as well as deviations from non-locality, influence of theγ -
electrons, etc, can be easily accounted for. In section 3 the
validity of the FM is checked by comparison of the results
with previously reported data obtained by the full-scale
modelling. Section 4 presents analysis of the experimental
data of [7] with the use of the FM. The results of the

investigation of system evolution with current and pressure
variation are presented. The effects of the non-locality, of
the Ramsauer minimum, and electron–electron collisions
on the formation of a low-energy EDF peak are studied. In
section 5, it is demonstrated that the form of EDF is very
sensitive to the different processes, e.g. if small corrections
in cross-sections are taken into account it will result in
considerable change in the EDF. Section 6 contains the
conclusions and outlook.

2. Principles of fast self-consistent kinetic
modelling of low-pressure collisional capacitively
coupled RF discharge

For simplicity a planar symmetric geometry is considered,
but the theory can be easily generalized and extended
to more complicated systems. We consider the RF
capacitively coupled discharge at low pressures in the
collision-dominated regime 0.01 Torr. 0.1 Torr. A sketch
of the RFC discharge is presented in figure 1(a). A sketch
of the plasma–sheath boundary motion and the region of
the electron motion is presented in figure 1(b).

The EDF in the CCP is typically far from Maxwellian.
Therefore the EDF is to be obtained from the Boltzmann
kinetic equation or from straightforward particle simulation.
The time varying electric field maintaining the discharge
should be found by solving the Poisson equation or from
the quasineutrality condition. The ion density profile is
governed by the continuity equation. A full description of
the CCP is given by a complex self-consistent system of
non-linear non-stationary equations including the electron
kinetic equation, Poisson equation and ion continuity
equation.

The attempts to solve this system in a straightforward
way without any simplification meet with numerical
difficulties, since simulations of this kind are very time
and resource consuming. Because of this it is difficult
to perform calculations in a wide range of discharge
parameters and to deduce understanding of the underlying
complicated physics. The main source of computational
difficulties lies in the fact that temporal and spatial scales
to be resolved differ quite drastically.

The largest characteristic frequency is the electron
plasma frequencyω0e. The minimal frequency is the
frequency of ion escape from the plasma bulk which is of
the order ofDa/L

2
0, whereDa is the ambipolar diffusion

coefficient, andL0 is half of the discharge gap. For
example, for the plasma densityn = 109 cm−3, and
ω0e = 1.7×109 s−1. For argon, at pressureP = 0.01 Torr,
L0 = 3 cm and electron temperatureTe = 3 eV, the
frequency of ion escape is∼3× 104 s−1. Thus, the ratio
of the maximal and the minimal characteristic frequency
constitutes five orders of magnitude.

The characteristic spatial scales in Poisson equation
are the Debye radiusrD, sheath lengthLsh andL0. For
n = 109 cm−3, andTe = 3 eV, the Debye radius is 0.3 mm.
The sheath length is typically about 1 cm, andL0 is in
the range 2–10 cm. The ratio ofLsh or L0 to rD is very
considerable.
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The value of electric field can vary from∼1 kV cm−1

in the region of ionic space charge (ISC) to∼1 V cm−1

in the plasma bulk. The ion density profile in the
sheath is determined by the ISC intense field, and the
electron distribution function is determined by the weak
field in the plasma bulk. To calculate both these important
characteristics with reasonable accuracy, the electric field
must be simulated with accuracy higher than 0.1%.

The equation system for the FM derived in [3] makes
it possible to overcome the above mentioned difficulties.

2.1. Separation of discharge space into plasma and
ionic space charge region

To eliminate the small spatial scales, we assume from the
beginning that the whole discharge volume could be divided
into two regions: the region of quasineutral plasma, where
ne ∼= ni , and the region of ionic space chargene ≤ ni .
The quasineutrality conditionne ∼= ni in the plasma bulk
is valid, if the electron plasma frequency satisfies the
inequality

ω0e � max(
√
νω, ω) (1)

ν being the electron–neutral collision frequency, and the
Debye radius is assumed to be small compared with the
discharge gap [8]. These conditions are fulfilled for rather
wide range of plasma parameters:ω ∼ 10 MHz, n >

108 cm−3 (n ∼ 109 cm−3) andTe ∼ 3 eV.
The applied RF voltageU (10–1000 V) is screened by

the ionic space charge (ISC) at the plasma periphery (in the
sheath region). Usually, the amplitude of applied voltage
is much larger than the electron temperature (divided by
electron charge). Therefore, in the ISC regionne � ni .
The width of the transitional region between the plasma
and ISC, wherene is comparable withni , is of the order
of the rD. SinceU � Te/e, the Debye radius is small
in comparison with the sheath thicknessLsh ∼ rD

√
eU/Te

[9]. This inequality allows one to use the concept of a sharp
boundary between the plasma and the ISC [1, 10]. The
potential drop between plasma and electrode changes with
time. Consequently, the sharp boundary between plasma
and ISC will be oscillating due to the alternation ofU(t).
The movement of the boundary coincides with an average
electron motion at the edge of the plasma [8]. The region
occupied by the plasma oscillates between the electrodes
and at some moments practically will be in contact with
them. At any point of the sheath (withinLp < |x| < L0,
figure 1(a)) the whole field period is to be divided into two
parts. During the first part the electrons are absent, and the
ionic space charge phase occurs (t1 < t < t2, figure 1(b)),
during the second part of period the ionic space charge
phase is replaced by the plasma phaset2 < t < t3; at
the points where and at the moments when electrons are
actually present the conditionne ∼= ni holds. The plasma–
ISC boundary motion as a function ofZ ≡ ωt corresponds
to the curvesX1,2(ωt) (see figure 1(b)). In coordinates
{x, t}, the plasma phase corresponds to the single-hatched
region (see figure 1(b)).

