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1. INTRODUCTION

Radio-frequency capacitive (RFC) discharges are
widely used in industry for plasma etching, film depo-
sition, etc. Interest in studying RFC discharges is moti-
vated, in particular, by the problem of the formation of
a strongly non-Maxwellian electron distribution func-
tion (EDF) at low pressures [1].

Since the EDF can be far from Maxwellian, it is nec-
essary to solve the kinetic equation for electrons even
for a qualitative description of RFC discharges.

A self-consistent analysis of an intricate structure of
the RFC discharge should involve numerical simula-
tions. Quite a number of approaches were used to solve
this problem; however, the existing methods for simu-
lation of a RFC discharge require a very large compu-
tational expenditure. This makes it difficult to perform
calculations over a wide range of parameters, obtain
scalings, and predict the effect of such external factors
as pressure, current, field frequency, etc. on the dis-
charge parameters.

The computation time can be strongly decreased by
using the optimum combination of numerical and ana-
lytical methods. Such an approach was used in [2] to
describe an RFC low-pressure discharge.

RFC discharge can be completely described by a
self-consistent set of nonlinear nonsteady equations
including kinetic equation for electrons, the Poisson
equation, and the equation of continuity for the ions.
Their temporal and spatial scales are very different,
which makes simulations extremely complicated. By
using a nonlocal approximation, splitting the discharge
gap into the region of a quasineutral plasma and the
region of the ion space charge (which does not contain
electrons), and averaging the solution over the fast elec-
tron motion, the authors of [2] excluded small temporal
and spatial scales. A derivation of the set of equations
is presented in [2, 3]. Based on these equations, it is

possible to perform fast simulation (FS) of a RFC dis-
charge. For a simple atomic gas, one personal-com-
puter run takes about 10 min, whereas Monte Carlo
simulations on a supercomputer require at least several
hours. The applicability of the set of equations used in
FS is proved in [3–5] by comparing the results of FS
with those of calculations based on the full set of equa-
tions. Comparison of the FS results with experimental
data and an analysis of forming the EDF are presented
in [3].

In this paper, we consider the formation of a two-
temperature EDF caused by the nonlocal character of
the process, a transition to the peaked EDF profile as
the current increases, the characteristic features of this
transition, and the reasons for its occurrence.

Using a non-self-sustaining discharge as an exam-
ple, we show that the mechanism for the instability of
the discharge that results in the formation of a peak of
cold electrons in the EDF is very similar to the mecha-
nisms governing the thermal explosion.

The thermal explosion, i.e., the process character-
ized by the absence of a steady-state temperature pro-
file, at which the thermal sources are balanced by heat
removal, usually occurs because of the exponential
dependence of the heat release 
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 on temperature [6].
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thermal conduction is
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explosion is that heat transfer that is proportional to the
temperature at the center of the gap 
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 cannot
carry away heat released with the rate 
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. It is
easily seen that equation (1) with a nonlinear thermal
conductivity 
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(
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 can possess the same property.
If thermal conductivity 

 

χ

 

(

 

T

 

)

 

 decreases with increas-
ing temperature, heat self-trapping can occur. The heat
flux is determined by an integral of the volume sources

 

(2)

 

For homogeneous heat release, we have
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, integral in the left-hand side of (3) can
converge, for example, if
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where 
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 > 1 and 
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 are constants. This implies that the
temperature growth leads to an improvement in heat
insulation, and, for

 

(5)

 

heat self-trapping occurs.
RFC discharges possess similar properties. As the

plasma density increases, the role of electron heating in
sheaths becomes greater, and the temperature of the
bulk electrons decreases. Correspondingly, the steady-
state ambipolar electric field and the ambipolar diffu-
sion coefficient also decrease, which improves the
plasma confinement. In a self-sustaining discharge, the
generation of particles intricately depends on the fields
and, accordingly, on the plasma density profile. There-
fore, the inverse effect of the plasma profile on both the
plasma source and the outward plasma motion is signif-
icant.