2.2. Separation of electric field into different parts

The electric field strength in the ISC is very high, being
of the order of 1 kV cm−1. In the plasma bulk it is
considerably lower—of the order of 1 V cm−1. Hence the
ion motion in the sheath is determined by the high field
in the ISC phase, and the electrons are only subject to the
weak plasma field. This means that both these fields are
to be known accurately, and it is natural to consider these
electric fields in ISC and plasma independently. This can
be done using the concept of a sharp boundary between
plasma and ISC. Since the total current (the conductivity
plus displacement ones) is spatially uniform in the 1D
plane-parallel geometry, the simplest configuration of the
external circuit corresponds to the current generator. The
total currentj (t) = −j0 sin(ωt) is transported in the ISC
in the form of a displacement current(∂E/∂t)/(4π). It
follows that E(x, t) = (4πj0/ω)(cos(ωt) + A(x)); the
arbitrary functionA(x) should be found from the condition
that this large electric field should be almost totally screened
at the plasma–ISC moving boundaryX1,2(ωt). Introducing
the phaseZ1,2(x) as theone-valuedinverse functions of
X1,2(ωt), the expression for ISC electric field can be
rewritten in the form [8, 11, 12]

E(x, t) = 4πj0

ω
(cos(ωt)− cos(Z1,2(x))). (2)

For a wide range of plasma parameters (ω ∼ 10 MHz,
n < 1011 cm−3) the inequality

ω0i � √νiω (3)

is valid whereω0i is an ion plasma frequency andνi
is an ion–neutral collision frequency. Consequently, the
ion displacement during the RF field period is small with
respect to the sheath thicknessLsh = L0 − Lp; so during
this short time the ion density profile can be considered as
stationary [1, 10].

Substituting (2) into the Poisson equation∂E(x, t)/∂x=
4πeni(x) yields the following equation for the plasma–ISC
boundary positionZ(x)

dZ

dx
sin(Z) = eωni

j0
. (4)

Since the inequality (1) holds, the total current in the
plasma coincides with electron current [8]

j (t) = σE(x, t)+ eD dn

dx
(5)

where σ is the electron conductivity†, D is the electron
diffusion coefficient.

The electric field in the plasma (|x| < Lp) and in the
plasma phase in the sheath can be divided into an oscillatory
part Ẽ(x, t), and a dc partE(x) (time averaged part) as
follows

E(x, t) = Ẽ(x, t)+ E(x). (6a)

† Under our conditionsλε � Lsh spatial dispersion in conductivity can
be neglected. The expression for conductivity for the general case was
derived in [13–15].
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HereE(x) is determined by

E(x) = ω

2π

∫ 2π/ω

0
E(x, t)dt ≡ −d8

dx
. (6b)

From equation (5) the expressions forẼ(x, t), andE(x)
can be obtained

j (t) = σẼ(x, t) (7)

σE(x) = eDdni
dx
= 0. (8)

In (8), the quasineutrality conditionne = ni(x) was used.
From equation (7) it follows that̃E(x, t) accounts for

the ordinary ohmic heating. The stationary ambipolar field
E(x) extracts the ions from plasma and traps the electrons
in the plasma bulk. It does not perform work over electrons,
since the time averaged electron current〈j〉 is practically
zero (〈j〉E(x) = 0). Actually it is equal to the small ion
current.

In order to solve the electron kinetic equation it is
necessary to know only the field in the plasma phase. In the
sheath it corresponds to the time interval (t3 − t2) (single-
hatched region in figure 1(b)). The proposed field division
in the plasma phase in the sheath is represented by

E(x, t) = Ẽ(x, t)+ E(x)

E(x) = 1

t3− t2

∫ t3

t2

E(x, t)dt ≡ −d8

dx
. (9)

The proposed field division was also implemented in ‘usual’
MC simulations in [16], which enabled the authors to
considerably speed up their calculations.

2.3. Ion motion

The ion continuity equation reads:

∂ni

∂t
+ ∂niui

∂x
= I (x, t) (10)

whereI (x, t) is an ionization rate. In the validity domain of
(3) the ion density profile is stationaryni(x) and is governed
by (10) averaged over the RF period as follows

∂ni〈ui〉
∂x

= 〈I (x, t)〉 (11)

where angular brackets denote time averaging over the
whole discharge period.

We consider the collision dominated regime when the
ion mean free pathλi is small in comparison withLsh, L0.
The ion kinetic equation reads

∂f

∂t
+ eE(x, t)∂f

∂v
= −νi(v)f. (12)

For low pressure (p < 0.1 Torr) the inequalityω � νi
holds. It yields that the ion distribution functionf is
almost stationary and can be found from the time averaged
equation (12):

e〈E(x, t)〉∂f
∂v
= −νi(v)f. (13)

For the ion–neutral elastic cross section taken in the
form σia = σ0v

β , −1 ≤ β ≤ 0, equation (13) can be
solved, and the resulting ion mean velocity takes the form

ui = ±
(

4e(β + 2)

MNaσ0

)1/(2+β) 1

2
√
π
0

(
4+ β

2(2+ β)
)

×|〈E(x, t)〉|1/(2+β) (14)

where 0 is the gamma function. Here the plus sign
corresponds to the right sheath, minus to the left one. This
approximation corresponds to the Monte Carlo calculations
of [17, 18] (see 3.1, 3.2). The real dependence of ion
mobility on 〈E〉 is more complicated than the power
approximation (14). In section 5 this problem is considered
in more detail.

According to the proposed field division, the average
electric field in the sheath includes the ambipolar field
averaged over the plasma phase−(d8(x)/dx), and the field
averaged over the ISC phase (2)

〈E(x, t)〉 = −d8

dx
(1− Z(x)/π)

±4j0

ω
[sin(Z(x))− Z(x) cos(Z(x))]. (15)

In the plasma bulk,Z = 0 and the averaged electric field
and the ambipolar field coincide with each other.

2.4. The electron kinetic equation

Since the EDF in the CCP is typically far from Maxwellian,
EDF is to be found from the Boltzmann kinetic equation.

We consider the RF capacitively coupled discharge,
when the energy relaxation lengthλε exceedsL0. As a rule,
the energy relaxation length is of the smallest magnitude at
the EDF tail. Accordingly, the energy relaxation length
can be estimated asλε ∼

√
λλ∗/3 at the EDF tail (λ∗ is

a mean free path for inelastic collisions). For example,
the condition

√
λλ∗/3 > L0 demandspL0 < 0.4 Torr cm

for helium, andpL0 < 0.1 Torr cm for argon. This
corresponds to strong non-locality, when the form of the
EDF is determined by the whole profile of the electric field.

We restrict ourselves to the collision dominated case,
when bothL0 and Lsh greatly exceed the electron mean
free pathλc. The generalization is possible for the opposite
case as well. The expression for conductivity and diffusion
coefficient in energy space was derived in [13–15] and a
model calculation with account of collisionless heating was
performed in [19]. It follows that the contribution of the
so-called stochastic electron heating to the electron kinetic
equation atλε � Lsh is negligible [6]. Hence, the two-term
approximationf (x,v, t) = f0(v, x, t) + f1(v, x, t) cos(θ)
is valid, whereθ is the angle between the direction of
plasma density gradient which coincides with the direction
of the electric field and an electron velocityv. The
anisotropic part of the EDFf1 is small compared with its
isotropic partf0 (f1� f0) when inequalityν � ν∗ holds,
whereν is a transport electron collision frequency, andν∗

is an inelastic collision frequency [20]. For noble gases,
ν/ν∗ ∼ 10−1–10−2 andf1� f0.

Equations forf0 and f1 are well known [21]. The
equation for the anisotropic EDF part is

∂f1

∂t
+ νf1 = −eE

m

∂f0

∂v
− v ∂f0

∂x
.
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The equation for the isotropic part of the EDF is rather
complicated

∂f0

∂t
+ v

3

∂

∂x
f1+ e

3mv2

∂

∂v
(v2Ef1)

= 1

2v2

∂

∂v

(
v3 2m

M
νf0

)
−
∑
k

(
ν∗k (v)f0(u)− ν∗k (u+ εk)

√
1+ εk

u
f0(u+ εk)

)
.

Because of the suggested field division (6), (9) allows us to
introduce a new variable—the total electron energy may be
introducedε = mv2/2 + e8(x) [3]. When λε exceeds
L0, the total electron energy is practically conserved
during an electron displacement over the available region
between the turning pointsX−(ε, t), X+(ε, t) (the double-
hatched region in figure 1(b)). The plasma–ISC boundary
corresponds to the rigid potential ‘wall’, which specularly
reflects the electrons (see figure 1(b)). We assume that
the discharge frequency satisfies the conditionω � ν∗.
Therefore, the isotropic part of the EDF is practically
stationary [22]. When the conditionsω � ν∗ andλε � L0

are applicable, the EDF satisfiesf0(ε, x, t) ≈ F0(ε).
In other words, the assumption that the EDF depends

solely on a total electron energyε proves to be suitable for
adequately accurate description of the electron kinetics. In
comparison toF0(ε), the time- and coordinate-dependent
parts of the EDF are small corrections of the order of
(ν∗/ω), (L0/λε)

2; these approximations were checked
theoretically [20, 22], experimentally [23] and numerically
[24, 25].

The functionF0(ε) is to be calculated from the spatially
and temporally averaged kinetic equation [3]

d

dε

(
vDε(ε)

dF0(ε)

dε
+ vV ε(ε)F0(ε)

)
=
∑
k

vν∗k (ε)F0(ε)

−
∑
k

vν∗k (ε + ε∗k )F0(ε + ε∗k ) (16)

where the electron energy diffusion coefficient (EEDC) is
given by

vDε(v, x, t) = cos2Z(x)e2v3Ẽ2(x, t)ν/(3(ω2+ ν2))

(17a)
and the electron energy lossesvVε in elastic collisions are
given by

vVε(v, x, t) = (m/M)mv3ν. (17b)

Here ν, ν∗k are elastic transport and inelastic collision
frequencies, respectively;ε∗k is an inelastic collision
threshold. The space–time averaging is to be performed
as follows

G(v, x, t) ≡ G(ε)
= 1

2L0T

∫ T

0
dt
∫ X+(ε,t)

X−(ε,t)
G

(√
2

m
[ε − e8(x)], x

)
dx.

(18)

The electron kinetic equation (16) accounts for the
heating of electrons in the RF electric field and for the
inelastic and elastic energy losses.

It follows from equations (16)–(18) that the main
characteristics of the electron kinetics are described by
the functionνDε(ε) which is an electron energy diffusion

coefficient, temporally and spatially averaged over the RF
period and over the area available for the electron with total
energyε†. In the energy intervalT ∗ < ε < ε1, whereε1 is
the first excitation potential, andT ∗ = 1/(d lnF0/dε) is an
effective temperature at the EDF tail, where the inelastic
collisions will occur, the right-hand side of equation (16)
will vanish. Thus the solution of equation (16) will be
simple:

F0(ε) = 0ε
∫ ε

ε1

dε′

vDε(ε′)
. (19)

This means that the EDF corresponds to conservation of
the diffusive flux0ε in the energy space.

There are several mechanisms which cause steep
increase ofvDε(ε) with ε. First, the available area
increases withε due to the fact that8(x) restricts the
electron motion and becomes large withx. The second
reason (see equation (17a)) is related to the fact that the
ratio v3ν/(ω2+v2) usually is increasing with velocity. The
most pronounced dependence is connected to the spatial
dependence of the oscillatory field̃E(x, t). Since the
plasma density decreases towards the periphery, the field
Ẽ will be increasing withx. It means that electrons with
higher ε, for which the available volume is large, ‘feel’
higher oscillatory field, and higher ohmic heating. This
mechanism is especially effective for energiesε > e8sh =
e8(Lp) corresponding to the ability of the electrons to
penetrate into the sheath region. Since the ion density
in the sheath is low, the oscillatory field in the plasma
phase is high, when the electrons are present in the sheath.
Figure 1(c) demonstrates the process of the EDF formation.

In the analysis presented in this paper, we omitted for
simplicity the stochastic electron heating which results from
collisions of electrons with the moving plasma–ion–space
charge boundary [26]. The corresponding expressions were
presented in [6]. Since the velocity of this boundary
coincides with the electron drift velocity, in our case of
collisional sheath,(L0−Lp) > λε, the contribution of this
mechanism is small.

The influence of non-homogeneity of plasma density
on the EDF peak formation is analysed and illustrated in
section 4.3.

2.5. The full self-consistent system of equations

To obtain a complete set of equations for the CCP, it is
necessary to determine electron density, conductivity and
ionization rate via the EDF

ne(x) = 4π

m

∫ ∞
e8(x)

F0(ε)

√
2

m
(ε − e8(x)) dε (20)

σ = −8πe2

3m2

∫ ∞
e8(x)

v
ε − e8(x)
ν + iω

dF0

dε
dε (21)

〈I (x, t)〉 =
(

1− Z(x)
π

)
4π
√

2

m3/2

×
∫ ∞
e8(x)+ε1

[Navσion(ε − e8(x))]F0(ε)
√
ε − e8(x) dε

(22)

† The termvVε(ε) (17b) is usually small.
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Figure 1. (a) Sketch of the RFC discharge. (b) Sketch of
the plasma–sheath boundary motion (plasma region is
single hatched) and sketch of the available region of the
motion of an electron (double-hatched domain). (c) Sketch
of the profiles of ion density (a), ambipolar potential (b),
oscillatory field (c) and the corresponding electron energy
diffusion coefficient (d) and the EDF (e). e8W is the
minimal wall potential at Z = π .

where Na is neutral atom density,σion is an ionization
cross-section andε1 is an ionization threshold.