In order to better understand the above mechanism,
which is caused by the density effect on the particle
transport, we study a simple case of a non-self-sustain-
ing discharge, when the particle source is determined
by external ionization, and the inverse effect of the
plasma density on the plasma losses is most pro-
nounced.

2. EQUATIONS FOR FAST SIMULATION

 

2.1. Basic Statements

 

We consider a RFC discharge in the plane geometry
at pressures 0.01 

 

u

 

 

 

p

 

 

 

u

 

 0.1 torr, when collisions are
essential. The schematic of the discharge is presented in
Fig. 1.
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The basic statements of the theory developed in [2]
are the following:

(i) The discharge consists of two regions: the region
of quasineutral plasma and the region of a space charge
shielding the voltage applied to the capacitor (Figs. 1

and 2). The shielding condition is 
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where 
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 is the plasma electron frequency, 
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 is the fre-
quency of the rf field, and 

 

ν

 

 is the frequency of elastic
electron–atom collisions.

(ii) Since the amplitude of the applied voltage is
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 is far above the thickness the transi-
tion region (on the order of the Debye radius 
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)
between the neutral plasma and the region of an ion
space charge. Further, we will refer to this transition
region as the plasma–space-charge boundary. We
assume that the potential drop at this boundary is fairly
high, so that it prevents electrons from penetrating into
the region of the ion space charge; the reflection of
electrons from the boundary potential wall is absolutely
elastic. Figure 2 shows the motion of the sharp plasma–
space-charge boundary. The boundary position as a
function of 

 

Z

 

 

 

≡ ω

 

t is presented by the lines x1, 2(ωt);
some part of the rf-field period, the sheath is in the
plasma phase, and the other part, it is in the phase of a
space charge. In Figure 2, the plasma phase is shown in
coordinates {x, t} by a single-hatched domain.

(iii) The electric field is described in different ways
in different regions of the discharge. In the sheath
region, we solve the Poisson equation, and, for the
space- charge field, we have [7–9]

(6)

where j(t) = – j0sin(ωt) is the total density of the current
flowing through the discharge, functions Z1, 2(x) are the
functions inverse to x1, 2(ωt), and the current in the
space-charge phase is the displacement current. We

assume the condition ω0i !  to hold, where ω0i is
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Fig. 1. Schematic of the RFC discharge.
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the plasma ion frequency and νi is the frequency of
elastic ion–atom collisions. The displacement of ions
during the rf-field period is small compared to the
sheath thickness, and the ion density profile can be con-
sidered steady-state during this period [10, 11].

In the plasma (i.e., for |x | < L, where Lp is the posi-
tion of the plasma–sheath boundary) and in the sheath
in the plasma phase, the field can be represented as a

sum of the oscillating part (x, t) and time-inde-

pendent part (x) (averaged over the rf-field period):

E(x, t) = (x, t) + (x). The field (x) in plasma is
defined as

(7)

and the oscillating part is determined from

(8)

The field (x, t) is responsible for the Ohmic heating,

and (x) is the steady-state ambipolar field that draws
ions from the plasma and prevents electrons from
escaping the plasma. In the sheath, the averaging is per-
formed over the time interval t2 < t < t3 (see Fig. 2) dur-
ing which the sheath is in the plasma phase:

(9)
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2.2. Kinetic Equation for Electrons

We consider an RFC discharge at a low pressure
when the length λε of the electron energy relaxation
exceeds the length 2L0 of the discharge gap. As a rule,
the energy relaxation length is minimum for electrons
from the EDF tail, for which this length is determined
by inelastic collisions. There λε can be estimated as

, where λ, λ* are the mean free paths of elec-
trons with respect to elastic and inelastic collisions,
respectively. We assume λ ! Lsh, which permits us to
neglect the collisionless heating. For λ ! L0, λ*, a two-
term approximation f(x, v, t) = f0(v , x, t) + f1(v , x, t)cosθ
can be used to solve the kinetic equation. Here, θ is the
angle between the direction of the electron motion and
the electric field. The anisotropic part of the EDF is
assumed to be small (f1 ! f0) [12]. For inert gases
λ /λ* ~ 101–102.