The quasineutrality condition determines the ambipolar
potential:

4π

m

∫ ∞
e8(x)

F0(ε)

√
2

m
(ε − e8(x)) dε = ni(x). (23)

The boundary conditions8|x=0 = 0, (d8/dx)|x=0 = 0
follow from the system symmetry.

Thus, the self-consistent description of the CCP is
completed. The full set of equations includes the electron
kinetic equation (16), ion continuity equation (11) with
the expression for ion mean velocity (14) and the source
term in the form of equation (22), the Poisson equation
in ISC (2), (4), the current conservation law takes the
form of (7) in the plasma while the conductivity is given
by equation (21), and the quasineutrality condition is
represented by equation (23).

It should be noted that the field division proposed
above allows us to avoid solving the Poisson equation
in the plasma, which would have required a cumbersome
calculation of small differences (ne(x, t) − ni(x, t)) with
high accuracy.

Thus, the field division together with the approximation
of the total energy conservation law are the key points of
the non-local theory. By these particular assumptions the
simulation of electron kinetics becomes fast.

2.6. Numerical method

The simulations have been performed according to figure
2.

Figure 2. Flow chart of simulations.

The calculation starts from an initial EDF and an
arbitrary ion density profile consideration.8(x) is obtained
from equation (23). The ‘ion cycle’ corresponds to the
solution of ion equation (11) by the relaxation method
with fixed EDF. After several ‘ion cycles’ the new ion
density profile and ambipolar potential are calculated. The
calculation of the amplitude of the oscillatory field̃E0(x)

is performed from equations (7), (21) the new8(x), ni(x)
and the previous EDF. The new EDF is calculated from
kinetic equation (16), with the new coefficients given by
(17), (18). The ‘EDF cycles’ together with ‘ion cycles’ are
repeated until steady state is reached.

The solution of the complete problem, which consists
of calculation of the electron distribution, RF and stationary
electric fields, and of the plasma density profile, for a simple
atomic gas takes∼10 min on the IBM PC 486DX2/66.
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Figure 3. Comparison between EDF calculated in the
non-local approach (marked as FM) and by Monte Carlo
technique (marked as MC).

3. Verification of validity of FM by comparison
with the full-scale modelling

To check the validity of the non-local approach and the
method of field division a number of simulations have been
performed†.

3.1. Verification of the procedure of field division and
of the non-local approximation for the EDF

As the first step, we have checked the validity of the
non-local approximation (16) and validity of the field
division (6)–(9) [27]. In this simulation, we have restricted
ourselves to the case of fixed ion density profile (ni(x) =
5×108[1.0+0.075x−0.026x2+0.214x3+0.0705x4] cm−3;
x in cm). Simultaneously with the FM, both the Poisson
equation and electron kinetic equation have been solved
self-consistently using a Monte Carlo (MC) techniques.
Inelastic collisions were described only by excitation
helium cross section 0.41 × 10−17(u − ε∗) cm2 eV−1

(a threshold energyε∗ = 20 eV has been introduced).
Assuming that the elastic collision frequency is independent
of energy it was found to be 5× 108 s−1. A set of
following discharge parameters for the MC simulation was
introduced: applied voltage−62 V, discharge frequency
ω = 2π×15×106 s−1, L0 = 2 cm, pressureP = 0.01 Torr.
The resulting EDF calculated by MC actually did not
exhibit any variation with time during the RF period, since
the strong inequalityω � ν∗ holds. The obtained EDF is
presented in figure 3, marked by ‘MC’. The MC simulation
is more convenient to perform for a fixed value of voltage.
In the FM a fixed value of current density was used. For
this reason the value of current densityj0 = 0.35 mA cm−2

given by the MC simulation (applied voltage−62 V) was
used for FM, as well. For the sake of comparison the
EDF values calculated by both FM and MC methods are
presented jointly in figure 3. The agreement between FM
and MC EDF seems satisfactory. The difference of about
50% can be regarded as small because the EDF variation
is of the order of 105.

Values of all the electric fields obtained by FM
prove to be in reasonable agreement with the full-scale

† For the ion velocity the approximation (14) was used in 3.1, 3.2. The
experimental dataUion(E/p) [11] were used instead of (14) to compare
the results of FM to the experimental ones. Also see section 5.

modelling. In the MC simulation the electric fieldE(x, t)
has been calculated directly from the Poisson equation for
a discharge voltageV (t) = V0 sin(ωt). Then the time-
averaged part of the electric field and Fourier harmonics
which are proportional to sinωt and cosωt , Ẽsin(x),
Ẽcos(x), of the RF field have been calculated in the MC
simulation. The amplitude of oscillatory field̃E(x, t)
given by the MC simulation corresponds tõE0(x) =√
(Ẽsin(x))2+ (Ẽcos(x))2 in the plasma (|x| < Lp). The

values obtained differ from those calculated by FM (7)
less than 25%. The difference between the time-averaged
part of the RF field obtained by MC, and the gradient
of the potential obtained by FM from equation (23)
does not exceed 5% (comparison has been made in the
plasma region (|x| < Lp). The discharge RF voltage is
determined mainly by the strong ion space charge field.
The resulting amplitude of applied voltage obtained by
FM is in agreement with that utilized in the MC (relative
difference is about∼10%). Thus we can conclude that
the values of ionic space charge field obtained by FM and
MC simulations are in agreement, too. The difference in
voltage values is of the order of electron temperature; it can
be attributed to a zero Debye radius approximation used in
the FM. Thus, the suggested division of electric field into
three independent parts—the dc and oscillatory fields in
the plasma phase and strong field in the ionic space charge
phase—proves to be reasonably grounded and efficient.

To check a non-local approximation, the EDFs at
different spatial points have been calculated by MC.
The non-local approximation means that all the functions
f0(u, x, t) will coincide with one functionF0(ε), as a
function of total energy. To transform functionsf0(u, x, t)

to the functions of this new variable (total energyε),
each function is normalized with respect to density at the
corresponding spatial points and is shifted along the energy
axis by the plasma potentiale8(x). To make comparison
more evident, we have divided all the resulting functions
by the EDF calculated by MC at the discharge centre (see
figure 4). If these functions strictly correspond to one
function which depends only upon the total energy, then
these ratios are to be unity.