After we divided the field into the oscillating and
time-independent parts, it is possible to introduce a new
variable, namely, the total energy ε = mv2/2 + eΦ(x) [2]
and to pass to the variables {ε, x, t}. For λε @ L0, the
total energy of an electron remains almost unchanged
during its motion in the potential well between turning
points x–(ε, t) and x+(ε, t) (the double-hatched domain in
Fig. 2), and, from the condition ω @ ν*, it follows that
the EDF is steady-state [13]. Thus, f0(ε, x, t) ≈ F0(ε),
i.e., the EDF is primarily a function of the total energy
alone. The time- and space-dependent corrections to
F0(ε) are on the order of (ν*/ω) and (L0/λε)2, respec-
tively.

The kinetic equation averaged over the rf-field
period and coordinate (over the region accessible for
electron with the given total energy) has the form [2]

(10)

where the coefficient of diffusion of electrons by
energy is

(11)

ν and  are the frequencies of the elastic transport

collisions and inelastic collisions, respectively; and 
is the threshold for inelastic collisions. The averaging
operator is
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Fig. 2. Schematic of the motion of the plasma–space-charge
boundary (single-hatched plasma region) and schematic of
the region accessible for electrons with the total energy ε
(double-hatched region).
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(12)

The kinetic equation (10) takes into account the ohmic
heating and inelastic losses of electrons.

2.3. Continuity Equation for Ions

For ω0i ! , the ion density profile can be
described by the continuity equation averaged over the
rf-field period

(13)

where I(x, t) is the ionization source, and the angular
brackets denote time- averaging.

Assuming the free path λi of ions to be small com-
pared to Lsh  and L0 and the condition ω @ νi  to hold, it
is possible to solve the time-averaged kinetic equation
for ions and to obtain the expression for the average ion
velocity. For the cross section of elastic ion–atom colli-
sions σia = σ0vβ (with –1 ≤ β ≤ 0), the average ion
velocity is

(14)

where Γ is gamma-function, M is the ion mass, Na is the
density of neutral atoms, and 〈E(x, t)〉  is the electric
field averaged over the rf-field period; the plus sign in
(14) corresponds to the right-hand sheath, and the
minus sign corresponds to the left-hand one.

According to the field representation described
above, the field 〈E(x, t)〉  includes both the ambipolar
field –(dΦ(x)/dx) and the averaged field of the space
charge (6)

(15)

In plasma, we have Z = 0, and 〈E(x, t)〉  coincides with
the ambipolar field.
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2.4. Complete Set of Equations

In order to close the set of equations, it is necessary
to relate the electron density, conductivity, and ioniza-
tion cross section with the EDF

(16)

(17)

(18)

where σion is the ionization cross section, and εI is the
energy threshold for ionization.

The quasineutrality condition determines the ambi-
polar potential in the plasma and sheath (in the plasma
phase)

(19)

The boundary conditions for the potential are Φ|x = 0 = 0
and (dΦ/dx) |x = 0 = 0.

The obtained set of equations does not contain small
temporal and spatial scales and permits FS of the RFC
discharge.

2.5. Numerical Scheme

We start calculations with a certain initial EDF and
arbitrary profile of the ion density. The potential Φ(x) is
determined from equation (19). The execution cycle for
ions corresponds to solution of the equation of continu-
ity for ions (13) using the relaxation method and
assuming fixed EDF. In every cycle, we use a new pro-
file of the ion density and find the new ambipolar poten-
tial. After completing the ion cycle, we calculate the
amplitude of the oscillating conduction field by using
equations (8) and (17), new values of the potential Φ(x)
and ion density ni(x), and the previous EDF. A new EDF
is found from kinetic equation (10) with new coeffi-
cients (11) and (12). Cycles for calculation of the EDF
together with ion cycles are repeated until a steady-
state solution establishes.

For a simple atomic gas, the solution of the set of
equations takes on the order of 10 min personal-com-
puter time.

The presented scheme allows us to describe the
physical processes occurring in the system on charac-
teristic ion time scales and permits investigation of
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temporal evolution of the system with a time step on the
order of characteristic time of ion loss from the sheath.

3. RESULTS OF CALCULATIONS

3.1. Formation of a Peak of Cold Electrons in the EDF 
due to a Nonlocal Character of the Process

The formation of a peak of cold electrons in the
EDF was investigated in [5]. For a sufficiently high cur-

rent, when the difference between ion densities in the
center of the gap and at the periphery is large, nonlocal
character of the process results in enriching the low-
energy part of the EDF.

In this case, the electrons can be divided into two
groups. Electrons with ε < eΦsh = eΦ(Lp) are trapped in

the region of a low heating field ( (x) ~ 1/n(x)),
whereas electrons with ε > eΦsh can (in the plasma
phase) penetrate into the sheath, in which the amplitude

of the oscillating conduction field (x) is maximum.
Therefore, the coefficient of electron energy diffusion

 sharply increases for ε > eΦsh (Figs. 3 and 4). It
follows from equations (10)–(12) that the kinetics of
electrons is mainly governed by the form of the func-

tion (ε). In the energy range T* < ε < ε1 (here ε1 is
the first threshold for inelastic collisions, and T* =
1/(d lnF0/dε) is the effective electron temperature in the
energy range in which inelastic collisions are essential),
the right-hand side of equation (10) tends to zero, and
the solution of (10) takes a simple form:

(20)

where Γε is the flux in energy space, which is approxi-
mately constant at T* < ε < ε1. Since dF0/dε =

Γε/ (ε), the slope of the EDF is very different for
ε < eΦsh and ε > eΦsh, i.e., a two-temperature EDF is
formed.

In order to demonstrate the effect described, we car-
ried out calculations of the EDF in the local and nonlo-
cal approximations. Figure 3 presents the EDF and the
coefficients of electron diffusion in energy. The calcu-
lations were performed for helium discharge at p =
0.1 torr, ω = 13.56 MHz, L0 = 3.35 cm, and j0 =
8.8 mA/cm2. The solid lines present the solution
obtained by using FS. The EDF plotted by the dashed
line is calculated in the local approximation; the coeffi-
cient of electron diffusion in energy is calculated using
the oscillating-field amplitude in the center of the dis-

charge (x = 0) instead of the full profile of (x). Val-
ues of all (electron and ion) cross sections are taken
from [8].

For energy ε > eΦsh ~ 10 eV, the FS techniques gives

a sharp increase in  (Figs. 3 and 4), and the peak
of cold electrons is seen in the EDF. The ratio of the ion
densities in the center of the discharge to that at the
electrode is approximately equal to 30. When the local

approximation is used, a sharp increase in  and,
consequently, two-temperature structure of the EDF
disappear.
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Fig. 3. The results of fast simulation for helium, p = 0.1 torr,
L0 = 3.35 cm, ω = 13.56 MHz, and j0 = 8.8 mA/cm2. The
solid line corresponds to calculation using the nonlocal
approximation, and the dashed line is the result obtained in
the local approximation (see the text).
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Fig. 4. The results of fast simulation for helium, p = 0.1 torr,
L0 = 3.35 cm, ω = 13.56 MHz, and j0 = 8.8 mA/cm2. Ambi-
polar potential calculated with the use of the nonlocal
approximation (see the text and Fig. 3); Lp is the plasma–
sheath boundary.
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3.2. The Character of Transition to a Peaked EDF 
Profile as the Current Increases

Numerical simulations carried out for Ar demon-
strate a dramatic rearrangement of the EDF with
increasing the current. The results of simulations and
experimental data [14] on the average electron energy
and central plasma density as functions of the current
density are presented in Fig. 5.