The deviation from unity of the resulting ratios is less
than 20% up to energies≈35–40 eV. This indicates that the
EDF depends practically only onε. Consequently, the non-
local approximation for EDF is valid in our conditions. The
value of energy relaxation lengthλε is 2 cm forε = 30 eV,
and Lp = 1 cm. Thus, the accuracy of the non-local
approach should be of the order of(Lp/λε)2 ∼ 0.25. It
corresponds to the obtained difference in EDF ratios≤ 20%.

Another check [28] of the FM validity has been made
by comparing the FM results with the results of independent
full-scale simulation [17]. In this comparison we have also
calculated only EDF using the fixed ion density profile from
[17]. The particle-in-cell (PIC) method with Monte Carlo
techniques was used in [17]. The model gas was based
on helium. It is only the ionization with the ionization
thresholdεI = 24.5 eV that has been introduced in [17].
No other inelastic collisions have been considered. The
discharge parameters were: pressureP = 0.06 Torr;
applied voltage 800 V;ω = 2π × 30 × 106 rad s−1;
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Figure 4. The ratios of the shifted (see text) EDFs
calculated at different spatial points to the EDF calculated
at the centre of the discharge: 1: x = 0.69 cm,
2: x = 1.0 cm, 3: x = 1.35 cm, 4: x = 1.5 cm,
5: x = 1.67 cm, 6: x = 1.84 cm. The EDF is zero at
ε < e8(x).

and half the discharge gapL0 = 2 cm. The electron–
neutral transport cross-section was assumed to be of the
following form: σ trea = 1.7× 10−14(1− ln(1+ ε)/ε)/[(ε×
10)1.1 ln(1+ ε)] cm2, ionization cross-section wasσ ioniz =
10−13(ε− I )/[(ε+50)(ε+300)1.2] cm2. Here the energyε
is in eV. The energy of electrons created by electron impact
ionization was distributed according to the probability
distribution functionS(W,P ) = {Bσion(W)/ tan−1[(W −
εI )/2/B]}(P 2 + B2)−1 [17], whereW is the energy of
the primary electron,P is the energy of the progeny
electron, σion is the ionization cross section.B is set
to 10 eV. The averaged value ofP is {B/2 tan−1[(W −
εI )/(2B)]} ln[((W − εI )/2B)2+ 1]. For the case of(W −
εI ) < 2B we obtainP ≈ 1/4(w−εI ), and for simplicity we
set the energies of the progeny and primary electrons after
ionizing collision equal to 1/4(W − εI ) and 3/4(W − εI ),
respectively. In addition to ionization, it is necessary to
account for the electrons arriving on electrodes (in our
previous EDF calculation both processes were neglected in
comparison to the excitation collisions). In the steady state,
the number of escaped electrons is equal to the number of
electrons created by ionization. Rigorously speaking, the
wall escape of the fast electrons occurs atε > e8W , where
8W is the minimal wall potential, figure 1(c). From the
calculations for a positive column [29, 30] it follows that
e8W is of the order of the ionization energy. Hence, the
simplest way to account roughly for the electron escape is to
double the frequency of the loss of high-energy electrons
in ionizing collisions. Finally, the right-hand side of the
electron kinetic equation (16) reads

2vνioniz(ε)F0(ε)− 4[vνioniz(4ε + εI )F0(4ε + εI )
+1/3vνioniz(4/3ε + εI )F0(4/3ε + εI )]. (24)

Under the assumed conditions the non-locality condition
(Lp/λε)

2 < 1 holds up to energies≈100 eV.
The comparison between the EDF calculated in the

non-local approach and by the Monte Carlo technique is
presented in figure 5. The solid line in figure 5 corresponds
to the EDF calculation by the MC method [17]; bars denote
the variation of the EDF at the different phases of the RF
field. In the regionε ≤ 25 eV, EDF [17] does not exhibit
any variation with time during the RF period.

Figure 5. Comparison of the EDF calculated in the
non-local approach with the EDF obtained by the Monte
Carlo technique. The solid line corresponds to MC
calculation [19]; the dashed line corresponds to the FM
results. Bars denote the variation of the EDF at the
different phases of the RF field.

The agreement between the EDFs calculated in the FM
approach and by the Monte Carlo technique seems to be
good.

3.2. Verification of the ion profile calculation and of
the complete self-consistent FM procedure

Further check of the FM procedure employed the
verification of the ion profile calculation and of the
complete self-consistent FM procedure. Under conditions
assumed in [17] (3.1), a complete FM gives a value of
N0 = 5.5× 109 cm−3 for the ion density at the discharge
centre (N0 = 5.0× 109 cm−3 in [17]), and 1.4 cm for the
sheath thickness (1.2 cm in [17]), respectively.

We have also performed the complete self-consistent
FM calculation for argon-like gas accounting for the
Ramsauer minimum (in contrast to helium). The results
obtained were compared with the full-scale simulation using
the PIC method with Monte Carlo techniques [18]. The
cross-sections used for simulation were taken from [18].
The excitation in the electron–atom collisions was not
introduced. The distribution of the energy of electrons
created by electron impact ionization used in [18] allows
us to set the averaged energies of the progeny and
primary electrons equal to 1/4(W − εI ) and 3/4(W − εI ),
respectively. Accounting for the electron arriving on
the electrodes, the right-hand side of the electron kinetic
equation is the same as (24). The discharge parameters
were: pressurep = 0.05 Torr; applied voltage 500 V;
ω = 2π × 12× 106 rad s−1; L0 = 2 cm; the ion mass was
4 ae; the resulting current density from [18] which was
used in FM calculations amounted to 2.3 mA cm−2. This
yields a value of 558 V for the FM voltage∼10% different
from the MC voltage.

For these conditions the criterion (3) is satisfied (the
frequency of ion drift through the sheathui/Lsh ∼ 106 is
much smaller thanω ∼ 108 rad s−1) so that the ion density
profile is stationary. Under the conditions used the non-
locality criterion (Lp/λε)2 < 1 will hold up to energies
≈100 eV. In figure 6, the resulting EDFs, the ionization
rates and the ion density profiles of the full self-consistent
FM and the MC calculations are presented.