When j0cr ~ 1 mA/cm2, the average electron energy
decreases with increasing the current both in simula-
tions and experiment, and a peak appears in the EDF.
For a fixed current density above j0cr , the calculation
gives a steady-state solution only when e–e collisions
are taken into account. If e–e collisions are neglected,
and the current is fixed, the plasma density infinitely
increases (in this case, the relaxation method is used,
see Subsection 2.5), and the average electron energy
approaches zero. Electron–electron collisions are
described by the collision integral Stee(F0), which is
introduced into the right-hand side of (10)

where νee(v , x) = , v  =

, and Λee is the Coulomb loga-
rithm.

In the this stage of investigations, we restrict our-
selves to consideration of a non-self-sustaining RFC
discharge.

The set of equations for FS includes a number of
fairly intricate processes. However, it is possible to sin-
gle out two basic processes leading to a steady-state
solution. The first one, which dominates in the self-sus-
taining discharge, is the coupling of the plasma density
and ionization rate via changing the amplitude of the
oscillating conduction field. The higher is the plasma
density, the lower is the field amplitude and, conse-
quently, ionization rate, and vice versa. For example, if

the integral source  in the equation of

continuity for ions (13) is greater than the ion flux Γi ,
then the plasma density increases. This leads to a
decrease in the ionization rate, because electron heating
decreases.
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The second mechanism is the change of the ion flux
due to a decrease in the ambipolar field, which is deter-
mined by average electron energy. An increase in the
plasma density and decrease in the oscillating field
result in the growth of the average lifetime of charged
particles. In other words, an increase in the plasma den-
sity leads to an improvement of the plasma confine-
ment, so that “self-trapping” (which was described in
the Introduction and which is similar to the thermal
explosion) becomes possible. In order to separate these
two mechanisms, we first consider the simpler case,
when the ionization source is fixed. Such a situation can
occur in practice in the non-self- sustaining discharge.
In the self-sustaining discharge, when ionization is
determined by γ-electrons, whose free path is above the
sheath thickness, ionization is more or less uniform in
space and depends weakly on the amplitude of the
oscillating field. In this case the second mechanism can
dominate.

Thus, for the given ionization source, a single mech-
anism, which can provide the existence of a steady-
state solution, is the change of the ion flux Γi = niui due
to the change of the ambipolar field. In the sheath, the
ion density is independent of electron kinetics and is
determined by the ionization rate (which is fixed) and
voltage applied. In the center of the discharge, the rate
of the ion escape is determined by the average energy
of cold electrons and depends strongly on their kinetics.
In this case, the higher the plasma density, the less the
average energy of cold electrons, i.e., an increase in the
plasma density results in a decrease in the rate of the
ion escape from the central part of the discharge. Cal-
culations show that a situation can occur when the
resulting ion flux decreases or stays unchanged and
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Fig. 5. Discharge in argon for p = 0.1 torr, L0 = 3.35 cm, and
ω = 13.56 MHz. Average electron energy and plasma den-
sity at the center of the discharge as functions of the current
density. Symbols (triangles and squares) correspond to
experimental data [14]. The lines correspond to results of
fast simulation with taking into account e–e collisions.
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 > Γi, i.e., the plasma source power turns

out to be higher than the loss power, and accumulation
of the plasma occurs. For calculations with a fixed ion-
ization source, we used a steady- state solution
obtained in calculations of the argon self-sustaining
discharge (p = 0.1 torr, j0 = 0.3 mA/cm2, L0 = 3.35 cm,
and ω = 13.56 MHz; e–e collisions are not included).
Ionization source was doubled and fixed. Figure 6
shows the time evolution of the plasma density, ion
velocity, average electron energy, and ion flux at the
point x* = 0.3 cm both with e–e collisions included
(solid lines) and without them (dashed lines).