In contrast to the He-like model, a strongly pronounced
group of low-energy electrons was observed. It can be seen
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Figure 6. Comparison between results of the full
self-consistent FM and the MC calculations for Ar-like gas.
Solid line corresponds to the FM calculation, dashed lines
correspond to the MC results [20]. (a) The EDFs; (b) the
ion density profiles; (c) the ionization rates. Parameters
are: p = 0.05 Torr; applied voltage 500 V;
ω = 2π × 12× 106 rad s−1; L0 = 2 cm.

that the qualitative agreement between the EDFs is good.
The quantitative agreement seems satisfactory. The ion
density profiles calculated by both the FM and MC are close
to each other. The ion density drop at the plasma–sheath
boundary appears to be at smaller values ofx for the FM.
This is probably due to small values of ion mean free path
(λi � Lsh) used in the FM approximation. Under the used
conditionsλi = 0.4 cm is comparable withLsh ∼ 1 cm. In
equation (14), the ion velocityui(x) is determined by local
mean electric field in the sheath〈E(x, t)〉. If we account
for the finite ion mean free path, a spatial lag of the order
of λi betweenui(x) and〈E(x, t)〉 will appear. As a result,
the value of the ion velocity is smaller than that found
from equation (14). Consequently, the plasma density drop
would occur at larger values ofx accounting for the spatial
lag of the ion velocity. Thus, the difference in ion density
profiles can be attributed to this effect.

The comparisons performed demonstrate that the
developed method of FM proves to be of a good accuracy
for the calculation of the plasma density and electric
fields profiles, parameters including central plasma density,

Figure 7. Mean electron energy versus current density.
He, p = 0.1 Torr, ω = 13.56 MHz, L0 = 3.35 cm.
Experimental data—filled squares, the FM results—solid
line. The dashed line corresponds to the results of FM
when the Joule heating of the electrons in the sheath is not
taken into account.

applied voltage, sheath thickness, ionization rate, etc. It
provides far more detailed and accurate information than
so-called global models that operate mainly with average
parameters, with a given EDF. The accuracy of the EDF
calculation is high when EDF is not enriched by slow
electrons, and seems satisfactory in the case of the strongly
peaked EDF.

4. Analysis of experimental data

4.1. Comparison of the FM results with the
experimental data in helium

Now we can apply the FM method to the simulations of
discharges in real gases. First, we shall analyse the EDF
formation in helium (He), considering it a gas lacking the
Ramsauer minimum. The validity of the non-local approach
demandspL0 ≤ 0.4 Torr cm. The measurements [7]
were performed atω = 13.56 MHz, L0 = 3.35 cm,p =
0.1 Torr. The FM calculations have been performed in a
wide range of current densities and pressures:j0 = 0.085–
8.8 mA cm−2, and p = 0.03–0.1 Torr. The values of
cross-sections and ion mobility used in the FM were taken
from [11].

The mean electron energy versus current density is
presented in figure 7. The solid line corresponds to the FM
results. The filled squares correspond to the experimental
data. The discharge voltages versus current density are
shown in figure 8. In figure 9 the experimental and
calculated EEDFs atj0 = 0.085, 0.22, 0.58, 1.3, 6.0,
8.8 mA cm−2 are plotted together.

In figure 10 (solid lines), the calculated EDFs at
j0 = 0.085, 0.22, 1.3, 6.0 mA cm−2 are shown.
The data obtained demonstrate that the EDF peak can
appear solely due to a non-locality effect. However, the
calculated mean electron energy exceeds the experimental
value approximately threefold at large currents (see
figure 7). This difference can be attributed to the
influence ofγ -electrons. The estimates demonstrate that the
γ -ionization can be noticeable under the used conditions.
This problem demands separate investigation.

276



FM of low-pressure RF CCP

Figure 8. Discharge voltage versus current density. The
experimental conditions are the same as in figure 7;
FM—solid line, experimental data are represented by filled
squares.

Figure 9. Calculated and experimental EEDFs in helium.
The conditions are the same as in figure 7; j0 = 0.085, 0.22,
0.58, 1.3, 6.0, 8.8 mA cm−2. (a) The calculated EEDFs;
(b) the experimental EEDFs.

Figure 10. Calculated EDFs in helium. The conditions are
the same as in figure 7; j0 = 0.085, 0.22, 1.3, 6.0 mA cm−2.
Solid lines correspond to the results of FM. The dashed
lines correspond to the results of FM, when the Joule
heating of the electrons in the sheath is not taken into
account.

The simulations have also been performed accounting
for and ignoring electron energy losses in elastic electron–
atomic collisions, vVε in (16). Accounting for these
processes proved not to result in any noticeable changes.

4.2. The CCP behaviour at low currents

From figure 10 it is clearly seen that at small currents the
EDF form is almost independent of current. If the EDF
is determined mainly by the Joule heating in the plasma
bulk, the scenario of maintenance of a CCP is practically
the same as in the case of an ordinary dc positive column.
The stationary condition demands the ambipolar lifetime to
be equal to the inverse ionization frequency. Hence, in the

plasma bulk the density profiles being similar to each other
are proportional toj0. The amplitude of the oscillatory
field is proportional toj0/n(x) and does not change with
current. Therefore, the EDFs are similar for small currents;
the ionization rate is proportional toj0. Since in the non-
local approach the ionization in the sheaths is negligible [3],
the ion flux is generated in the bulk plasma. Consequently,
the ion flux to the surface is proportional toj0, as well. The
ion mobility for largeE/p is proportional to

√
E/p, and the

ion escape velocity at the electrode surface is proportional
to
√
j0. So the ion density at the electrodeNsh increases as√

j0, in contrast to the dependenceN0 ∼ j0 in the plasma
bulk, and the oscillatory field in the sheath in plasma phase
will grow with current asj0/Nsh ∼

√
j0.

To confirm the reasons proposed, the simulations
without accounting for the Joule heating in the sheath were
performed. Ignoring the sheath heating corresponds to
Ẽ(x) = 0, Lp < |x| < L0, when the electron energy
diffusion coefficient is calculated. In figure 7 (dashed line),
the resulting mean electron energy is presented. In figure 10
(dashed lines), the resulting EDFs are shown at the same
currents as in the case for which the Joule heating was taken
into account properly (figure 10, solid lines). The results
demonstrate that in the absence of the sheath heating the
EDF peak does not appear, the EDFs are similar to each
other andN0 ∼ j0, etc.

If the contribution of the Joule heating in the sheaths
becomes considerable (N0/Nsh increases with current),
the above mentioned similarity, when all profiles are
proportional to the central plasma densityN0, fails. For
the results presented the similarity does not hold forj0 ∼
1 mA cm−2.

4.3. EDF peak formation due to the non-locality

For large currents, when the ratioN0/Nsh is great, the non-
locality causes enrichment of the EDF by slow electrons.

In this case, the electrons can be separated into two
groups. The electrons withε < e8sheath = e8(Lp) are
trapped in the region of the weak heating field (Ẽ0(x) ∼
1/n(x)). The electrons withε > e8sheath can penetrate
the sheath region wherẽE0(x) is large. Hence, thevDε

steeply rises with energy atε > e8sheath (see figures 11,
12). Because df0/dε = 0ε/vDε, where0ε is the flux
in energy space, the EDF slopes forε < e8sheath and
ε > e8sheath are strongly different. Roughly speaking,
a two-temperature EDF appears (see also figure 1(c)).

The simulations demonstrating the described effect
have been performed using both the local and the non-
local approach. In figure 11 EDFs and electron energy
diffusion coefficients are presented jointly. The simulations
have been performed for helium. The parameters are
the same as in the case presented in figure 7;j0 =
8.8 mA cm−2. For this current density the ion density
profile is strongly inhomogeneous, the resulting ratio being
N0/Nsh = 30. The EDF corresponding to the local
approach was calculated in the centre, using the value of the
oscillatory field amplitude at the discharge centreẼ(x = 0)
(actually the EDF in uniform plasma with a given uniform
electric fieldẼ(x = 0) has been calculated, instead of the
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Figure 11. Results of the FM simulation; helium,
p = 0.1 Torr, L0 = 3.35 cm, ω = 13.56 MHz,
j0 = 8.8 mA cm−2. Solid lines represent a non-local
approach, dashed lines represent a local approach.

Figure 12. Calculated ambipolar potential. Under the same
conditions as in figure 11, Lp represents a plasma–sheath
boundary position.

whole profileẼ(x) for the non-local approach). The non-
local case is characterized by a steep growth of thevDε

for energy ε > e8sheath ∼ 10 eV (see figures 11, 12).
In the local case this steep increase ofvDε is missing.
Accordingly, the low-energy peak of the EDF does not
appear.

4.4. EDF evolution with pressure

The peaked EDF form due to the non-locality effect
may not arise even when the plasma density profile is
strongly inhomogeneous. In figure 13, the EDF evolution
with varying pressure is demonstrated. Calculations were
performed forj0 = 8.8 mA cm−2 andp = 0.03–0.1 Torr.
For p = 0.03 Torr the ratioN0/Nsh ∼ 14, but the mean
electron energy is∼10 eV. The pressure decrease causes
the EDF peak to disappear and mean energy to grow (see
figure 14).

4.5. Comparison of the FM results with the
experimental data in argon

As an illustration of the applicability of the FM method
to different gases a comparison of the results of FM with
the experimental data for argon has been performed. The
domain of validity of the non-local approach ispL0 .
0.1 Torr cm.

The elastic electron–atomic collision cross-section is
taken from [18]. Other cross-sections are based on
data from [11]. In this simulation, electron–electron
collisions were introduced which prove to be an important

Figure 13. EDF evolution in He with pressure, for the
same conditions as in figure 7; j0 = 8.8 mA cm−2.

Figure 14. FM values of mean electron energy and plasma
density in He versus pressure, for the same conditions as
in figure 7, j0 = 8.8 mA cm−2.

mechanism of EDF formation under the used conditions.
The right-hand side of electron kinetic equation (16) is to
be supplemented by the corresponding spatially averaged
electron–electron collision integral:

Stee(F0) = d

dε

(
vDεee

dF0

dε
+ vVεeeF0

)
(25)

(vVε)ee = mv3

2n(x)
8πνee(v, x)

∫ ε

eφ(x)

dε
v

m
F0(ε)

(vDε)ee = mv3

2n(x)

8π

3
νee(v, x)

×
[ ∫ ε

eφ(x)

dε
v3

m
F0(ε)+ v

3

m

∫ ∞
ε

dεF0(ε)

]
where

νee(v, x) = 4πe43een(x)

m2v3
v =

√
(2/m)(ε − e8(x))

and3ee is the Coulomb logarithm.
In figure 15, the evolutions of mean electron energy

and ion density versus current density are plotted together.
Solid and dashed lines correspond to the results obtained
accounting for and ignoring electron–electron collisions,
respectively. Experimental data are denoted by open
triangles and squares. The discharge parameters are
p = 0.03 Torr, L0 = 3.35 cm, ω = 13.56 MHz.
Better qualitative agreement of the calculated mean electron
energy with experimental data is obtained by accounting
for electron–electron collisions. In this case the formation
of EDFs with a peak is abrupt. The value of the current
density, for which this transition occurs, corresponds
to the experiment. Figure 16 depicts the discharge
voltage. Accounting for electron–electron collisions
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Table 1. Argon. The resulting values of the mean electron energy considering and ignoring the non-locality effect, the
Ramsauer minimum, and the e–e collisions in the various combinations.

Local case with Non-local case Non-local case with
the Ramsauer without the the Ramsauer
minimum Ramsauer minimum minimum
(eV) (eV) (eV)

e–e collisions
neglected 3.3 1 0.5

e–e collisions
accounted for 3.49 2.56 1

Figure 15. Argon, p = 0.03 Torr, L0 = 3.35 cm,
ω = 13.56 MHz. The mean electron energy, and plasma
density evolution with current. Open squares and triangles
represent experiment. Lines represent the FM results. The
solid line represents data accounting for e–e collisions; the
dashed line represents data ignoring e–e collisions.

Figure 16. Argon, p = 0.03 Torr, L0 = 3.35 cm,
ω = 13.56 MHz. Discharge voltage versus current density.
Open squares represent experiment. Solid line represents
the FM results.

proves to be of no influence on the resulting discharge
voltage. Quantitative agreement of the FM results with
the experimental data is good for discharge voltage and
satisfactory for plasma density, and the mean electron
energy.

In section 5 it is demonstrated that the EDF form
is sensitive to the details of the elementary processes.
Moreover, the accuracy of the EDF calculation seems
satisfactory in the case of the strongly peaked EDF (see
3.2). All these do not allow us to analyse quantitative
agreement between experimental mean electron energy and
the calculated one, as was performed for helium (see 4.1).

The importance of e–e collisions in Ar is related to the
presence of the Ramsauer minimum in the electron–atomic
elastic collision cross-section, that causes relatively small
mean electron energy in comparison with that in He.

Figure 17. Argon, p = 0.1 Torr, L0 = 3.35 cm,
ω = 13.56 MHz. The mean electron energy, and plasma
density evolution versus current density. Open triangles
and squares represent experiment. Solid lines correspond
to the FM results. Dashed lines correspond to the results of
the FM performed ignoring the Joule heating in the sheath.