The initial values of the parameters correspond to
the steady state obtained in calculations of a self-sus-
taining discharge. It is seen in Fig. 6 that, when e–e col-

x I x t,( )〈 〉d
0

x∫

lisions are not taken into account, the stage of
approaching a steady state (the ion flux approaches

, the solid line in Fig. 6a) is replaced

with the stage in which an increase in the ion flux ter-
minates. After that, the ion flux begins to decrease,
because the plasma-density growth is balanced and
even dominated by a decrease in the rate of the ion
escape due to a decrease in the average electron energy.
The effective electron temperature decreases from 2.5
eV to 0.5 eV. The steady state is not reached in this
case. Including e–e collisions terminates a decrease in
the average electron energy and provides the existence
of a steady-state solution.

If e–e collisions are not taken into account, then, for
x < |Lp |, the steady- state solution to the equation of
continuity for ions (13) is absent. Let us consider equa-
tion (13) for x < |Lp |. We assume for simplicity that
eΦ(x) = eΦ(n(x)) (actually, the EDF in equation (19) is
an intricate function of both the potential and density).
We also assume that ui = µ(deΦ/dx), which is a good
approximation for small values of 〈E〉/p. For x < |Lp |,
equation (13) is transformed to

(21)

where I(x) is the ionization source, which is fixed in our
case. Assuming I(x) = I0 = const, we can obtain the
solution to equation (21)

(22)

In obtaining (22), we used the boundary conditions
(dn /dx) |x = 0 = 0 and n(Lp) = np. It follows from (22) that
the following relation must hold

(23)

All sheath parameters (including its density profile and
the density np at the plasma boundary) are determined
only by the ion flux from the plasma and are indepen-
dent of the EDF and the potential profile in the plasma.
Therefore, the quantity np in (22) can be regarded as
fixed, and equation (22) can be used as equation for the
plasma density n0 in the center of the gap.

If, for example, Φ(n) ∝  1/nα with α > 1, then the
left-hand side of (23) increases with increasing n0, but
remains limited. Thus, for sufficiently large values of I0,
steady-state equation (21) has no solutions. This effect
is similar to a thermal explosion when the temperature
conductivity decreases with increasing temperature
(see the Introduction).

Electron–electron collisions, which occur for a suf-
ficiently high plasma density, lead to the heating of cold
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Fig. 6. Non-self-sustaining discharge in argon for p =
0.1 torr, j0 = 0.3 mA/cm2, L0 = 3.35 cm, and ω = 13.56 MHz.
The fixed ionization-source power corresponds to the dou-
bled ionization-source power taken from the FS results for
the same parameters. Time evolution of (a) the ion flux,
(b) ion velocity, (c) average electron energy, and (d) plasma
density at the point x* = 0.3 cm. Solid lines are the results of
calculation in the absence of the steady-state solution, when
e–e collisions are not taken into account. Dashed lines are
the results of calculations including e–e collisions. The

thick line corresponds to .x I x t,( )〈 〉d
0
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electrons due to their energy exchange with the fast
ones, thereby, preventing a decrease in the average
energy of the cold electrons. This corresponds to the
transition to the case α = 0.

The processes occurring in a self-sustaining dis-
charge become more complex when it is necessary to
incorporate self-consistent variations in the ionization
rate. However, in this case, the electrons can also be
broken into two groups with very different effective
temperatures. The first group, with a total energy below
the ambipolar potential at the sheath boundary, is
heated by the oscillating field only slightly, whereas the
second one, entering the sheath, is responsible for ion-
ization.

The problem of a sharp transition to a peaked EDF
profile in a self-sustaining discharge as the current
increases is the subject of our further study.
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