We also performed the simulations atp = 0.1 Torr.
Under this condition the non-locality is not valid at the EDF
tail. However, a reasonable agreement of the FM results
with the experimental data has been obtained. The results
of the simulations and the experimental data are presented
in figure 17. In these simulations, an abrupt transition of
the EDF to the peaked form is obtained. The current of the
transition corresponds to the experiment. The e–e collisions
seems to be the only mechanism to terminate the decreasing
of the mean electron energy, as is the case for simulation
performed atp = 0.03 Torr.

5. The sensitivity of the system to various
processes

In order to investigate the effect of different mechanisms on
the EDF formation in Ar, a series of EDF simulations has
been performed. The EDFs were simulated considering and
ignoring the non-locality effect, the Ramsauer minimum
and the e–e collisions in the various combinations. The ion
density profile was fixed and was previously obtained in
the case of the fully self-consistent simulation taking into
account all the mechanisms mentioned above. Neglecting
the Ramsauer minimum corresponds to the assumption
of constant electron–atomic elastic collision cross-section
at ε < 3 eV—σ trea = σ trea(3 eV). The procedure of the
simulation in the local approximation has been described
above in section 4.3. Table 1 contains the resulting values
of the mean electron energy.

The data obtained demonstrate that all the mechanisms
are involved in the EDF formation. The temperature of the
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Figure 18. Ion velocities versus E/p. Dashed line
represents the experimental data [11]. Solid line
corresponds to the ion velocity obtained from (14).

Table 2. Results obtained accounting for different
approximations ion velocities versus E/p.

a b Experiment [6]

N0 1.63×1010 cm−3 5.82×1010 cm−3 —
Nsh 5.75×108 cm−3 4.43× 108 cm−3 —
〈ε〉 5.52 eV 1.95 eV 1.4 eV

cold part of the EDF is very sensitive to the conditions used
and to various assumptions.

Due to the self-consistent character of the problem, the
EDF turns out to be very sensitive to the ratio of ion density
in the discharge centre and in the accuracy of ion motion
description. In the plasma it is determined by the small
ambipolar field, and in the sheaths by the averaged strong
space charge field. Accordingly, the widely used power
approximationui(E/p) ∼ (E/p)1/(2+β) (14) can cause
significant errors, since this approximation is not valid for
such a wide range of electric fields.

In figure 18 the ion velocities versusE/p in He are
presented. The dashed line corresponds to the experiment
(denoted as case (a)) [11]. The solid line corresponds to
the case, when ion velocity was obtained from equation
(14) (case (b)), forσia = 6.26× 10−15(εion)

−0.286 cm−2.
Here εion is ion energy in eV. This expression fits the
experimental data for the total ion–atomic cross-section
(elastic collisions and charge exchange) [11] in a wide
range of ion energies 5–400 eV. In this case,ui = 8.45×
103(E/p)0.714 cm s−1, with E/p in V cm−1 Torr−1. The
range ofE/p in figure 18 corresponds to the field variation
obtained in the simulation data presented in figure 7, at
j0 = 8.8 mA cm−2. It could be seen that the discrepancy
between the (a) and (b) velocities attains approximately the
value of 2 and is most pronounced at lowE/p (for the ions
at the discharge centre). Evidently, the simple power law
form of ui (E/p) is not applicable because of the extremely
wide range of the field variation.

To show the importance of accurate calculations of ion
velocity we have performed the test simulations using the
different expressions for ion velocity atj0 = 8.8 mA cm−2.
The results are given in table 2.

The calculations show that the power approximation
for ui(E/p), (14), yields a significant increase in plasma
density at the discharge centre. The reason is that the
power approximation overestimates the ratio of the ion

drift velocities and of densities in the sheath and in
plasma. Therefore, the mean electron energy decreases
in comparison to the realistic dependence (a). This
decrease is additionally enhanced by increase of the relative
contribution of the electron energy losses in the elastic
collisionsvV ε (17b).

Average electron energy losses consist of loss of∼= ε∗
in inelastic collisions, and of some additional loss of energy
in the elastic collisions. The EDF tail, which determines the
ionization rate, is relatively insensitive to the cross-section
details, since the ionization rate is equal to the plasma
diffusive losses. Accordingly, the power approximation
(14) results in an increase of the fraction of cold electrons,
and in further increase of the ion lifetime.

6. Conclusions and outlook

The agreement between the results obtained by FM and
full-scale modelling demonstrates the validity of the FM
method based on the non-local approach.

The results of the FM prove to be in good qualitative
agreement with experimental data. The quantitative
consistency of the values of the plasma density at the
discharge centre and of the mean electron energy with
the experimental values lies within a factor∼2. This
accuracy can be regarded as quite satisfactory because of
high sensitivity of the results to different processes and to
the details of the cross-section description. Nevertheless,
the discharge voltage proves to be not sensitive and can be
calculated with good accuracy.

The system evolution with the current and pressure
variation has been investigated. At low currents the
evolution of EDF in a CCP is similar to the EDF evolution
in a positive column. When the Joule heating in the
discharge centre exceeds the heating in the sheath, the EDF
form will not change with increasing current.

The role of the non-locality in the EDF peak formation
is explained. The EDF peak due to the non-locality
disappears with the decrease of current density and
pressure.

At low pressures,p < 0.1 Torr, when the non-locality
is valid, the low-energy EDF peak in He may exist only
due to a non-locality effect. This will be the subject of
further experimental investigations.

In argon, one of the important mechanisms of the EDF
formation involves the e–e collisions. Accounting for the
e–e collisions in helium did not cause noticeable changes.

The scenario of EDF transition to the form enriched by
slow electrons is still unclear and possibly depends on the
nature of the gas. It is the goal of further investigation. The
research of the role of the collisionless heating is beyond
the scope of the present paper and will be the aim of
forthcoming work.

It can be stated that the FM provides all necessary
information with reasonable accuracy in the range of
parameters of interest for plasma processing:ω ∼ 10 MHz,
108 cm−3 < n < 1011 cm−3. The FM can be easily applied
to two–three-dimensional systems, see e.g. [4]. It can be
used in a wide range of pressures; for very low pressures
accounting for the collisionless effects, as was done in
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[13–15], is necessary. For pressures up to 200 mTorr–
1 Torr some modifications in the calculation of the tail of
the EDF, as in [24], are to be performed.
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